Nonlinear Dynamics and Systems Theory, 19 (1-SI) (2019) 124-132

Oscillation of Second Order Nonlinear Differential Equations with Several Sub-Linear Neutral Terms

J. Dzurina^{1*}, E. Thandapani², B. Baculikova¹, C. Dharuman³ and N. Prabaharan³

 ¹ Department of Mathematics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
² Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India
³ Department of Mathematics, SRM University, Ramapuram Campus, Chennai - 600 089, India

Received: June 26, 2018; Revised: February 28, 2019

Abstract: Some new sufficient conditions for oscillation of all solutions of a class of second order differential equations with several sub-linear neutral terms are given. Our results generalize and extend those reported in the literature. Examples are included to illustrate the importance of the results obtained.

Keywords: second order neutral differential equation; sub-linear neutral term; oscillation.

Mathematics Subject Classification (2010): 34C10, 34K11.

1 Introduction

In this paper, we study the oscillatory behavior of second order differential equations with several sub-linear neutral terms of the form

$$(a(t)z'(t))' + q(t)x^{\beta}(\sigma(t)) = 0, \quad t \ge t_0 > 0, \tag{1}$$

where m > 0 is an integer, $z(t) = x(t) + \sum_{i=1}^{m} p_i(t) x^{\alpha_i}(\tau_i(t))$ and we assume that

(*H*₁) $0 \le \alpha_i \le 1$ for i = 1, 2, ..., m and β are the ratios of odd positive integers;

^{*} Corresponding author: mailto:jozef.dzurina@tuke.sk

^{© 2019} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua124