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1 Introduction

The symmetry method is a powerful tool of differential geometry for accurate analysis
of a mathematical model as a description of a system in many areas of applied mathe-
matics and physics. Dispersive wave equations arise in many areas when the third order
derivative in the KdV (Korteweg de Vries) equation approaches zero. It is necessary to
take account of the higher order effect of dispersion in order to balance the nonlinear
effect.

The Kawahara-KdV equation, modified Kawahara-KdV equation and Kawahara-KdV
type equation, respectively, are given as:

ut + uux + uxxx − γ1uxxxxx = 0, ut + 3u2ux + uxxx − γ2uxxxxx = 0,

ut + ux + uux + uxxx − γuxxxxx = 0, (1)
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where γ, γ1, γ2 ∈ R+. When the cubic KdV type equation is weak, a lot of physical
phenomena are described by the Kawahara-KdV type equations [6]. Especially, the
Kawahara-KdV type equation as a specific form of the Benney-Lin equation describes
the one-dimensional evolution problems. The λ-symmetries method is a special method
for order reduction of ODEs. In 2004, Gaeta and Morando developed this method to a
µ-symmetries method for PDEs, where µ = λidx

i is a horizontal one-form on first order
jet space (J (1)M,π,M) and also µ is a compatible. The concepts of variational problem
and conservation law and their relationship with λ-symmetries of ODEs were presented
by Muriel, Romero and Olver (2006). More precisely, they have extended the formulation
of Nother’s theorem for λ-symmetry of ODEs. Continuing this trend, in 2007, Cicogna
and Gaeta generalized the results obtained by Muriel, Romero and Olver in the case of
λ-symmetries for ODEs to the case of µ-symmetries for PDEs.

The outline of this paper is as follows. Section 2 is devoted to the Lie symmetry
analysis, reduction and differential invariant of equations (1). We will find all conserva-
tion laws for equations (1) in Section 3. In Section 4, we compute the µ-symmetry and
order reduction of equations (1). Section 5 deals with the Lagrangian of equations (1)
in potential form. Finally, in the last section, µ-conservation laws of equations (1) are
obtained.

2 Lie Symmetry Analysis, Reduction and Differential Invariant of the
Kawahara-KdV Type Equation

The symmetry group of a system of differential equations is the largest local group of
transformations acting on the independent and dependent variables of the system with
the property that it transforms solutions of the system to other solutions [8].

First of all, we obtain the vector fields of equations (1) as follows: v1 =
∂x(space translation), v2 = −∂t(time translation), v3 = t∂x + ∂u(Galilean boost). The
commutation relations between vector fields is given by Table 2.

[vi,vj ] v1 v2 v3

v1 0 0 0
v2 0 0 −v1

v3 0 v1 0

Table 1: The commutator table of equations (1)

Note that the Lie algebra g is solvable , because g
′′

= [g′, g′] = 0 ⊂ g′ = [g, g] =<
v1 >⊂ g. The one-parameter groups G1 : (x + ε, t, u), G2 : (x, t − ε, u) and G3 :
(εt+ x, t, u+ ε) are generated by v1, v2 and v3, respectively, so that the entries give the
transformed point exp(εvi)(x, t, u) = (x̃, t̃, ũ). Since each group Gi is a symmetry group,
this fact implies that if u = f(x, t) is a solution of equations (1), so are the functions
u1 = f(x− ε, t), u2 = f(x, t+ ε) and u3 = f(x− εt, t) + ε.

For better cognition, we now try to classify the infinite set of solutions of equations
(1). This is, in fact, the categorized orbits of the influence of groups. In general, for each
s−parameter subgroup H of G, there is a family of group-invariant solutions (s ≤ p) and
it is not usually feasible to list all solutions via this method, because there are infinite
number of s−parameter subgroups. Now we classify them according to the conjugacy
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property, and this is an effective method to find an optimal system of subgroup in terms
of conjugacy in equivalent. This matter is equivalent to finding an optimal system of
subalgebras, a list of subalgebras with the property that any other subalgebra is conjugate
to one subalgebra in that list. Table 2 shows adjoint representation to compute.

Ad(exp(εvi)vj) v1 v2 v3

v1 v1 v2 v3

v2 v1 v2 v3 + εv1

v3 v1 v2 − εv1 v3

Table 2: Adjoint representation table of equations (1)

Theorem 2.1 An optimal system of one-dimensional Lie algebras of equations (1)
is provided by a2v2 + v3 and a1v2.

Proof. The adjoint representation was determined in Table 2, and the matrices Mε
i

of F εi , i = 1, 2, 3, with respect to basis {v1,v2,v3} are

Mε
1 =

 1 0 0
0 1 0
0 0 1

 , Mε
2 =

 1 0 −ε
0 1 0
0 0 1

 , Mε
3 =

 1 ε 0
0 1 0
0 0 1

 .

Then we will make coefficients ai as simple as possible, by acting these matrices on a
vector field V alternatively. First, suppose that a3 6= 0, so we can assume that a3 = 1,
and by Mε

1 or Mε
2 , the coefficients of v1 vanish and V reduces to case 1. The second

mode will be the same. 2

Assume G acts projectably on M and ∆ is a system of differential equation defined in
it. By using the Lie-group method the number of independent variables can be reduced
and the reduced system of differential equation is in quotient manifold M/G. If s denotes
the dimension of the orbit of G, then there are precisely (p− s) invariants which depend
on x and play the role of independent variables y = (y1, ..., yp−s)) [7].

Now by integrating the characteristic equation, the invariants will be calculated. All
results are coming in Table 2. In the following, differential invariants are computed. Let

operator y v u reduced equations

v1 t u v(y) vy = 0
αv2 x u v(y) vy + v vy + vy3 − γ vy5 = 0
v3 t x− t u 1

t
(x− v(y)) 1 − vy = 0

αv2 + v3 t2 + 2αx t+ α u 1
α

(v(y) − t) −1 + αvy + v vy + α3vy3 − α5vy5 = 0

Table 3: Reduction of equations (1).

us remind, if G is a symmetry group for a system with functionally differential invariants,
then the system can be rewritten in terms of these invariants. Table 2 shows differential
invariants of the equation (1) up to order 3.
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vector field up to the 3-rd order

v1 t, u, ux, ut, uxx, uxt, utt, uxxx, uxxt, uxtt, uttt
v2 x, u, ux, ut, uxx, uxt, utt, uxxx, uxxt, uxtt, uttt

v3 t, −x
t

+ u, x
t
ux + ut,

x
t
uxx + uxt,

x2

t2
uxx + 2x

t2
(xuxx + tuxt) + utt, uxxx, uxxt, uxtt, uttt

Table 4: Differential invariants of invariant(1).

3 Conservation Laws for the Kawahara-KdV Type Equation

Suppose that the Kawahara-KdV type equation is an isolated system, a particular mea-
surable property of this system is called a conservation law which does not change as
the system evolves over time. Consider Φ = (Φ1(x, u(n)), ...,Φp(x, u(n))) is a p-tuple of
smooth functions on J (n)M . In characteristic form, a local conservation law is

DivΦ = D1Φ1(x, u(n)) + ...+DnΦn(x, u(n)) = Q.∆, Q = (Q1, ..., QL),

where Φis and Q are the fluxes and characteristics of the conservation law. In this section,
the conservation law is calculated by the multiplier method and also remind the Euler
operator with respect to U j is EUj = ∂

∂Uj −Di
∂
∂Uj + · · ·+(−1)sDi1 · · ·Dis

∂

∂Uj
i1···is

+ · · · .
The next theorem shows that the range of Div is a subset of the Euler operator’s

kernel.

Theorem 3.1 The equations EUjF (x, U, ∂U , · · · , ∂sU ) ≡ 0, j = 1, · · · , q hold for ar-
bitrary U(x) if and only if F (x, U, ∂U , · · · , ∂sU ) is in the range of Div [7, 8].

Theorem 3.2 The set of equations EUj (Λν(x, U, ∂U , · · · , ∂rU )∆ν(x, u(n))) ≡ 0, j =
1, · · · q, holds for arbitrary functions U(x), if and only if the set {Λν(x, U, ∂U , · · · , ∂rU )}lν=1

yields a local conservation law for the system [7, 8].

Now, to find all local conservation law multipliers of the form Λ = ξ(x, t, u), we have

EU [ξ(x, t, U)(Ut + Ux + UUx + Uxxx − γUxxxxx)] ≡ 0,

where U(x, t) are arbitrary functions. The solution of the determining system is ξ =
1, U, t+ tU −x. In other words, DtΨ +DxΦ ≡ ξ(Ut+Ux+UUx+Uxxx−γUxxxxx), that
is, (Ψ,Φ) determines a nontrivial local conservation law of the system. Further, (Ψ,Φ)
are calculated by using the homotopy operator and all results are shown in Table 3.

4 µ-Symmetry and Order Reduction for Kawahara-KdV Type Equation

Let Di be a total derivative up to xi, λi : J (1)M −→ R and µ = λidx
i be a horizontal

one-form on first order jet space (J (1)M,π,M) and compatible, i.e. Diλj − Djλi = 0.
Suppose ∆(x, u(k)) = 0 is a scalar PDE, involving p independent variables x = (x1, ..., xp)
and one dependent variable u = u(x1, ..., xp) of order k.

Let X =
∑p
i=1 ξ

i∂xi + ϕ∂u be a vector field on M , Y = X +
∑k
J=1 ΨJ ∂uJ

be the
µ-prolongation of X on jet space JkM if ΨJ,i = (Di+λi)ΨJ−uJ,m(Di+λi)ξ

m, (Ψ0 = ϕ).
Suppose S∆ ⊂ JkM is a solution manifold for ∆ = 0 and Y : S −→ TS, then X is said
to be a µ-symmetry for ∆. Generally, in this thread if µ = 0, ordinary prolongation
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ξ(x, t, u) Ψ Φ
1 Ψ = u+ 1

2u
2 + ux2 − γux4 Φ = u

u Ψ = 1
2u

2 + 1
3u

3 + uux2 − 1
2uxux Φ = 1

2u
2

+γ(−uux4 + uxux3 + 1
2ux2ux3)

t+ tu− x Ψ = tu+ tu2 − xu− x
2u

2 + t
3u

3 + ux Φ = tu+ t
2u

2 − xu
+tux2(1 + u)− xux2 − γux4(tu+ t− x)
+γtuxux3 − γ t2ux2ux2 − γux3 − t

2uxux

Table 5: Conservation laws for equations (1).

and ordinary symmetry is going to happen. Suppose µ = λidx
i is a horizontal 1-form

and compatible on S∆ and X is a vector field on M , then the exponential vector field
V = exp

( ∫
µ
)
X is a general symmetry for ∆ if and only if X is a µ-symmetry for ∆.

Theorem 4.1 Let ∆ be a scalar PDE of order k for u = u(x1, ..., xp), X = ξi( ∂
∂xi )+

ϕ( ∂
∂u ) be a vector field on M , with characteristic Q = ϕ−uiξi and Y be the µ-prolongation

of order k of X. If X is a µ-symmetry for ∆, then Y : SX −→ TSX , where SX ⊂ J (k)M
is the solution manifold for the system ∆X made of ∆ and of EJ := DJQ = 0 for all J
with | J |= 0, 1, ..., k − 1. [4]

The process of calculating µ-symmetries of a given equation ∆ = 0 of order n is similar
to that for the ordinary symmetries. Generally, if X is a generic vector field acting in
M, then its µ-prolongation Y of order n for a generic µ = λidx

i, acting in J (n)M and
applying Y to ∆ and the obtained expression to S∆ ⊂ J (n)M, the result will be ∆∗ up
to ξ, τ, ϕ and λi. If we require λi to be functions on J (k)M , all the dependences on uJ
will be explicit, and one obtains a system of determining equations. This system should
be complemented with the compatibility conditions between the λi. If we determine a
priori the form µ, we are left with a system of linear equation for ξ, τ, ϕ; similarly, if
we fix a vector field X and try to find the µ for which it is a µ-symmetry of the given
equation ∆, we have a system of quasilinear equations for the λi [4].

To continue the µ-symmetry analysis of equations (1), let µ = λ1dx + λ2dt be a
horizontal one-form and with the compatibility condition Dtλ1 = Dxλ2 when ∆ = 0.
Suppose X = ξ∂x+ τ∂t+ϕ∂u is a vector field on M , in order to compute µ-prolongation
of order 5 of X, we have Y = X + Ψx∂ux

+ Ψt∂ut
+ Ψxx∂uxx

+ ... + Ψttttt∂uttttt
, where

coefficients Y are as follows:

Ψx = (Dx + λ1)ϕ− ux(Dx + λ1)ξ − ut(Dx + λ1)τ ,

Ψt = (Dt + λ2)ϕ− ux(Dt + λ2)ξ − ut(Dt + λ2)τ , ....

By applying Y to equations (1) and substituting (1/γ)(ut +ux +uux +uxxx) for uxxxxx,
we obtain the following system:

γτuuuuu = 0, γξuuuuu = 0, 5γτu = 0, ... , 10γ(3τxu + τλ1u + 3τuλ1) = 0. (2)

For any choice of the type λ1 = Dx[f(x, t)]+g(x), λ2 = Dt[f(x, t)]+h(t), where f(x, t),
g(x) and h(t) are arbitrary functions and the functions λ1 and λ2 satisfy the compatibility
condition. For instance, two cases studied to obtain the µ-symmetry and order reduction
of equations (1) are as follows:
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i) When g(x) = 0 and h(t) = 0, then by substituting the functions λ1 = Dxf(x, t)
and λ2 = Dtf(x, t) into the system of (2) and solving that system, we deduce ξ =
(c1t+ c2)F (x, t), τ = F (x, t) and ϕ = c1F (x, t), where f(x, t) = − ln(F (x, t)) and F (x, t)
is an arbitrary positive function and c1 and c2 are arbitrary constants. Then X =(

(c1t+c2)∂x+∂t+c1∂u

)
F (x, t) is a µ-symmetry of equations (1) and corresponds to an

ordinary symmetry V = exp
( ∫

Dxf(x, t)dx + Dtf(x, t)dt
)
X of exponential type and

order reduction of equations (1) is Q = ϕ− ξux − τut =
(
c1 − (c1t+ c2)ux − ut

)
F (x, t).

ii) When g(x) = 0 and h(t) = 1/(t + c1), where c1 is an arbitrary constant, then
by substituting the functions λ1 = Dxf(x, t) and λ2 = Dtf(x, t) + 1/(t + c1) into the
system of (2) and solving them, we deduce ξ = F (x, t), τ = 0, and ϕ = 1/(t+ c1)F (x, t)
where f(x, t) = − ln(F (x, t)) and F (x, t) is an arbitrary positive function. Then X =(
∂x + 1/(t + c1) ∂u

)
F (x, t) is a µ-symmetry of equations (1) and corresponds to an

ordinary symmetry V = exp
( ∫

Dxf(x, t)dx+(Dtf(x, t)+1/(t+c1))dt
)
X of exponential

type. In this case reduction of equations (1) is Q = ϕ− ξux− τut =
(

1
t+c1
− ux

)
F (x, t).

5 Lagrangian of the Kawahara-KdV Type Equation in Potential Form

In this section, we show that equations (1) do not admit a variational problem since they
are of odd order, but equations (1) in potential form admit a variational problem.

Theorem 5.1 Let ∆ = 0 be a system of differential equation. Then ∆ is the Euler-
Lagrange expression for some variational problem L =

∫
Ldx, i.e. ∆ = E(L) if and only

if the Frechet derivative D∆ is self-adjoint: D∗∆ = D∆ [8].

In this case, a Lagrangian for ∆ can be explicitly constructed using the homotopy

formula L[u] =
∫ 1

0
u.∆[λu]dλ and the Frechet derivative of ∆KKu : ut + ux + uux +

uxxx − γuxxxxx = 0 is D∆KKu
= Dt + (1 + u)Dx + D3

x − γD5
x + ux. Obviously, it does

not admit a variational problem since D∗∆KKu
6= D∆KKu

. But the well-known differential
substitution u = vx yields the related transformed Kawahara-KdV type equation as
∆KKv

: vxt+vxx+vxvxx+vxxxx−γvxxxxxx = 0, that is called ”the Kawahara-KdV type
equation in potential form” and its Frechet derivative is D∆KKv

= DxDt + vxxDx + (1 +
vx)D2

x +D4
x − γD6

x, which is self-adjoint, i.e. D∗∆KKv
= D∆KKv

and has a Lagrangian of
the form

L[v] =

∫ 1

0

v.∆KKv
[λv]dλ = −1

2

(
vxvt + v2

x +
1

3
v3
x − v2

xx + γv2
xxx

)
+ DivP.

Hence, the Lagrangian of the Kawahara-KdV type equation in potential form ∆KKv , up
to Div-equivalence is

L∆KKv
[v] = −1

2

(
vxvt + v2

x +
1

3
v3
x − v2

xx + γv2
xxx

)
. (3)

6 µ-Conservation Laws of the Kawahara-KdV Type Equation

A conservation law is a relation Div P :=
∑p
i=1DiP

i = 0, where P = (P 1, · · · , P p) is
a p−dimensional vector. Let µ = λidx

i be a horizontal one-form and Diλj = Djλi .
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A µ-conservation law is a relation as (Di + λi)P
i = 0, where P i is a vector and the

M−vector P i is called a µ-conserved vector.

Theorem 6.1 Consider the n−th order Lagrangian L = L(x, u(n)) and the vector
field X, then X is a µ-symmetry for L, i.e. Y [L] = 0 if and only if there exists a
M−vector P i satisfying the µ-conservation law (Di + λi)P

i = 0.

Suppose L = L(x, t, u, ux, ..., ut) is the first order Lagrangian and the vector field X =
ϕ (∂/∂u) is a µ-symmetry for L, then the M−vector P i := ϕ (∂L/∂ui) is a µ-conserved
vector. Also, suppose L = L(x, t, u, ux, ..., utt) is the second order Lagrangian and the
vector field X = ϕ (∂/∂u) is a µ-symmetry for L, then the M−vector P i := ϕ(∂L/∂ui)+
[(Dj + λj)ϕ](∂L/∂uij) − ϕDj(∂L/∂uij) is a µ-conserved vector. The M−vector P i is
obtained for the third order Lagrangian in the following theorem.

Theorem 6.2 Consider the 3−rd order Lagrangian L = L(x, t, u, ux, ..., uttt) and the
vector field X, then X = ϕ (∂/∂u) is a µ-symmetry for L, i.e. Y [L] = 0 if and only if

the M−vector P i := ϕ ∂L
∂ui

+[(Dj +λj)ϕ] ∂L∂uij
−ϕDj

∂L
∂uij
− (Dk+λk)

(
[(Dj +λj)ϕ] ∂L

∂ujki
−

ϕDj
∂L
∂ujki

)
satisfies the µ-conservation law (Di + λi)P

i = 0.

Proof. Let X = ϕ (∂/∂u) be a µ-symmetry for L, its 3−rd order µ-prolongation is
Y = ϕ ∂

∂u +[(Dx+λ1)ϕ] ∂
∂ux

+[(Dt+λ2)ϕ] ∂
∂ut

+ ...+[(Dt+λ2)3ϕ] ∂
∂uttt

, then by applying
Y on the Lagrangian L, we have

Y [L] = ϕ
∂L
∂u

+ [(Dx + λ1)ϕ]
∂L
∂ux

+ [(Dt + λ2)ϕ]
∂L
∂ut

+ ...+ [(Dt + λ2)3ϕ]
∂L
∂uttt

= ϕ(∂L
∂u
−Dxϕ

∂L
∂ux

−Dtϕ
∂L
∂ut

+D2
xϕ

∂L
∂uxx

+ ...−D3
tϕ

∂L
∂uttt

)
+(Dx + λ1)

[
ϕ
∂L
∂ux

+[(Dj

+λj)ϕ]
∂L
∂uxj

− ϕDj
∂L
∂uxj

− (Dk + λk)
(
[(Dj + λj)ϕ].

∂L
∂ujkx

−ϕDj
∂L
∂ujkx

)]
+(Dt+λ2)

[
ϕ
∂L
∂ut

+[(Dj |+λj)ϕ]
∂L
∂utj

− ϕDj
∂L
∂utj
− (Dk + λk)

(
[(Dj + λj)ϕ]

∂L
∂ujkt

−ϕDj
∂L
∂ujkt

)]
.

We put P i := ϕ ∂L
∂ui

+ [(Dj + λj)ϕ] ∂L∂uij
− ϕDj

∂L
∂uij

− (Dk + λk)
(

[(Dj + λj)ϕ] ∂L
∂ujki

−

ϕDj
∂L
∂ujki

)
. Then Y [L] = ϕE(L)+(Di+λi)P

i, where E is the Euler-Lagrange operator.

The Euler-Lagrange equations E(L) vanishes, hence this reduces to Y [L] = (Di+λi)P
i .

This shows that Y [L] = 0 implies (Di + λi)P
i = 0. 2

We consider the 3−rd order Lagrangian (3) for the Kawahara-KdV type equation in
potential form ∆KKv = vxt + vxx + vxvxx + vxxxx − γvxxxxxx = E(L∆KKv

). Suppose
X = ϕ∂v is a vector field for L∆KKv

[v]. Let µ = λ1dx + λ2dt be a horizontal one-form
with the compatibility condition Dtλ1 = Dxλ2 when ∆KKv

= 0. In order to compute µ-
prolongation of order 3 of X, we have Y = ϕ∂v+Ψx∂vx +Ψt∂vt +Ψxx∂vxx

+...+Ψttt∂vttt ,
where coefficients Y are as follows:

Ψx = (Dx + λ1)ϕ, Ψt = (Dt + λ2)ϕ, Ψxx = (Dx + λ1)Ψx, ...,Ψttt = (Dt + λ2)Ψtt.

Thus, the µ-prolongation Y acts on the L∆KKv
[v], and substituting

(
v2
x + 1

3v
3
x − v2

xx +

γv2
xxx

)
/− vx for vt, we obtain the system as follows:

ϕvv = 0 , (−1/6)ϕv = 0 , ..., γ(ϕλ1v + 3λ1ϕv + 3ϕxv) = 0. (4)
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Supposeϕ=F (x, t), where F (x, t) is an arbitrary positive function satisfying L∆KKv
[v] =

0, then a special solution of the system (4) is given by λ1 = −Fx(x, t)/F (x, t), λ2 =
−Ft(x, t)/F (x, t), where Dtλ1 = Dxλ2. Hence X = F (x, t)∂v is a µ-symmetry for
L∆KKv

[v], then by Theorem 6.1, there exists a M−vector P i satisfying the µ-conservation
law (Di + λi)P

i = 0. Then by Theorem 6.2, the M−vector P i is

P 1 = −1

2
F (x, t)

(
vt + 2vx + v2

x + 2vxxx − 2γvxxxxx
)
, P 2 = −1

2
F (x, t)vx, (5)

and (Dx+λ1)P 1 +(Dt+λ2)P 2 = 0 is a µ-conservation law for the 3-rd order Lagrangian
L∆KKv

[v]. Therefore, the µ-conservation law for equations (1) in potential form ∆KKv =
E(L∆KKv

) is DxP
1 +DtP

2+λ1P
1+λ2P

2 = 0, where P 1 and P 2 are the M−vectors P i

of (5).

Remark 6.1 The µ-conservation law for equations (1) in potential form ∆KKv
, sat-

isfies Noether’s theorem for µ-symmetry, i.e. (Di + λi)P
i = QE(L∆KKv

).

We consider the Kawahara-KdV type equation in potential form ∆KKv
= vxt+vxx+

vxvxx + vxxxx − γvxxxxxx = 0, or equivalently, Dx(vt + vx + 1
2v

2
x + vxxx − γvxxxxx) = 0,

or vt + vx + 1
2v

2
x + vxxx − γvxxxxx = f(t), where f(t) is an arbitrary function. If we

substitute f(t)−vx− 1
2v

2
x−vxxx+γvxxxxx by vt and substitute u by vx in the M−vector

P i of (5), then we obtain the M−vectors

P 1 = −1

2
F (x, t)

(
f(t) + u+

1

2
u2 + uxx − γuxxxx

)
, P 2 = −1

2
F (x, t)u. (6)

Also, the µ-conservation law for equations (1) is DxP
1 +DtP

2 +λ1P
1 +λ2P

2 = 0, where
P 1 and P 2 are the M−vectors P i of (6).

Remark 6.2 Equations (1) satisfy the characteristic form, i.e. (Di +λi)P
i = (Dx +

λ1)P 1 + (Dt + λ2)P 2 = Q∆KKu
.
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