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1 Introduction

In addition to its intrinsic mathematical interest, the theory of ordinary differential equa-
tions has extensive applications in many general fields, for instance, physics, chemistry,
biology, economics and engineering. The existence and uniqueness of a solution to a first-
order differential equation, given a set of initial conditions, is one of the most fundamental
results of ordinary differential equations.

In this paper, we shall confine our discussion to systems of first order differential
equations of the form

dx1

dt = F1(x1, x2, ..., xn, t),
dx2

dt = F2(x1, x2, ..., xn, t),

...
dxn

dt = Fn(x1, x2, ..., xn, t),

(1)
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that are often encountered in many mathematical models such as the Neutron flow,
electrical networks, residential segregation. Also the first order differential equations are
shown to be adequate models for various physical phenomena in the areas like damping
laws, and diffusion processes. If x = (x1, x2, ..., xn)t denotes an element in Rn, the system
of equations (1) can be written in a more compact form

x′ = F (t)x + g(t,x), (2)

where F (t) is a continuous n× n matrix function, its norm is defined as
‖ F ‖= sup‖x‖=1 ‖ Fx ‖ .

Consider a special case of the system of first order differential equations

du1

dt = b11(t)u1 + b12(t)u2 + f1(t, u1, u2),
du2

dt = b21(t)u1 + b22(t)u2 + f2(t, u1, u2)
(3)

on the interval [a, T ] with the conditions

u1(a) = u01, u2(a) = u02. (4)

We write equation (3) in a vector form as

d~u

dt
= B(t)~u+ ~f(t, ~u), (5)

where B is the matrix [bij(t)]2×2, i, j = 1, 2 and ~u = (u1, u2)t, ~f = (f1, f2)t.

Many other authors have studied, under some conditions, the existence and unique-
ness of solutions for systems of first-order differential equations. For example, in [8]
Fransis and Miller examined fundamental and general existence theorems along with the
Picard iterations. The author in [12] extended the version of Caratheodory’s existence
theorem for ordinary differential equations. While in [9], representation and approxima-
tion of the solutions to linear equations are studied. The authors in [14] used a recent
Schauder-type result for discontinuous operators to study the existence of absolutely con-
tinuous solutions of first order initial value problems. Existence theorems for iterative
differential equations as well as convergence theorems for a fixed point iteration designed
to approximate the solutions are proved in [5]. Some applications of the fixed point the-
ory to a nonlinear differential equations are presented in [7]. The fractional derivatives
accurately describe natural phenomena that occur in general physical problems, exis-
tence and uniqueness of solutions for coupled systems of fractional differential equations
are studied in [1]. The authors in [11], studied sufficient conditions for the existence of
optimal controls for system of functional-differential equations.

The objectives of this paper are twofold. Firstly, we use the Schauder fixed point the-
orem to develop an existence theory for a general class of systems of first order differential
equations (1), subject to the linear constraint

`x = r, (6)

where r ∈ Rn. Mainly, we will redo the first section from [2]. Secondly, we aim to
implement the Sinc methodology to find approximate solutions for systems of differential
equations (5).
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2 Preliminary Results

Let us review some notations and facts that will be used in this paper. Let C[α, β] denote
the Banach space of continuous functions such that x(t) is a map that transforms the
closed interval [α, β] into Rn, where the norm is defined as

‖ x ‖≡ max
[α,β]

‖ x(t) ‖ . (7)

We also define the domain D = {(t,x), t ∈ [α, β],x ∈ Rn}, then we assume the following
three hypotheses:

H1. F (t) is a square matrix of size n in which each entry is a continuous function on
[α, β].

H2. g(t,x) is continuous on the domain D defined above.

H3. M = M(α, β) is a bounded linear mapping from C[α, β] into Rn with bound
‖M ‖≡ sup‖x‖=1 ‖Mx ‖ .

A function x(t) ∈ C[α, β] which has a continuous derivative that satisfies equation (2) on
[α, β] is called the solution to (2). We consider the following mappings that are defined
from the space C[α, β] into Rn

M0x ≡ x(α),
M1x ≡ (x1(t1),x2(t2), ...,xn(tn)),

M2x ≡
∫ β
α

x(τ)dτ.

(8)

In order to prove our main result in this paper, we do need a sequence of lemmas.

Lemma 2.1 The above defined mappings M0,M1, and M2 satisfy ‖ M0 ‖= 1,
‖M1 ‖≤ n and ‖M2 ‖= β − α.

Proof: Linearity of the mappings is obvious. For bounds, we have

‖M0(x) ‖=‖ x(α) ‖≤ max
[α,β]

‖ x(t) ‖ .

Using Equation (7), we arrive at ‖ M0 ‖≤‖ x ‖. For x(t) ≡ c ∈ Rn we obtain the
equality ‖M0(x) ‖= 1. For the mapping M1(x), we have

‖M1(x) ‖=
n∑

i=1

|x(ti)| ≤ n ‖ x ‖,

which implies that ‖M1 ‖≤ n. Finally,

‖M2(x) ‖= ‖
∫ β

α

x(τ)dτ‖ ≤
∫ β

α

‖ x(τ) ‖ dτ ≤ (β − α) ‖ x ‖ .

For equality, let x(t) ≡ c ∈ Rn, that is, ‖M2‖ = (β − α).

Lemma 2.2 (Schauder, see [6]) Let B be a convex compact subset of a normal linear
space X, then any continuous mapping L from B into B has a fixed point in B.



322 K. AL-KHALED

Lemma 2.3 If B is a closed convex subset of the Banach space X, and L is a con-
tinuous mapping of B into B such that L(B) is relatively compact, then L has a fixed
point in B.

Proof: As L(B) is a subset of the closed set B, then cl(L(B)) is also a subset of
B. Let B̂ denote the closed convex hull of cl(L(B)). By Lemma 2.2, B̂ is compact and
is also the smallest closed convex set containing cl(L(B)), this would imply that B̂ is
subset of B. Therefore L(B̂) ⊂ L(B) ⊂ cl(L(B)) ⊂ B̂. By Lemma 2.2, L has a fixed
point in B̂. We would like to impose one more hypothesis in addition to H1,H2 and
H3 mentioned above:

H4 The initial value problem

x′ = F (t)x, `x = r, (9)

for any r ∈ Rn, the problem in (9) has a unique solution. Therefore, for the
n−dimensional space of solutions, call it F , to the problem x′ = F (t)x, (`|F)−1 ex-
ists, i.e., the null space of `|F is {0}.

For the application of Lemma 2.3, we define an appropriate mapping together with
the following lemma.

Lemma 2.4 If F (t) satisfies H1, then the problem

x′ = F(t)x + z(t), x(t0) = r (10)

has a unique solution ω(t) on [α, β] for any t0 ∈ [α, β), z ∈ C[α, β], and r ∈ Rn.
Moreover, for any t, t0 in [α, β],

‖ω(t)‖ ≤ ‖ω(t0)‖ exp
∣∣∣ ∫ t

t0

‖F (τ)‖dτ
∣∣∣+
∣∣∣ ∫ t

t0

exp
∣∣∣ ∫ t

τ

‖F (s)‖ds
∣∣∣‖z(τ)dτ‖

∣∣∣. (11)

The existence and uniqueness of solutions to such initial value problems is well known [10].

Lemma 2.5 If H1,H3 and H4 are satisfied, then the problem

x′ = F(t)x + z(t), `x = r (12)

has a unique solution ω(t) for any r ∈ Rn and z ∈ C[α, β].

Proof: Let

ω(t) ≡ ω0(t) + (`|F)−1(−`ω0) + (`|F)−1r, (13)

where ω0 is the unique solution to

x′ = F(t)x + z(t), x(α) = 0. (14)

It is easily verified by differentiation that ω(t) is a solution to (12). If ω1(t), ω2(t) are
two solutions to (12), then ω1(t)− ω2(t) is the unique solution to

x′ = F(t)x, `x = 0. (15)

Hence, by property H4, ω1(t) ≡ ω2(t), that is, ω(t) is the unique solution to (12).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 319–330 323

Lemma 2.6 Suppose H1 and H4 are satisfied. If ω̂0(t) is the unique solution to
(12) with r = 0, then

‖ω̂0(t)‖ ≤
∫ β

α

(
exp

∫ β

τ

‖F (s)‖ds
)
‖z(τ)‖dτ

(
1 + ‖(`|F)−1`‖

)
. (16)

In particular,
‖ω̂0‖ ≤ K1‖z‖, (17)

where K1 = (β − α) exp
∫ β
α
‖F (s)‖ds(1 + ‖(`|F)−1`‖).

Proof: We have from (2.7) that

ω̂0(t) = ω0(t) + (`|F)−1(−`ω0), (18)

where ω0(t) is the unique solution to the initial value problem

x′ = F (t)x + z(t), x(α) = 0. (19)

Thus
‖ω̂0‖ ≤ ‖ω0‖+ ‖(`|F)−1`‖ ‖ω0‖ ≤ ‖ω0‖(1 + ‖(`|F)−1`)‖. (20)

From Lemma 2.4 with t0 = α and r = 0, we have

‖ω0‖ ≤
∫ β

α

(
exp

∫ β

τ

‖F (s)‖ds
)
‖z(τ)‖dτ (21)

and so (16) holds.
The following notation will be used in this paper. Let H be a positive number,

~H = (H1, H2, ...,Hn), where each Hi is positive, and H(t) be a continuous positive
function for α ≤ t ≤ β. Let

ψ(r) = ψ(t, r, α, β) ≡ (`(α, β)|F)−1r,
C(H) = C(H, r, α, β) ≡ {y ∈ C[α, β] : ‖y − ψ(r)‖ ≤ H},
D(H) = D(H, r, α, β) ≡ {(t, y) ∈ D(α, β) : ‖y − ψ(t; r)‖ ≤ H},
D(H, t) = D(H, r, t) ≡ {y ∈ Rn : ‖y − ψ(t; r)‖ ≤ H},
C(H(t)) = C(H(t), r, α, β) ≡ {y ∈ C[α, β] : ‖y(t)− ψ(t; r)‖ ≤ H(t),∀t ∈ [α, β]},
C( ~H) = C( ~H(t), r, α, β) ≡ {y ∈ C[α, β] : ‖yi(t)− ψi(t; r)‖ ≤ Hi, i = 1, ..., n; t ∈ [α, β]}.

(22)

Note that C(H), C(H(t)), and C( ~H) are closed, convex subsets of C[α, β]. Note also
that if y ∈ C(H), then (t, y(t)) ∈ D(H) and y(t) ∈ C(H, t) for t ∈ [α, β]. If H2 is satisfied
and y ∈ C[α, β], then g(t, y(t)) is continuous on [α, β]. By Lemma 11, the problem

x′ = F (t)x + g(t, y(t)), `x = r, (23)

has a unique solution. We denote this solution by u(r, y) = u(t; r, y). Note that

u(r, y) = ψ(r) + u(0, y). (24)

We now define a mapping L on C[α, β] by

L(y) ≡ u(r, y). (25)

Note that if Lx = x, then x is a solution to the problem (2), (6).
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Lemma 2.7 If H1 to H4 are satisfied, then L(C(H)) is relatively compact in C[α, β].

Proof: By Lemma 12 and equation (24), for y ∈ C(H), we have

‖Ly‖ = ‖u(r, y)‖ ≤ ‖ψ(r)‖+ ‖u(0, y)‖ ≤ ‖(`|F)−1‖‖r‖+K1 max
[α,β]
‖g(t, y(t))‖

≤ ‖(`|F)−1‖‖r‖+K1 max
D(H)

‖g(t, z)‖ ≡ B1,

that is, L(C(H)) is bounded by B1. By Ascoli’s theorem, it is sufficient to show that
L(C(H)) is equicontinuous. For y ∈ C(H), Ly = u(r, y) and

‖u′(t; r, y)‖ = ‖F (t)u(t; r, y) + g(t, y(t))‖ ≤ ‖F‖B1 + max
D(H)

‖g(t, z)‖ ≡ B2. (26)

By the mean value theorem, for t1, t2 ∈ [α, β],

‖u(t2; r, y)− u(t1; r, y)‖ ≤ B2|t2 − t1|. (27)

Thus L(C(H)) is equicontinuous.

Lemma 2.8 If H1 to H4 are satisfied, then L is continuous on C(H).

Proof: Let ε > 0 be given. Since D(H) is compact, g is uniformly continuous on
D(H). There exists δ > 0 such that if (t1, x1) and (t2, x2) are in D(H) and |t1 − t2| +
‖x1 − x2‖ < δ, then ‖g(t1, x1)− g(t2, x2)‖ ≤ ε/K1, where K1 is defined in Lemma 12. If
y1, y2 ∈ C(H), then Ly1 − Ly2 is the solution to

x′ = F (t)x + g(t, y1(t))− g(t, y2(t)), `x = 0. (28)

By Lemma 12, we have

‖Ly1 − Ly2‖ ≤ K1 max
[α,β]
‖g(t, y1(t))− g(t, y2(t))‖. (29)

If ‖y1 − y2‖ < δ, that is, ‖y1(t)− y2(t)‖ < δ for t ∈ [α, β], then

max
[α,β]
‖g(t, y1(t))− g(t, y2(t))‖ < ε

K1
, ‖Ly1 − Ly2‖ < K1

ε

K1
= ε. (30)

Hence, L is continuous on C(H).

3 Existence Results

With the aid of the preceding lemmas we can prove our main results.

Theorem 3.1 Suppose H1 to H4 are satisfied. If there exists H > 0 such that

M(H) = M(H, r, α, β) ≡ sup
y∈C(H)

‖u(0, y)‖ ≤ H, (31)

then problem (2), (6) has a solution x(t) ∈ C(H).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (4) (2018) 319–330 325

Proof: From (24) we have Ly−ψ(r) = u(r, y)−ψ(r) = u(0, y). Thus, for y ∈ C(H),
(31) yields

‖Ly − ψ(r)‖ = ‖u(0, y)‖ ≤ H, (32)

that is, Ly ∈ C(H), and L(C(H)) ⊂ C(H). Since C(H) is closed and convex, we can
conclude from Lemmas 2.7 and 2.8 and the Schauder theorem in the form of Lemma 2.3
that L has a fixed point x ∈ C(H); that is, problem (2),(6) has a solution x ∈ C(H). 2

We may easily obtain some natural generalization of Theorem 31.

Theorem 3.2 Suppose H1 to H4 are satisfied. If there exists a positive, continuous
function H(t) on [α, β] such that

M(t,H(t)) ≡ sup
y∈C(H(t))

‖u(t; 0, y)‖ ≤ H(t), (33)

for t ∈ [α, β], then the problem (2), (6) has a solution x ∈ C(H(t)).

Proof: We have Ly(t)− ψ(t; r) = u(t; r, y)− ψ(t; r) = u(t; 0, y). The condition (33)
implies that, for y ∈ C(H(t)), (31) yields

‖Ly(t)− ψ(t; r)‖ = ‖u(t; 0, y)‖ ≤ H(t), (34)

for t ∈ [α, β]. Thus Ly ∈ C(H(t)), that is, L(C(H(T ))) ⊂ C(H(t)). If H ≡
max[α,β]H(t), then C(H(t)) ⊂ C(H). Moreover, L(C(H(t))) ⊂ L(C(H)). By Lemma
2.7, L(C(H)) is a relatively compact subset of C[α, β]; hence, L(C(H(t))) is relatively
compact. By Lemma 2.8, L is continuous on C(H); hence L is continuous on C(H(t)).
Since C(H(t)) is a closed, convex subset of C[α, β], we may conclude from Lemma 2.3
that L has a fixed point x in C(H(t)), that is, problem (2),(6) has a solution x ∈ C(H(t)).

In what follows, we use the Sinc methodology to find a numerical solution for equation
(5).

4 Description of the Sinc Approximation

The goal of this section is to recall notations and definitions of the Sinc function that
will be used in this paper. These are discussed in [3,15]. The Sinc function is defined on
the whole real line R by

sinc(x) =
sin(πx)

πx
, x ∈ R. (35)

Recall that a radial basis function is a function whose value depends only on the distance
of its input to a central point. For a series of nodes equally spaced h apart, the Sinc
function can be written as a radial basis function:

S(j, h)(kh) = δ
(0)
jk =

{
1, k = j,
0, k 6= j.

(36)

Let

δ
(−1)
kj =

1

2
+ δkj =

∫ k−j

0

sin(πt)

πt
dt.

We define a matrix I(−1) whose (k, j)th entry is given by δ
(−1)
kj . If a function f(x) is

defined on the real line, then for h > 0, the series

C(f, h)(x) =

∞∑
j=−∞

f(jh)sinc
(x− jh

h

)
, j = 0,∓1, ...
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is called the Whittaker cardinal expansion, which has been extensively studied in [13,15].
In practice, we need to use a finite number of terms in the above series, say j = −N, ..., N ,
where N is the number of Sinc grid points. For a restricted class of functions known as
the Paly-Weiner class, which are entire functions, the Sinc interpolation and quadrature
formulae are exact [15]. A less restricted class of functions that are analytic only on
an infinite strip containing the real line, and that allow specific growth restriction has
exponentially decaying absolute errors in the Sinc approximation.

Definition 4.1 Let Dd denote the infinite strip domain of width 2d, d > 0, given by

Dd = {w = u+ iv : |v| < d ≤ π/2}.

To construct an approximation on the interval Γ = (a, T ), which is our space interval
in this paper, we consider the conformal map φ(x) = ln( x−aT−x ), the map φ carries the
eye-shaped region

D =
{
z = x+ iy :

∣∣∣ arg
( z − a
T − z

)∣∣∣ < d ≤ π/2
}

onto the infinite strip Dd. For the Sinc method, the basis functions on the interval Γ at
z ∈ D are derived from the composite translated Sinc functions

Sj(z) = S(j, h) ◦ φ(z) = sinc
(φ(z)− jh

h

)
.

The function z = φ−1(w) = a+T exp(w)
1+exp(w) is an inverse mapping of the w = φ. We define

the range of φ−1 on the real line as

Γ = {φ−1(y) ∈ D : −∞ < y <∞} = (0, T ).

The Sinc grid points zk ∈ Γ in D will be denoted by xk, because they are real, and are
given by

xk = φ−1(kh) =
a+ T exp(kh)

1 + exp(kh)
, k = 0,∓1,∓2, ...

To further explain the Sinc method, an important class of functions is denoted by
Lα(D). The properties of the functions in Lα(D) and detailed discussion are given in [15].
We recall the following definition followed by two theorems for our purpose.

Definition 4.2 Let Lα(D) be the class of all analytic functions f in D, for which
there is a number C0 such that, for ρ(z) = exp(φ(z)), we have

|f(z)| ≤ C0
|ρ(z)|α

[1 + |ρ(z)|]2α
, ∀z ∈ D.

The class Lα(D) is important in Sinc methodology since it guarantees the rapid
convergence of Sinc approximations. In the next theorem, we shall give a general formula
for approximating the integral

∫ ν
a
F (u)du, ν ∈ Γ. To this end, we state the following

result, which we will use to approximate the obtained integral equation.

Theorem 4.1 Let F (t)
φ′(t) ∈ Lα(D), with 0 < α ≤ 1, δ

(−1)
jk be defined as above, N be a

positive integer, and h be selected as h =
√
πd/(αN), then there exists a positive constant

K independent of N , such that∣∣∣ ∫ tk

a

F (t)dt− h
N∑

j=−N
δ
(−1)
jk

F (tk)

φ′(tk)

∣∣∣ ≤ K exp(−
√
πdαN).
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It is convenient, for deriving an approximate solution for the system (5) by the Sinc-
Galerkin method, to start with the scalar first order differential equation

du

dt
= B(t)u(t) + f(t), t ∈ (a, T ) (37)

subject to the initial condition

u(a) = u0. (38)

Integrating with respect to t, and using the initial condition we arrive at the integral
equation

u(t) =

∫ t

a

[
B(τ)u(τ) + f(τ)

]
dτ + u0. (39)

To approximate over Γ = (a, T ), we make use of the conformal mapping φ(x) men-
tioned above. We also assume that both B/φ′ and f belong to the class of func-
tions Lα(D). If B is a matrix, this shall imply that all the components of B/φ′ (or
f as a vector) are in the class Lα(D). Now in equation (39) we collocate via the
use of the indefinite integration formula (as in Theorem 4.1). We use the notation
D(1/φ′(ti)) = diag[1/φ′(t−N ), ..., 1/φ′(tN )], then equation (39) can be written as a sys-
tem of m = 2N + 1 linear equations

U = hI(−1)m D(B/φ′(ti))U + hI(−1)m D(1/φ′(ti))F + U0, (40)

where U = [u−N , ..., uN ]t, F = [f−N , ..., fN ]t with the nodes ti = φ−1(ih) for i =
−N, ..., N where h =

√
πd/αN , and U0 denotes the vector of 2N + 1 constant values

U0 = [u0z−N , ..., u
0
zN ]t. Define the matrices A and E by A = hI

(−1)
m D(B/φ′(ti)), E =

hI
(−1)
m D(1/φ′(ti)). Then equation (40) can be written as

U = AU + EF + U0. (41)

To prove convergence of the method, we evaluate the integral in (39) at the nodes ti,
where i = −N, ..., N , to get

u(ti) =

∫ ti

a

[
B(τ)u(τ) + f(τ)

]
dτ + u0

with the same matrices A,E and U0 as mentioned above, and using the approximation
in Theorem 4.1 we get, in matrix form, the approximation

U +AU + EF + U0 + K̃ exp(−
√
πdαN),

where the constant K̃ is a vector such that each entry is bounded by the constant K in
Theorem 4.1. So, the error ERR can be bounded as

‖ERR‖ ≤ ‖U − (AU + EF + U0)‖ ≤ K̃ exp(−
√
πdαN),

i.e., the discretization error that arises when a differential equation is replaced by a
discrete system of algebraic equations is exponentially small. With the notation as above,
we just proved the following theorem.
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Theorem 4.2 Let B/φ′, f ∈ Lα(D), let the function u(t) be defined as in (39), and
let the matrix U be defined as in (41). Then for h =

√
πd/(αN) there exists a constant

K independent of N such that

sup ‖[u(ti)]− U‖ ≤ K exp(−
√
πdαN).

Now, we may attempt to solve the linear systems of equations (41) by successive
approximations, that is, by means of the iterative scheme:

U (n+1) = AU (n) + EF + U0. (42)

It is easy to show that the convergence of the scheme depends on the `∞ norm of B,
as noted in the following theorem.

Theorem 4.3 The sequence U (n) defined in (42) converges, for all N being suffi-
ciently large, to the exact solution provided that (T − a) < 11/(10‖B‖∞).

Proof: Recall that by definition of δ(−1) as defined in Section 2, it satisfies the
inequality [15, p. 172] δ(−1) ≤ 11/10, we have

‖B‖∞ = ‖hI(−1)m D(1/φ′(ti))‖ = |max
i

N∑
j=−N

hδ
(−1)
i−j (B(zj)/φ

′(zj))|

≤ 11

10
h

N∑
j=−N

(B(zj)/φ
′(zj)) ≈

11

10

∫ T

a

|B(t)|dt ≤ 11

10
(T − a) sup

t∈(a,T )

|B(t)|

≤ 11

10
(T − a)‖B‖∞,

where in the third inequality we used Theorem 4.1, with the fact that B/φ′ ∈ Lα(D). For
the iteration scheme to converge we require that ‖B‖∞ < 1. Therefore we can achieve
convergence of the scheme (42) by choosing (T − a) < 11

10‖B‖∞ .

It remains to show that the approximate solution U∗ of node values of equation (41)
converges to the node values of the exact solution U (see, [4]). For that end, choose a
constant R so that U and U∗ belong to the ball B = {X : ‖X‖∞ < 11

10‖B‖∞ < R/2}. It
is enough to show that |U −U∗| is small. If U∗ is the approximate solution and satisfies
equation (41), then (U − U∗)−A(U − U∗) = Error, or

‖(U − U∗)‖ ≤ ‖A(U − U∗)‖+ ‖Error‖. (43)

Now we can find a small constant r, that is 0 < r < 1 such that the Jacobian of the
matrix A is less than r, so by the mean-value theorem, we obtain ‖U−AU‖ ≤ r‖U−U∗‖,
so equation (43) reduces to

‖(U − U∗)‖ ≤ 1

1− r
‖Error‖. (44)

This shows that the approximate solution is sufficiently close to the exact solution. With
the above notations, we have proved the following theorem.

Theorem 4.4 For a constant R > 0, with ‖B‖∞ < 1, the solution in equation (5)
with the iteration scheme (41) converges to the unique solution.
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t Errors x(t) Errors y(t)
0.1 1.048 E -07 2.098 E -08
0.3 3.549 E -07 1.560 E -08
0.6 2.963 E -06 3.905 E -08
0.9 4.998 E -06 4.848 E -08
1.2 1.009 E -05 3.555 E -08
1.5 2.286 E -05 9.098 E -08
0.8 5.201 E -05 8.948 E -08
1.8 7.579 E -05 8.011 E -08

Table 1: Numerical results for the example given in 45. Comparison between the Sinc solution
and the exact solution.

5 Test Example

Consider the initial value problem in equation (2) of the form

X′(t) =

(
2 −3
1 −2

)
X(t) +

(
e2t

1

)
, X(0) =

(
−1
0,

)
, (45)

that is, we consider equation (2) with n = 2, F (t) =

(
2 −3
1 −2

)
, g(t,X) =

(
e2t

1

)
and r =

(
−1
0

)
. Since F (t) and g(t,X) are continuous, H1 and H2 are satisfied.

Assumption H3 can be established by Lemma (8). While assumption H4 is an immediate
consequence of Lemma (34). To prove the existence of the solution for (45), with the

fact that in our case u(t; r; y) is given by u(t; r, y) = ret +
∫ t
0
et−s

(
e2s

1

)
ds, it is easy

to manipulate the steps of Example 4.2 in [2]. To show the efficiency of the Sinc method
in comparison with the exact solution of the given equation, which is known to be

X(t) =

(
x(t)
y(t)

)
=

 − 9
2e
t − 5

6e
−t + 4

3e
2t − 3

− 3
2e
t − 5

6e
−t + 1

3e
2t + 2

 ,

we use the Sinc method to solve the problem in (45) with the parameters d = 1
2 , α = 1

and N = 32. In Table 1, the comparison of the numerical results demonstrates the
accuracy of this approach.

Conclusions

The study of systems of ODEs is still a very active area of research due to its application
in modeling various physical, chemical, biological, engineering and social systems. This
paper mainly focused on the application of the Schauder fixed point theorem to study the
existence of solutions for systems of ODE. On the other hand, a numerical scheme using
Sinc functions is developed to approximate the solution of a 2 × 2 system of first order
differential equations. The numerical results demonstrate the reliability and efficiency
of using the Sinc method to solve such problems. The error in the numerical solution is
shown to converge exponentially.



330 K. AL-KHALED

References

[1] Ahmed, B. and Alsadi, A. Existence and Uniqueness of Solutions for Coupled Systems of
Higher-Order Nonlinear Fractional Differential Equations. Fixed Point Theory and Appli-
cations, Vol. 2010 (2010) ID: 364560.

[2] Al-Khaled, K. On the existence of solutions for a class of first order differential equations.
Intern. J. Math. Math. Sci. 25 (1) (2001) 1–10.

[3] Al-Khaled, K. Sinc numerical solution for solitons and solitary waves. Journal of Compu-
tational and Applied Mathematics 130 (1-2) (2001) 283–292.

[4] Al-Khaled, K. Theory and computations for systems modeled by first order differential
equations. Qatar Univ. Sci. J. 20 (2000) 21–24.

[5] Berinde, V. Existence and Approximation of Solutions. Miskole Mathematical Notes 11
(1) (2010) 13–26.

[6] Dunford, N. and Schwartz, J.I. Linear Operators. Interscience Publishers, Inc., New York,
1958.

[7] Farajzadeh, A.P., Kaewcharoen, A. and Plubtieng, S. An application of fixed point theory
to a nonlinear differential equation. Abstract and Applied Analysis, Vol. 2014 (2014) ID:
605405.

[8] Francis, J. and Miller, K.S. Existence Theorems for Ordinary Differential Equations. Dover,
2007.

[9] Gavrilyuk, I.P. and Makarov, V.L. Representation and approximation of the solution of
an initial value problem for a first order differential equation in Banach spaces. Z. Anal.
Anwendungen 15 (2) (1996) 495–527.

[10] Hartman, P. Ordinary Differential Equations. John Wiley & Sons, Inc., New York, London,
Sydney, 1964.

[11] Kichmarenko, O. and Stanzhytskyi, O. Sufficient Conditions for the Existence of Optimal
Controls for Some Classes of Functional-Differential Equations. Nonlinear Dynamics and
Systems Theory 18 (1) (2018) 196–211.

[12] Persson, J. A generalization of Caratheodory’s existence theorem for ordinary differential
equations. J. of Math. Analy. Appli. 49 (1975) 496–503.

[13] Ralph, B.K. A sinc approximation for the indefinite integral, Math. of Comput. 41 (164)
(1983) 559–572.

[14] Sestelo, R.F. and Pouso, R.L. Existence of solutions of first-order differential equations via
a fixed point theorem for discontinuous operators. Fixed Point Theory and Applications,
2015. DOI 10.1186/s13663-015-0472-5.

[15] Stenger, F. Numerical Methods Based on Sinc and Analytic Functions. Springer-Verlag,
1993.


	Introduction
	Preliminary Results
	Existence Results
	Description of the Sinc Approximation
	Test Example

