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Abstract: We study Krasnoselskii’s fixed point theorem on the sum of two operators
restricted to the Banach space of continuous functions with the supremum norm. The
work is based on “open mappings” in the sense that our mapping P maps a closed
bounded convex set M into its interior Mo. We show that any fixed point of a
mapping of the whole space must reside in Mo. This is very informative in case of
non-uniqueness. We also extend a known transformation to hold for integral equations
being the sum of a contraction and a compact map where the “forcing function” is the
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simple mapping sets.
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1 Introduction

Much has been written about fixed point mappings which are either contractions or
compact. But around 1954 Krasnoselskii studied a paper by Schauder on differential
equations and concluded a variant of the idea that the inversion of a perturbed differ-
ential operator yields the sum of a contraction and a compact map. Embodied in that
theorem are both Banach’s contraction mapping principle and Schauder’s second fixed
point theorem. All three of these are conveniently found in the monograph by Smart [15].
Accordingly, Krasnoselskii offered the following fixed point theorem [15, p. 31 ].
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Theorem 1.1 Let M be a closed convex non-empty subset of a Banach space (B, ‖·‖).
Suppose that A and B map M into B and that

(i) x, y ∈M =⇒ Ax+By ∈M ,
(ii) A is continuous and maps bounded sets into compact sets.
(iii) B is a contraction mapping with constant α < 1.

Then there exists y ∈M such that Ay +By = y.

We can get the idea from the survey paper by Park [14] that this has generated much
interest. In fact, the literature on it is so large that we make no effort to survey it here.

It is noteworthy that investigators focus on the very general form of (i), but gloss
over the common assumption that (A + B) : M → M . Moreover, nothing is said about
uniqueness or where another fixed point might reside. In real-world problems it can be a
complete disaster if there is another fixed point and if it is in a set having fundamental
features very different from those of points in M . We discuss these later.

We loosen (i) to just the mapping (A+B) and then tighten it to (A+B) : M →Mo,
the interior of M . Then we restrict the space to continuous functions. This allows us
to prove the result and be certain that any fixed point will reside in M . Hence, we will
know that the fixed point has the general properties displayed in M . The next paragraph
justifies the restriction of the space.

Normed spaces and even Banach spaces are very general and contain examples which
have almost none of our intuitive properties in common. There is a classical example
showing how wrong we can be when we see a counterexample to a conjecture when
the counterexample involves sequence spaces, but our main interest lies in spaces of
continuous functions with the supremum norm. A 1980 article in Smart [15, p. 39]
states that there appears to be an open conjecture that [every shrinking mapping of the
closed unit ball in a Banach space has a fixed point]. In fact, it is true for important
spaces of continuous functions, but was shown to be false for sequence spaces in 1967.
See MR3695827.

We believe that the same thing is at work here and it involves the property that
a continuous function starting inside a Jordan curve cannot pass from the inside to
the outside without explicitly crossing the curve. That is used frequently in stability
theory of ordinary differential equations, but fails completely for corresponding results
for difference equations in which the solution jumps over the boundary without touching
it.

It is for these reasons that we believe that Krasnoselskii’s theorem may be simple for
Banach spaces of continuous functions φ : [0, E]→ < with the supremum norm denoted
by (B, ‖ · ‖[0,E]) which typically concern a general class of integral equations represented
as

x (t) = g (t, x (t)) +

∫ t

0

a (t, s) f (s, x (s)) ds, t ≥ 0, (E)

in the aforementioned space. A special case of (E) is

x(t) = g(t, x(t))−
∫ t

0

C(t− s)f(s, x(s))ds. (1)

In the context of Krasnoselskii’s theorem, g(t, x) is B - the contraction, while the integral
is A - the compact map. The natural mapping is then P = B + A and we seek an
appropriate closed bounded convex subset of B. While we have greatly simplified (i),
among other things we ask that P : M → Mo the interior of M and we also have
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asked that M be bounded. But this will yield far more than just a fixed point. With
these conditions in hand we will use an old combination of Schaefer’s theorem with
Krasnoselskii’s theorem and obtain a fixed point. With reference now to future remarks
on non-uniqueness, we can be assured that any other solution will also reside in M which
tells us also that all solutions are bounded.

Non-anticipative: The entire paper rests on the following two paragraphs.
We will assume throughout that we are dealing with Volterra operators [8, p. 84].

For any pair of functions x, y ∈ B if x(s) = y(s) on 0 ≤ s ≤ t ≤ E then the operator
V satisfies (V x)(t) = (V y)(t). When the operator P is the natural operator defined by
(E) and the integral has, at t = 0, constant value for any function x ∈ B, say zero, then
(Px)(0) = g(0, x(0)) for any function x ∈ B. In particular, if φ ∈ B is a fixed point so
that Pφ = φ, then it is true that

(Pφ)(0) = φ(0) = g(0, φ(0)),

and the last equality is an algebraic relation in φ(0). Since g is a contraction, this has a
unique solution φ(0) independent of which fixed point of P is under discussion. As we
have asked no smoothness conditions on f , there may be many fixed points of P but they
all start at this single φ(0). Frequently we can solve that algebraic relation explicitly for
φ(0).

Looking ahead, we will be finding a closed convex bounded set M with the property
that P maps M into its interior. If ψ belongs toM and has the property that φ(0) = ψ(0),
then Pψ is in the interior of M , so the distance from φ(0) to the complement of M is
positive.

2 The Location of a Fixed Point

Let (B, ‖ · ‖[0,E]) be the Banach space of continuous φ : [0, E] → < with the supremum
norm. If B,A : B → B are the operators defined, respectively, by g and the integral in
(E), then we want A to be compact in the sense that it is continuous and maps bounded
subsets of B into compact sets, while B is a contraction. The central idea here is that if
Pλ is the non-anticipative mapping Pλ : B → B defined by

Pλφ := λB(φ/λ) + λAφ, 0 < λ ≤ 1, (2)

then conditions of the following theorem can be verified if for every φ ∈ B the number
(Pλφ)(0) is completely known. This is readily seen in (E) which we later explain in detail.

Throughout the paper, for a positive number K we denote by MK the closed ball of
center 0 and radius K in the Banach space B, i.e.,

MK := {x ∈ B : ||φ|| ≤ K} .

Theorem 2.1 Let the conditions on A, B, and Pλ of (2) hold. Assume that there is
a K > 0 such that the unique fixed point x0 of g (0, x) = x belongs to (−K,K), and, for
each λ ∈ (0, 1] the mapping Pλ of (2) satisfies PλMK ⊂ Mo

K := (MK)o. Then Pφ = φ
has a solution in Mo

K . Moreover, any solution φ of Pφ = φ resides in Mo
K .

Proof. We firstly prove that all fixed points of P (if any) reside in Mo
K . Recall that

any fixed point of P starts from the unique solution of the equation g (0, x) = x. We now
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come to the idea introduced in [5]. Let φ be a fixed point of P which does not reside
in Mo

K . As φ (0) = x0 ∈ (−K,K), we see that there exists T ∈ (0, E] such that either
φ (T ) = K or φ (T ) = −K, while −K < φ(t) < K, t ∈ [0, T ), say it holds φ (T ) = K.
Then for the function

φT (t) :=

{
φ (t) , t ∈ [0, T ),
K, T ≤ t ≤ E,

we see that φT ∈MK hence PφT ∈Mo
K := {x ∈ B : ||φ|| < K}, and so ||PφT || < K. But

φT (t) = φ (t) for t ∈ [0, T ], thus, as P is non-anticipative, we take PφT (T ) = Pφ (T ) =
K which implies ||PφT || ≥ K, a contradiction to PφT ∈Mo

K . Thus, all fixed points of P
(if any) reside in Mo

K . Then, in view of P = P1, existence of a solution of the equation
Pφ = φ is yielded by the following result of Burton and Kirk [4] applied on the Banach
space B and the fact that, by assumption, for any λ ∈ (0, 1) we have PλM ⊂Mo

K which
excludes (ii) in that theorem.

Theorem 2.2 Let (B, ‖ · ‖) be a Banach space, A,B : B → B, B be a contraction
with constant α < 1, and A be continuous with A mapping bounded sets into compact
sets. Either

(i) x = λB(x/λ) + λAx has a solution in B for λ = 1, or
(ii) the set of all solutions λ ∈ (0, 1) (if any), is unbounded.

We now want to employ Theorem 2.1 to look at solutions to the equation

x (t) = g (t, x (t)) +

∫ t

0

a (t, s) f (s, x (s)) ds, t ≥ 0. (E)

We assume that g, f : [0,∞)×< → < are continuous with g (t, z) being a contraction
in its second variable z, i.e., there exists an α ∈ (0, 1) such that

|g (t, z1)− g (t, z2)| ≤ α |z1 − z2| , t ≥ 0, z1, z2 ∈ <,

and that the kernel a (t, s) : {(t, s) : 0 < s < t} → < is absolutely integrable with respect
to the second variable on [0, t], for t > 0, and such that the function ã defined by

ã(t) :=

∫ t

0

|a (t, s)| ds, t ≥ 0,

is well defined and continuous for t ≥ 0. Note that a(t, s) may not be defined for

t = 0 but we ask that lim
t→0+

∫ t
0
|a (t, s)| ds ∈ <, in other words mild singularities of a are

allowed. Clearly, if a is continuous on the closed triangle sets {(t, s) : 0 ≤ s ≤ t}, then a

is absolutely integrable and lim
t→0+

∫ t
0
|a (t, s)| ds = 0.

In each one of the following three theorems we focus on giving conditions ensuring the
existence of a ball M in the Banach space B so that for each λ ∈ (0, 1] the corresponding
mapping Pλ defined in (2) satisfies PλM ⊂ Mo. Recall that we have also assumed that
g is a contraction and that A is compact. Then Theorem 2.1 not only yields existence
of (at least one) solution to (E), but also ensures that all solutions reside in Mo. As E
may vary and the set M in Theorem 2.1 is taken to be a ball, for the sake of clarity we
adopt the following notation:

For an E > 0 we denote by BE the Banach space of bounded continuous functions
φ : [0, E]→ R equipped with the usual supremum norm

‖φ‖E := sup
t∈[0,E]

|φ (t)| ,
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(or, simply ||φ|| when E is fixed), and set

MK := {φ ∈ BE : ‖φ‖ ≤ K} ,

where K is a positive number. As g (t, 0) is continuous on [0, E] for any E > 0, we set

LE := sup
t∈[0,E]

|g (t, 0)| .

Clearly, LE is a well defined nonnegative real number for any E > 0.
For λ ∈ (0, 1], we consider the mapping Pλ on BE defined by φ ∈ BE implies

(Pλφ) (t) := λg

(
t,
φ (t)

λ

)
+ λ

∫ t

0

A (t, s) f (s, φ (s)) ds, t ∈ [0, E] . (3)

Then Pλφ is continuous on [0, E], so Pλφ : BE → BE .

Our first result presents a limit condition posed on the kernel a(t, s) ensuring that
PλMK ⊂Mo

K for properly chosen positive numbers E and K.

Theorem 2.3 Assume that

lim
t→0+

∫ t

0

|a (t, s)| ds = 0. (4)

Then there always exist E > 0 and K > 0 such that for the mapping Pλ defined by (3)
we have Pλ : MK →Mo

K for any λ ∈ (0, 1].

Proof. Let λ ∈ (0, 1] and consider an arbitrary E1 > 0. As LE1
:= sup

t∈[0,E1]

|g (t, 0)| is

a nonnegative real number, we may consider a K > 0 such that

LE1 + 1

1− α
< K. (5)

By continuity of f on the compact set S1 := [0, E1]× [−K,K] we see that

m := sup
(t,z)∈S1

|f (t, z)| ∈ <.

In view of (4), if necessary, we may choose an E ∈ (0, E1] such that

m

∫ t

0

|a (t, s)| ds < 1, t ∈ [0, E]. (6)

With the real numbers E and K defined above, we consider the Banach space BE and
the ball

MK := {φ ∈ BE : ‖φ‖ ≤ K} ,

and note that as [0, E] ⊂ [0, E1], we have

S := [0, E]× [−K,K] ⊂ [0, E1]× [−K,K] = S1,

so
|f (t, z)| ≤ m for all (t, z) ∈ [0, E]× [−K,K] ,
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and
|f (t, φ (t))| ≤ m for all t ∈ [0, E] , φ ∈MK .

Now for φ ∈MK and λ ∈ (0, 1] we have for t ∈ [0, E]∣∣∣∣g(t, φ (t)

λ

)
− g (t, 0)

∣∣∣∣ ≤ α ∣∣∣∣φ (t)

λ

∣∣∣∣ =⇒
∣∣∣∣g(t, φ (t)

λ

)∣∣∣∣ ≤ |g (t, 0)|+ α

∣∣∣∣φ (t)

λ

∣∣∣∣ ,
so

|(Pλφ) (t)| ≤
∣∣∣∣λg(t, φ (t)

λ

)∣∣∣∣+ λ

∫ t

0

|a (t, s)| |f (s, φ (s))| ds

≤ λ

[
|g (t, 0)|+ α

∣∣∣∣φ (t)

λ

∣∣∣∣]+ λ

∫ t

0

|a (t, s)| |f (s, φ (s))| ds

≤ LE1
+ αλ

|φ (t)|
λ

+

∫ t

0

|a (t, s)|mds

≤ LE1
+ α ‖φ‖+m

∫ t

0

|a (t, s)| ds,

from which, by the use of (6) we find

|(Pλφ) (t)| < LE1
+ αK + 1, t ∈ [0, E] , φ ∈MK .

Consequently, in view of (5) we have

‖Pλφ‖ ≤ LE1
+ αK + 1 := K0 < K, φ ∈MK ,

and hence for any φ ∈MK it holds

Pλφ ∈
{
φ ∈ BE : ‖φ‖ < K0 +

K −K0

2

}
⊂Mo

K ,

i.e., Pλ (MK) ⊂Mo
K .

As already mentioned, when a is continuous on the closed triangle sets
{(s, t) : 0 ≤ s ≤ t} , t > 0, then (4) is automatically satisfied. However, if the kernel a has
singularity at t = 0, the limit condition (4) may not be satisfied. Indeed, the function

a (t, s) : {0 < s < t} ,→ R, defined by a (t, s) = 1√
t

(t− s)−1/2 , 0 < s < t, is absolutely

integrable with respect to s on [0, t] for any t > 0, also the function ã(t) =
∫ t
0
|a (t, s)| ds

may be well defined and continuous on [0, t] by setting

ã(0) = lim
t→0+

∫ t

0

a (t, s) ds = lim
t→0+

1√
t

∫ t

0

(t− s)−1/2 ds = lim
t→0+

1√
t
2
√
t = 2,

however, the limit condition (4) is not satisfied.

Example 2.1 Fractional kernels of the type

a (t, s) = (t− s)q−1 , 0 < s < t,

with q ∈ (0, 1) do satisfy condition (4) since

lim
t→0+

∫ t

0

(t− s)q−1 ds = lim
t→0+

tq

q
= 0,
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and so Theorem 2.3 may be applied on the equation with fractional kernel

x (t) = g (t, x (t)) +

∫ t

0

(t− s)q−1 f (s, x (s)) ds, t ≥ 0,

with q ∈ (0, 1), g, f continuous, and g being a contraction. In particular, Caputo type
fractional equations can be considered as special cases of the above equation.

Theorem 2.3 yields the existence of a (sufficiently small) interval [0, E] and a corre-
sponding K > 0 so that it holds PλMK ⊂ Mo

K . When f is bounded we may always
find a KE > 0 so that PλMKE

⊂ Mo
KE

for any (arbitrarily large) E > 0, yet without

assuming (4). In view of continuity of the function ã (t) :=
∫ t
0
|a (t, s)| ds, we set

aT := sup
0≤t≤T

ã(t) = sup
0≤t≤T

∫ t

0

|a (t, s)| ds, T > 0.

Theorem 2.4 Assume that there exists an mf ≥ 0 with

|f (t, z)| ≤ mf , (t, z) ∈ [0,∞)×<.

Then for an arbitrary E > 0, there always exists a KE > 0 so that for the mapping Pλ
defined by (3) we have PλMKE

⊂Mo
KE

for any λ ∈ (0, 1].

Proof. Let λ ∈ (0, 1] and consider an arbitrary E > 0. Take KE > 0 with

LE +mfaE
1− α

< KE . (7)

Then for φ ∈MKE
, t ∈ [0, E], we have

|(Pλφ) (t)| ≤
∣∣∣∣λg(t, φ (t)

λ

)∣∣∣∣+ λ

∫ t

0

|a (t, s)| |f (s, φ (s))| ds

≤ LE + α |φ (t)|+mf

∫ t

0

|a (t, s)| ds

≤ LE + α ‖φ‖+mf sup
0≤t≤E

∫ t

0

|a (t, s)| ds

≤ LE + αKE +mfaE := K̂E ,

so by (7) we take ‖(Pλφ)‖ ≤ K̂E < KE , φ ∈MKE
, from which it follows that PλMKE

⊂
Mo
KE

.

Example 2.2 In relation to Example 2.1, as the function f (t, x) = sin3 x+ x
x2+1 is

bounded, one can easily see that Theorem 2.4 applies to the equation

x (t) = g (t, x (t)) +

∫ t

0

(t− s)q−1
[
sin3 x (s) +

x (s)

x2 (s) + 1

]
ds, t ≥ 0,

with q ∈ (0, 1), g continuous and contraction in x.
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In the next result the strict condition of boundedness of f is removed and sufficient
conditions yielding that for a given E > 0 there exists a set ME ⊂ BE so that PλME ⊂
Mo
E are given.

Theorem 2.5 Assume that for a given E > 0, there exists KE > 0 such that

LE + aE

[
sup

(s,z)∈[0,E]×[−KE ,KE ]

|f (s, z)|

]
< (1− α)KE. (8)

Then for the mapping Pλ defined by (3) we have PλMKE
) ⊂Mo

KE
for any λ ∈ (0, 1].

Proof. Let E > 0 be given and KE > 0 be such that (8) holds true, i.e.,

LE
(1− α)KE

+
aE

(1− α)KE

[
sup

(s,z)∈[0,E]×[−KE ,KE ]

|f (s, z)|

]
< 1. (9)

Then for λ ∈ (0, 1], φ ∈MKE
, t ∈ [0, E], we have

|(Pλφ) (t)| ≤ λ

∣∣∣∣g(t, φ (t)

λ

)∣∣∣∣+ λ

∫ t

0

|a (t, s)| |f (s, φ (s))| ds

≤ λLE + λα

∣∣∣∣φ (t)

λ

∣∣∣∣+ λ

∫ t

0

|a (t, s)|

[
sup

(s,z)∈[0,E]×[−KE ,KE ]

|f (s, z)|

]
ds

≤ LE + αKE + aE

[
sup

(s,z)∈[0,E]×[−KE ,KE ]

|f (s, z)|

]
,

thus

‖Pλφ‖ ≤ LE + αKE + aE

[
sup

(s,z)∈[0,E]×[−KE ,KE ]

|f (s, z)|

]
:= K̃E .

In view of (9) we have K̃E < KE and so

Pλφ ∈
{
φ ∈ BE : ‖φ‖ ≤ K̃E

}
⊂ (MKE

)
o
,

i.e., PMKE
⊂Mo

KE
.

Example 2.3 Consider the equation

x (t) = g0 (t) +
t

2t+ 1
sinx (t)

+
1

2 (112t+ 1)

∫ t

0

(t− s)−1/2
(
x2 (s) +

√
|x (s)|

)
sin sds, t ≥ 0

with g0 continuous and bounded by 1. Here we have

g (t, x) = g0 (t) +
t

2t+ 1
sinx, t ≥ 0, x ∈ <,

and

|g (t, x)− g (t, y)| = t

2t+ 1
|sinx− sin y| ≤ 1

2
|x− y| ,
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so g is a contraction with α = 1/2. Setting

a (t, s) =
(t− s)−1/2

2 (112t+ 1)
, 0 < s < t,

we may see that the function ã(t) is continuous and for any t ∈ [0, 1] we have∫ t

0

|a (t, s)| ds =
1

2 (112t+ 1)

∫ t

0

(t− s)−1/2 ds =
2
√
t

2 (112t+ 1)
≤ 1

2 · 11
,

thus, for any T ≥ 0 it holds

aT := sup
0≤t≤T

∫ t

0

|a (t, s)| ds ≤ 1

2 · 11
.

Next, we let f (s, x) =
(
x2 +

√
|x|
)

sin s, s ≥ 0, x ∈ < and so, taking KE = 3 for any

E > 0, we have

sup
(s,z)∈[0,E]×[−KE ,KE ]

|f (s, z)| ≤ sup
z∈[−3,3]

(
z2 +

√
|z|
)

= 9 +
√

3,

and

LE +AE

[
sup

(s,z)∈[0,E]×[−KE ,KE ]

|f (s, z)|

]
≤ 1 +

1

2 · 11

(
9 +
√

3
)

< 1 +
1

2 · 11
(9 + 2)

=
3

2
=

(
1− 1

2

)
3

= (1− α)KE ,

i.e., condition (8) is satisfied with KE = 3 for any E > 0, so Theorem 2.5 is applied. We
conclude that for any λ ∈ (0, 1], if Pλ is the mapping defined by (3), then PλM3 ⊂ Mo

3

for any E > 0. In particular, for any φ ∈M3 we have

‖Pλφ‖ ≤
31 +

√
3

11
< 3.

To get a more convenient condition than (8), for a fixed (but arbitrary) z ∈ < we set

fE (z) := sup
s∈[0,E]

|f (s, z)| , z ∈ <,

and consider f̂E : < → <+ with

f̂E (z) := sup
t∈[−z,z]

fE (t) z ∈ <.

From Theorem 2.5 we have the following corollary.
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Corollary 2.1 If for some E > 0 it holds

aE lim inf
z→∞

f̂E (z)

z
< 1− α, (10)

then there always exists an ME ⊂ BE such that for the mapping Pλ defined by (3) we
have PME ⊂ME)o, for any λ ∈ (0, 1].

Proof. Let E > 0 be such that (10) holds. Since lim
z→∞

LE

z = 0, by (10) we may find

a z0 > 0 so large that

LE
z

+ aE lim inf
z→∞

f̂E (z)

z
< 1− α, z > z0.

It follows that we may choose a KE > z0 so that

LE
KE

+ aE
f̂E (z)

KE
< 1− α,

i.e.,
LE + aE f̂E (z) < KE (1− α) , (11)

or

LE + aE

[
sup

(s,z)∈[0,E]×[−KE ,KE ]

|f (s, z)|

]
< KE (1− α) ,

which is (8), so Theorem 2.5 is applied.

3 Non-uniqueness and Examples

If M is bounded, then the conclusion that any solution resides in M can be far more
important than Krasnoselskii’s theorem itself for it can be a suitable substitute for unique-
ness, a property that neither Krasnoselskii’s nor Schauder’s theorem yield. This brings
us to another main idea. It was Kneser [12] in 1923 who jolted us with the idea that
non-uniqueness is the father of disaster, as the example x′ = x1/3, x(0) = 0, shows by
having both a bounded solution, namely x(t) identically zero, and an infinite collection
of unbounded solutions. In such cases what possible good can come from the information
that there is a solution in the form of a fixed point of a natural mapping?

That information was one of the great motivating factors in the study of stability
theory showing that solutions of differential equations starting near each other will stay
near each other.

Our focus here will be on the mapping into Mo and on uniqueness which we believe
is a new project.

Example 3.1 We consider the scalar integral equation

x(t) = (1/2)x(t) sin t+

∫ t

0

a(t− s)x1/3(s)ds

in which a : (0,∞)→ [0,∞) is continuous and there is an E > 0 with∫ E

0

a(s)ds ≤ 1.
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The mapping set is
M = {φ : [0, E]→ < : |φ(t)| ≤ 8}

and our Banach space is the continuous functions on [0, E] with the supremum norm.
The natural mapping P : M →M is defined by φ ∈M implies

(Pφ)(t) = (1/2)φ(t) sin t+

∫ t

0

a(t− s)φ1/3(s)ds

so that by inserting λ as in (3) and then taking norms we obtain

‖Pφ‖ ≤ (1/2)‖φ‖+ ‖φ‖1/3
∫ E

0

a(s)ds ≤ (1/2)8 + 81/3 = 6 < 8

and so P : M → Mo for every λ ∈ (0, 1]. A result in [10] shows the continuity and
the compactness of the integral maps. The conditions of Theorem 2.1 are satisfied and
there is a fixed point. Moreover, every fixed point resides in M . More general results on
compact mappings by integrals are found in [7] and [6].

Our next example will show that the mapping into M but not into Mo results in a
fixed point in M and one which is not in M . This problem starts from a differential
equation about which we know a great deal. This enables us to see what the fixed point
theorem can do and cannot do.

Example 3.2 Consider the initial value problem

x′ = x1/3, x(0) = 0

which has one solution x(t) ≡ 0. Separation of variables yields

x−1/3dx = dt =⇒ (3/2)x2/3 = (3/2)x(0)2/3 + t

and

x2/3 = (2/3)t =⇒ x = ±
(

2

3
t

)3/2

as second and third solutions which are unbounded and hence are of a very different type
than the first solution.

This problem occurs in elementary text books, but it is enormously complicated.
Kneser’s theorem tells us that there is a continuum of solutions between

x = 0 and x = (2t/3)3/2

as well as between
x = 0 and x = −(2t/3)3/2.

If we applied Schauder’s fixed point theorem it would tell us that there is a solution,
but would not suggest which of the three types it might be. But things can get worse.
Do we really know that these are the only kinds which might arise? We are going to find
out.

It is a routine matter to convert our initial value problem into an integral equation
which is

x(t) =

∫ t

0

e−(t−s)(x(s) + x1/3(s))ds, (12)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 342–358 353

still retaining the solution x(t) ≡ 0.
Let E > 0 be given and find ∫ E

0

e−sds = 1− e−E .

Next, find a > 0 so that

(a+ a1/3)

(
1− e−E

)
< a. (13)

This is possible since
a+ a1/3

a
→ 1

as a→∞.
Let

M = {φ : [0, E]→ < : 0 ≤ φ(t) ≤ a}
and define P : M →M by φ ∈M implies

0 ≤ (Pφ)(t) =

∫ t

0

e−(t−s)
[
φ(s) + φ1/3(s)

]
ds ≤ [a+ a1/3]

(
1− e−E

)
< a.

Notice that PM is not in Mo since φ(t) ≥ 0. It is shown in [10] that P is a compact
map, so by Schauder’s theorem P has a fixed point. As this is not an open map, we
cannot be sure that all fixed points are in M , as we already know.

First, there is a parallel mapping with

M = {φ : [0, E]→ < : 0 ≥ φ(t) ≥ −a}

which is mapped into itself, but not into its interior as it still contains the zero function.
We now combine the two and take

M = {φ : [0, E]→ < : ‖φ‖ ≤ a}

with a and E generated as before. This time when we take the natural mapping we find
that M is mapped into Mo and we now know that all solutions reside in this set.

Note that Theorem 2.5 can be applied here with g ≡ 0, a(t, s) = e−(t−s), f(s, x) =
x+ x1/3. We find

LE = 0, aE = 1− e−E , sup
(s,z)∈[0,E]×[−x,x]

|f (s, z)| = x+ x1/3.

Since g ≡ 0 may be considered as a contraction with contraction constant any α ∈ (0, 1),
condition (8) reduces to asking for a constant KE with

aE

[
KE + (KE)1/3

]
< (1− α)KE (14)

and α being any convenient number in (0, 1). This is equivalent to asking for a KE > 0
with

aE

[
KE + (KE)1/3

]
< KE . (15)

Indeed, if a KE > 0 satisfying (15) exists, then (14) is satisfied by taking 0 < α <

1− aE[KE+(KE)1/3]
KE

. Clearly, (15) is (13) with a = KE .
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4 The Transformation: Large Kernels

The reader has noticed that some of our examples involve small kernels, quite unlike the
vast majority of real-world problems. That can be remedied in an interesting and useful
way provided that the kernel a(t) satisfies a set of conditions ensuring the existence of a
resolvent, R(t), having a small integral. The conditions are as follows and they include
kernels typified by (t − s)q−1, 0 < q < 1, occurring in heat problems and fractional
differential equations of both Riemann-Liouville and Caputo type, as well as many others.
That class is discussed in depth by Miller [13, p. 209] with consequences on pp. 212–213
and Gripenberg [11]. They are defined as follows:

(A1) a(t) ∈ C(0,∞) ∩ L1(0, 1).
(A2) a(t) is positive and non-increasing for t > 0.
(A3) For each T > 0 the function a(t)/a(t+ T ) is non-increasing in t for 0 < t <∞.
In those references it is shown that when a has an infinite integral then the resolvent

equation is

R(t) = a(t)−
∫ t

0

a(t− s)R(s)ds (16)

and that

0 < R(t) ≤ a(t),

∫ ∞
0

R(t)dt = 1. (17)

When ∫ ∞
0

a(t)dt = α <∞

then ∫ ∞
0

R(t)dt =
α

1 + α

and that can simplify some of the calculations we previously saw with E.
In the work to follow, notice that if J is a positive constant, then Ja(t) still satisfies

(A1)–(A3).
In a sequence of papers we showed the advantages of transforming an integral equation

x(t) = b(t)−
∫ t

0

a(t− s)f(s, x(s))ds (18)

using a variation of parameters formula of Miller [13, pp. 191-192] into

x(t) = z(t) +

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds, (19)

with

z(t) = b(t)−
∫ t

0

R(t− s)b(s)ds. (20)

Here are the steps. Starting with (18) and b(t) continuous on [0,∞) while a satisfies
(A1)–(A3) we have

x(t) = b(t)−
∫ t

0

a(t− s)[Jx(s)− Jx(s) + f(s, x(s))ds]

= b(t)−
∫ t

0

Ja(t− s)x(s)ds+

∫ t

0

Ja(t− s)
[
x(s)− f(s, x(s))

J

]
ds.
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The linear part is

z(t) = b(t)−
∫ t

0

Ja(t− s)z(s)ds (21)

and the resolvent equation is

R(t) = Ja(t)−
∫ t

0

Ja(t− s)R(s)ds (22)

so that by the linear variation-of-parameters formula we have

z(t) = b(t)−
∫ t

0

R(t− s)b(s)ds (23)

and the non-linear variation of parameters formula then yields

x(t) = z(t) +

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds. (24)

Miller [13, p. 192] points out that all steps are reversible and that will be important
for our next step. This transformation was first given in [3] for integral equations of
Caputo type and has since been worked out in a variety of situations. Many fine details
are found in [1].

5 Extending the Transformation

Our transformation involves

x(t) = b(t)−
∫ t

0

a(t− s)f(s, x(s))ds (25)

and that does not cover the sum of two operators as in

x(t) = g(t, x(t))−
∫ t

0

a(t− s)f(s, x(s))ds (26)

with g a contraction and the last term a compact mapping. But we are reminded of
an old trick that can be found in Bellman [2, p. 35]. The idea is to say: if there is a
solution x(t), then we can identify g(t, x(t)) as the forcing function b(t) and perform the
transformation. Recall that Miller [13, p. 192] points out that all steps are reversible and
that will be important for our next step. According to our transformation, this equation
is transformed into

x(t) = b(t)−
∫ t

0

R(t− s)b(s)ds+

∫ t

0

R(t− s)
[
x(s)− f(s, x(s))

J

]
ds. (27)

If we can show that this equation has a solution, then reversing the steps we have b(t) =
g(t, x(t)) so that this last equation is now

x(t) = g(t, x(t)) +

∫ t

0

R(t− s)
[
x(s)− g(s, x(s))− f(s, x(s))

J

]
ds. (28)
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Once again we are looking at the sum of two operators, one is the same original function,
while the integral is the compact map.

Strategy In this form, the equation is more algebraic than it is differential. With
the integral of R being 1, when we take the norm of both sides the integrand slips out as
the sup of g and f , multiplied by the integral of R which is bounded by 1. Now in the
derivation of the transformation the idea is to work inside a bounded mapping set in which
we can take J so large that x(s) dominates f(s, x(s))/J . But now we have g(s, x(s)) in
the integrand but it is a contraction, so x(s) can still dominate it AND f(s, x(s))/J . In
many problems from applied mathematics f satisfies the “spring condition”, f has the
sign of x.

What this means is that we can very often get a mapping set as simply

M = {φ : ‖φ‖ ≤ constant}

and that is going to be a set where P : M →Mo. The problems become almost entirely
algebraic.

Example 5.1 We will go through the details for an integral equation of the type of
(1), namely

x(t) = g(t, x(t))−
∫ t

0

C(t− s)f(s, x(s))ds. (1)

Using the transformation and the nonlinear variation of parameters formula, we write
(1) as

x(t) = g(t, x(t)) +

∫ t

0

R(t− s)
[
x(s)− g(s, x(s))− f(s, x(s))

J

]
ds (29)

where J is an arbitrary positive constant and

0 < R(t) ≤ C(t),

∫ ∞
0

R(s)ds = 1. (30)

Compactness: There are many known conditions under which
∫ t
0
R(t− s)h(s, φ(s))ds

maps bounded sets into compact sets. The prime example is C(t) = tq−1, 0 < q < 1,
which includes heat transfer problems as well as fractional differential equations of both
Caputo and Riemann-Liouville type. See, for example, [13, pp. 207-213] and [9].

To get a bound on solutions we ask the “spring conditions”

x 6= 0 =⇒ xg(t, x) > 0, xf(t, x) ≥ 0. (31)

In view of Krasnoselskii’s theorem we ask that g(t, 0) = 0 and that there exist 0 <
α < 1 with

|g(t, x)− g(t, y)| ≤ α|x− y|, (32)

for all x, y ∈ <, t ≥ 0. Concerning f we ask that there exist a K > 0 and a J > 0 such
that |x| ≤ K and t ≥ 0 imply that

1− α ≤ f(t, x)

Jx
≤ 1, x 6= 0. (33)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 342–358 357

Proposition 5.1 For h continuous and bounded for φ bounded, let
∫ t
0
R(t −

s)h(s, φ(s))ds map bounded sets in (B, ‖ · ‖[0,E]) into compact sets. Under conditions
(30)–(33) with α ≤ 1/2, K > 0 fixed and

M = {φ ∈ B : ‖φ‖ ≤ K},

there is a solution of (29) in M and if there is any other solution of (29), then it also
resides in M . As M is bounded, all possible solutions of (29) share that bound.

Proof. We verify the conditions of Theorem 2.1. For a fixed K > 0 let J > 0 be
such that (32) and (33) hold. Following (2) we change (29) to

x(t) = λg

(
t,
x(t)

λ

)
+ λ

∫ t

0

R(t− s)
[
x(s)− g(s, x(s))− f(s, x(s))

J

]
ds, (34)

for 0 < λ ≤ 1, and define Pλ : M → B by φ ∈M implies

(Pλφ)(t) = λg(t, φ(t)/λ) + λ

∫ t

0

R(t− s)
[
φ(s)− g(s, φ(s))− f(s, φ(s))

J

]
ds, t ≥ 0.

Then, in view of (32) we have |g(s, x)| ≤ a|x| and

1− α ≤ g(s, x)

x
+
f(s, x)

Jx
≤ 1 + α

or

−α ≤
[
g(s, x)

x
+
f(s, x)

Jx

]
− 1 ≤ α,

thus ∣∣∣∣1− (g(s, x)

x
+
f(s, x)

Jx

)∣∣∣∣ ≤ α.
It follows that for any φ ∈M we take for t ∈ [0, E]

|(Pλφ)(t)| ≤λ|g(t, φ(t)/λ)|+
∫ t

0

R(t− s)|φ(s)|
∣∣∣∣1− (g(s, φ)

φ
+
f(s, φ)

Jφ

)∣∣∣∣ ds
≤ λα|φ(t)|/λ+

∫ t

0

R(t− s)‖φ‖αds

≤ ‖φ‖
[
α+ α

∫ t

0

R(t− s)ds]
]
≤ α

(
1 +

∫ E

0

R(t− s)ds

)
‖φ‖

so, by α ≤ 1/2 and in view of
∫ E
0
R(t− s)ds < 1 we conclude that PλM ⊂Mo.

The conditions of Theorem 2.1 hold, so there is a solution in M which also contains
any other solution of (29). This proves Proposition 5.1.

We may easily see that if there exist positive numbers m1,m2 with 1− α ≤ m1

m2
and

such that
m1|x| ≤ |f(t, x)| ≤ m2|x|, t ∈ [0, E], |x| ≤ K,

then condition (33) is satisfied by taking J = m2.
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We note that the requirement that the contraction constant satisfies α ≤ 1/2 may
be relaxed to α ≤ 2/3 by replacing (33) in Proposition 5.1 by the assumption that there
exists a J > 0 such that f satisfies

α ≤ f(t, x)

Jx
≤ 2(1− α), t ∈ [0, E], 0 6= |x| ≤ K. (35)

Indeed, by (32) and (35) we take

α− 1 ≤ g(s, x)

x
+
f(s, x)

Jx
− 1 ≤ 1− α,

so ∣∣∣∣g(s, x)

x
+
f(s, x)

Jx
− 1

∣∣∣∣ ≤ 1− α,

and the result is obtained following the arguments in the proof of Proposition 5.1.
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