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Abstract: Initially, we have obtained the integral representation for the solution of
the linear Riemann-Liouville fractional reaction diffusion equation of order q, where
0 < q < 1, in terms of Green’s function. We have developed a generalized mono-
tone method for the non-linear Riemann-Liouville reaction diffusion equation when
the forcing term is the sum of an increasing and decreasing functions. The gener-
alized monotone method yields monotone sequences which converge uniformly and
monotonically to coupled minimal and maximal solutions. Under uniqueness assump-
tion, we prove the existence of a unique solution for the non-linear Riemann-Liouville
fractional reaction diffusion equation.
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1 Introduction

Computation of explicit solutions of non-linear dynamic equation is rarely possible.
It is more so with non-linear fractional dynamic equations with initial and boundary
conditions. In general, the existence and uniqueness of solution of the fractional dy-
namic equation has been established mostly, using some kind of fixed point approach.
See [1,3,7–9,15–17,28,29,31,32] and the references therein for the existence, uniqueness
and applications of fractional dynamic equations. The drawback of fixed point theorem
results for the initial and/or boundary value problem is that they do not guarantee the
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interval of existence. The method of upper and lower solutions combined with the mono-
tone iterative technique not only guarantees the interval of existence but also the method
is both theoretical and computational. See [4,5,12–14,24–27] for monotone methods and
generalized monotone methods for nonlinear dynamic equations. The monotone method
is feasible only when the non-linear function is increasing or could be made increasing.
In this case, we obtain a sequences of approximate solutions which are either monoton-
ically increasing or monotonically decreasing if the approximation is the lower solution
or the upper solution respectively. If the non-linear function is decreasing, the monotone
method will yield alternating sequences. However, from practical application problems,
the non-linear forcing term will be a sum of increasing and decreasing functions as in the
population models and chemical combustion models, see [19]. In order to handle such
problems, a generalized monotone method has been developed in [20,22,23,30].

In this work, we consider the non-linear Riemann Liouville fractional reaction diffu-
sion equation where the forcing function is the sum of increasing and decreasing functions.
We develop a generalized monotone method for the non-linear Riemann-Liouville frac-
tional reaction diffusion equation using coupled lower and upper solutions. Initially, we
have obtained a representation form for the solution of the linear Riemann-Liouville frac-
tional reaction diffusion equation using the eigen function expansion method and Green’s
identity. We have also developed the maximum principle and comparision results rela-
tive to one dimentional time fractional parabolic equations. These results are useful in
proving that the sequences developed in the generalized monotone method converge to
the coupled minimal and maximal solutions of the non-linear fractional reaction diffusion
equation. The convergence of the sequences is monotonic and uniform in the weighted
norm. Finally, under the uniqueness assumption, we can prove that there exists a unique
solution to the non-linear Riemann-Liouville fractional reaction diffusion equation.

2 Preliminary Results

In this section, we recall some known definitions and known results which are useful to
develop our main results. Here and throughout, the notation Γ(q) denotes the gamma
function of order q.

Definition 2.1 The Riemann-Liouville fractional integral of u(t) of order q is defined
by

D−qt u =
1

Γ(q)

∫ t

0

(t− s)q−1u(s)ds, (1)

where 0 < q ≤ 1.

Definition 2.2 The Riemann-Liouville (left-sided) fractional derivative of u(t) of
order q, when 0 < q < 1, is defined as:

Dqu(t) =
1

Γ(1− q)
d

dt

∫ t

0

(t− s)q−1u(s)ds, t > 0. (2)

Next we define the Mittag-Leffler function which is useful in computing the solution of
linear fractional differential equation explicitly.

Definition 2.3 The two parameter Mittag-Leffler function is defined as

Eq,r(λt
q) =

∞∑
k=0

(λtq)k

Γ(qk + r)
. (3)
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If r = q, (3) reduces to

Eq,q(λt
q) =

∞∑
k=0

(λtq)k

Γq(k + 1)
. (4)

If r = 1, the Mittag-leffler function is defined as

Eq,1(λtq) =

∞∑
k=0

(λtq)k

Γq(k + 1)
. (5)

Further, if q = r = 1, E1,1 = eλt is the exponential function.

For more details, see [6, 11, 18, 19, 21]. In our next definition we assume p = 1 − q,
when 0 < q < 1, J = (0, T ] and J0 = [0, T ].

Definition 2.4 A function φ(t) ∈ C(J,R) is a Cp continuous function, if t1−qφ(t) ∈
C(J0, R). The set of Cp continuous functions is denoted by Cp(J,R). Further, given a
function φ(t) ∈ Cp(J,R), we call the function t1−qφ(t) the continuous extension of φ(t).

Note that any continuous function in J0 is also a Cp continuous function.
Consider the initial value problem for the linear Riemann-Liouville fractional reaction

differential equation of order q as

Dqu = λu+ f(t), Γ(q)u(t) t1−q|t=0 = u0, (6)

where λ is a real number and f ∈ C[[0, T ],R]. The integral representation of the solution
of equation(6) is:

u(t) = u0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q[λ(t− s)q]f(s)ds. (7)

For details, see [10,11,21]. The next result is a basic comparison result involving the qth

order fractional Riemann-Liouville derivative with respect to time.

Lemma 2.1 Let m(t) ∈ Cp[[0, T ], R] be such that for some t1 ∈ (0, T ], m(t1) = 0,
and t1−qm(t) ≤ 0 on [0, t1], then Dqm(t1) ≥ 0. See more in [4, 5].

Remark: In the above theorem, if m is a function of (x, t), then the conclusion is
true with the partial fractional derivative of m with respect to t of order q. This is what
we need in our work.

3 Auxiliary Results

In this section, we obtain a representation form for the solution of the linear Riemann-
Liouville fractional reaction diffusion equation with the fractional time derivative. We
achieve this by using the eigen function expansion method. Then we will develop com-
parison results for the non-linear Riemann-Liouville fractional reaction diffusion equation
with initial and boundary conditions. The first comparison theorem is with respect to
the natural lower and upper solutions when the non-linear term is of the form F (x, t, u),
where F (x, t, u) satisfies the one sided Lipschitz condition. The second comparison the-
orem is relative to coupled lower and upper solutions. In this case, we assume the
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non-linear term as the sum of two functions f(x, t, u) and g(x, t, u), where f(x, t, u) is
a non-decreasing function in u and g(x, t, u) is a non-increasing function in u for (x, t)
in [0, L] × [0, T ]. In order to present our result, consider the linear Riemann-Liouville
fractional reaction diffusion equation with initial and boundary conditions of the form

∂qt u− kuxx = Q(x, t) on QT ,

u(0, t) = A(t), u(L, t) = B(t) in ΓT ,

Γ(q)t1−qu(x, t)|t=0 = f0(x), x ∈ Ω,

(8)

where Ω = [0, L], J = (0, T ], QT = J × Ω, k > 0 and ΓT = (0, T ) × ∂Ω. Here, ∂qt is
the partial Riemann-Liuoville fractional derivative with respect to time ’t’ of order q,
0 < q < 1.

In order for the initial boundary value problem to be compatible, we assume that
f0(0) = A(0) = f0(L) = B(0) = 0, Γ(q) t1−qu(x, t)|t=0 = f0(x). Here and throughout
this work, we assume the initial and boundary conditions satisfy the compatibility
conditions. Using the method of eigenfunction expansion on equation (8), we have the
solution of the form:

u(x, t) =

∞∑
n=1

bn(t)φn(x), (9)

where the eigenfunctions of the related homogeneous problem are known to be φn(x) =
sinnπxL and its corresponding eigenvalues are λn = (nπL )2. Using the same approach as
in [22], we can compute bn(t), where bn(t) will be the solution of the ordinary linear
Riemann-Liuoville differential equation.

Here, our aim is to find bn(t). Using the standard arguments, one can compute bn(t).
The explicit form of bn(t) is

bn(t) = b0nt
q−1Eq,q(−kλntq) (10)

+

∫ t

0

(t− s)q−1Eq,q(−kλntq)qn(s) + k
2nπ

L2
(A(s)− (−1)nB(s)ds,

where

b0n =
2

L

∫ L

0

f0(y)φn(y)dy and (11)

qn(t) =
2

L

∫ L

0

Q(y, t)φn(y)dy. (12)

Therefore,

bn(t) =
2

L

∫ L

0

f0(y)φn(y)dytq−1Eq,q(−kλntq) (13)

+

∫ t

0

(t− s)q−1Eq,q(−kλntq)
2

L

∫ L

0

Q(y, s)φn(y)dyds

+k
2nπ

L2

∫ t

0

(t− s)q−1Eq,q(−kλntq)(A(s)− (−1)nB(s))ds.
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So, using bn(t) in (9), we can get the solution u(x, t) of the form

u(x, t) =

∫ L

0

tq−1
[ ∞∑
n=1

2

L
Eq,q(−kλn(tq))φn(x)φn(y)]f0(y)dy (14)

+

∫ t

0

∫ L

0

[ ∞∑
n=1

2

L
(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)φn(y)]Q(y, s)dyds

+k

∫ t

0

[2nπ
L2

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)]A(s)ds

−k
∫ t

0

[2nπ
L2

(t− s)q−1Eq,q(−kλn(t− s)q)φn(x)]B(s)ds.

Finally, we can write

u(x, t) =

∫ L

0

tq−1G(x, y, t)f0(y)dy +

∫ t

0

∫ L

0

G(x, y, t− s)Q(y, s)dyds (15)

+k

∫ t

0

Gy(x, 0, t− s)A(s)ds− k
∫ t

0

Gy(x, L, t− s)B(s)ds,

where

G(x, y, t) =

∞∑
n=1

2

L
Eq,q(−kλntq)φn(x)φn(y).

This result will be useful in our main result when we are computing the linear ap-
proximations of the generalized monotone iterates.

Here, we can find the steady state condition with homogeneous boundary conditions
in which the source term Q(x, t) = Q(x) is independent of time:

kuxx +Q(x) = 0.

Now the form uxx = g(x), in which g(x) = −Q(x)
k .

Therefore,

u(x, t) =

∫ L

0

f0(y)tq−1G(x, t; y, 0)dy +

∫ L

0

−kg(y)
[ ∫ t

0

G(x, t; y, s)ds
]
dy, (16)

where
tq−1G(x, t; y, s) = tq−1

∑∞
n=1

2
LEq,q(−kλn(t− s)q)φn(x)φn(y).

As t → ∞, G(x, t; y, 0) → 0 such that the effect of the initial condition
t1−qu(x, t)|t=0 = f0(x) vanishes as t → ∞. But, as tq−1G(x, t; y, s) → 0 as t → ∞, the

steady source is still important as t→∞ since
∫ t
0
Eq,q(−kλn(t−s)q)ds =

1−Eq,q(−kλntq)
k(nπL )2 .

Thus, as t→∞,

u(x, t)→ u(x) =

∫ L

0

g(y)G(x, y)dy,

where

G(x, y) = −
∞∑
n=1

2

L
φn(x)φn(y).
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Hence, we obtained the steady-state temperature distribution u(x) by taking the limit
as t→∞ of the time-dependent problem with a steady source Q(x) = −kg(x).
We recall two known lemmas regarding the Mittag-Leffler functions series from [2].

Lemma 3.1 Let Eq,1(−λtq) be the Mittag-Leffler function of order q, where 0 < q ≤
1. Then,

Eq,1(−λ1t
q)

Eq,1(−λ2tq)
< 1, where λ1, λ2 > 0 such that λ1 = λ2 + k for k > 0.

Lemma 3.2 Let Eq,q(−λtq) be the Mittag-Leffler function of order q, where 0 < q ≤
1. Then

Eq,q(−λ1t
q)

Eq,q(−λ2tq)
< 1, where λ1, λ2 > 0 such that λ1 = λ2 + k for k > 0.

Now, we can show the convergence of the above solution using the two lemmas above,
i.e Lemma 3.1 and Lemma 3.2. We can split the solution of (8) as u1(x, t), u2(x, t) and
u3(x, t) respectively as follows:
(a) u1(x, t) is the solution of (8), when Q(x, t) = 0, A(t) = 0 = B(t),
(b) u2(x, t) is the solution of (8), when A(t) = 0 = B(t), f0(x) = 0,
(c) u3(x, t) is the solution of (8), when Q(x, t) = 0, f0(x) = 0.

Theorem 3.1 u1(x, t), u2(x, t) and u3(x, t) converge when |f0(x)| < N1, N1 > 0,
|Q(x, t)| < N2, N2 > 0, |A(t)| < M1 and |B(t)| < M2, M1,M2 > 0 respectively.

Proof of the above theorem follows as an application of Lemma 3.1 and Lemma
3.2. The details of the proof can be found in [2]. Next we will consider the non-linear
Riemann-Louiville fractional reaction diffusion equation of the type:

∂qt u− k
∂2u

∂x2
= f(x, t, u) + g(x, t, u), (x, t) ∈ QT ,

Γ(q)(t)1−qu(x, t)|t=0 = f0(x), x ∈ Ω, (17)

u(0, t) = A(t), u(L, t) = B(t) on ΓT ,

J = (0, T ], QT = J × Ω, k > 0 and ΓT = (0× T )× ∂Ω,

f, g ∈ C2,q[[0, L]× J × R,R].

In this work, we seek the classical solution such that u(x, t) ∈ C2,q
p on QT , and u(x, t) ∈

Cp on QT . In order to develop the generalized monotone method for (17), we need the
following definitions.

Definition 3.1 v(x, t), w(x, t) ∈ C2,q[QT ,R]. Then
(a) v(x, t) and w(x, t) are called the natural lower and upper solutions of (17) if the
following inequalities are satisfied:

∂qt v(x, t)− k∂
2v(x, t)

∂x2
≤ f(x, t, v(x, t)) + g(x, t, v(x, t)) on QT ,

Γ(q)(t− t0)1−qv(x, t)|t=0 ≤ f0(x), x ∈ Ω,

v(x, 0) ≤ A(t), v(L, t) ≤ B(t) in ΓT ,

(18)

∂qtw(x, t)− k∂
2w(x, t)

∂x2
≥ f(x, t, w(x, t)) + g(x, t, w(x, t)) on QT ,

Γ(q)(t− t0)1−qw(x, t)|t=0 ≥ f0(x), x ∈ Ω,

w(x, 0) ≥ A(t), w(L, t) ≥ B(t) in ΓT .

(19)
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(b) v(x, t) and w(x, t) are called coupled lower and upper solutions of type I if the
following inequalities are satisfied:

∂qt v(x, t)− k∂
2v(x, t)

∂x2
≤ f(x, t, v(x, t)) + g(x, t, w(x, t)) on QT ,

Γ(q)(t− t0)1−qv(x, t)|t=0 ≤ f0(x), x ∈ Ω,

v(x, 0) ≤ A(t), v(L, t) ≤ B(t) in ΓT ,

(20)

∂qtw(x, t)− k∂
2w(x, t)

∂x2
≥ f(x, t, w(x, t)) + g(x, t, v(x, t)) on QT ,

Γ(q)(t− t0)1−qw(x, t)|t=0 ≥ f0(x), x ∈ Ω,

w(x, 0) ≥ A(t), w(L, t) ≥ B(t) in ΓT .

(21)

The next result is a comparison result relative to lower and upper solutions of (17) of
natural type. For that purpose, we write F (x, t, u) = f(x, t, u) + g(x, t, u).

Theorem 3.2 Assume that
(i) v(x, t), w(x, t) ∈ C2,q[QT ,R] are natural lower and upper solutions of (17), respec-
tively. Furthermore, Γ(q)t1−qv(x, t)|t=0 ≤ Γ(q)t1−qw(x, t)|t=0, v(0, t) ≤ w(0, t) and
v(L, t) ≤ w(L, t);
(ii) F (x, t, u) satisfies the one sided Lipschitz condition of the form

F (x, t, u1)− F (x, t, u2) ≤ L(u1 − u2),

whenever u1 ≥ u2 and L > 0. Then v(x, t) ≤ w(x, t) on J × Ω.

Proof. Initially, we will prove the theorem when one of the inequalities in (i) is
strict. For that purpose, let m(x, t) = v(x, t) − w(x, t). We claim that m(x, t) < 0,
(x, t) ∈ [0, L]× (0, T ]. Suppose that the conclusion is not true, then there exists a t1 ∈ J
and x1 ∈ Ω such that t1−qm(x1, t) < 0 on [0, t1), m(x1, t1) = 0. It is easy to check
mx(x1, t1) = 0 and mxx(x1, t1) ≤ 0.
Then, using Lemma 3.2, we get ∂qtm(x1, t1) ≥ 0.
From the hypothesis, we also have

∂qtm(x1, t1)

= ∂qt v(x1, t1)− ∂qtw(x1, t1)

< k
∂2v(x1, t1)

∂x2
+ F (x1, t1, v(x1, t1))− k∂

2w(x1, t1)

∂x2
− F (x1, t1, w(x1, t1))

< F (x1, t1, v(x1, t1))− F (x1, t1, w(x1, t1)) = 0,

(22)

which is a contradiction. Therefore, v(x, t) < w(x, t) on QT .
In order to prove the theorem for the non strict inequalities, let

w(x, t) = w(x, t) + εtq−1Eq,q[2Lt
q],

v(x, t) = v(x, t)− εtq−1Eq,q[2Ltq].

From this it follows
w(0, t) > v(0, t),
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w(L, t) > v(L, t),

Γ(q)t1−qw(x, t)|t=0 > Γ(q)t1−qw(x, t)|t=0 > Γ(q)t1−qv(x, t)|t=0 > Γ(q)t1−qv(x, t)|t=0.

Then,

∂qtw(x, t)− k∂
2w(x, t)

∂x2

= ∂qtw(x, t)− k∂
2w(x, t)

∂x2
+ ∂qt εt

q−1Eq,q[2Lt
q]

≥ F (x, t, w(x, t)) + εtq−1Eq,q2LEq, q[2Lt
q]

= F (x, t, w(x, t)) + 2εLtq−1Eq,q[2Lt
q]− F (x, t, w(x, t)) + F (x, t, w(x, t))

≥ −L(w − w) + F (x, t, w(x, t)) + ε2LEq,q(2Lt
q)

= −Lεtq−1Eq,q[2Ltq] + F (x, t, w(x, t)) + 2LεEq,q(2Lt
q)

= F (x, t, w(x, t)) + εLtq−1Eq,q[2Lt
q]

> F (x, t, w(x, t)) on QT .

(23)

Similarly,

∂qt v(x, t)− k∂
2v(x, t)

∂x2
> F (x, t, v(x, t)) on QT . (24)

By the strict inequality result, v < w on QT . Letting ε→ 0, we have v ≤ w on QT .

The next result is related to coupled lower and upper solutions of type I related to
(17).

Theorem 3.3 Assume that
(i) v(x, t), w(x, t) ∈ C2,q[QT ,R] are coupled lower and upper solutions of type I of (17),
respectively.
(ii) Assume F (x, t, u) = f(x, t, u) + g(x, t, u), where f is a nondecreasing function and g
is a nonincreasing function respectively for (x, t) ∈ QT in u.
(iii) Let f(x, t, u) and g(x, t, u) satisfy the one sided Lipschitz condition of the form

f(x, t, u1)− f(x, t, u2) ≤ L(u1 − u2),

g(x, t, u1)− g(x, t, u2) ≥ −M(u1 − u2),

whenever u1 ≥ u2 and L,M > 0. Then v(x, t) ≤ w(x, t) on J × Ω.

Proof. Initially, we will prove the theorem when one of the inequalities in (i) is strict.
For that purpose, let m(x, t) = v(x, t) − w(x, t). It is easy to see that m(x, 0) < 0 on
[0, L]. Also, m(0, t) < 0 and m(L, t) < 0, t ∈ (0, T ]. Suppose the conclusion is not true,
then there exists a t1 ∈ J and x1 ∈ Ω such that t1−qm(x, t) < 0 on (0, t1], m(x1, t1) = 0.

This implies v(x1, t1) = w(x1, t1) and ∂2m(x1,t1)
∂x2 ≤ 0, where t1 > 0 and x1 ∈ (0, L). Using

Lemma 3.2, ∂qtm(x1, t1) ≥ 0.
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From the hypothesis, we also have

∂qtm(x1, t1)

= ∂qt v(x1, t1)− ∂qtw(x1, t1)

< k
∂2v(x1, t1)

∂x2
+ f(x1, t1, v(x1, t1)) + g(x1, t1, w(x1, t1))

− k∂
2w(x1, t1)

∂x2
− f(x1, t1, w(x1, t1))− g(x1, t1, v(x1, t1))

≤ 0,

(25)

which leads to a contradiction. Therefore, v(x, t) < w(x, t) on QT .
In order to prove the theorem for the non strict inequalities, let

w(x, t) = w(x, t) + ε(t− t0)q−1Eq,q[2(L+M)(t− t0)q],

v(x, t) = v(x, t)− ε(t− t0)q−1Eq,q[2(L+M)(t− t0)q].

One can show v(x, t) and w(x, t) satisfy the hypothesis with strict inequalities. Using
the strict inequality result, v < w on QT . Letting ε→ 0, we have v ≤ w on QT .
The next result is the maximum principle for the Riemann-Liouville parabolic equation
in one dimensional space which will be useful in proving the uniqueness of the solution.

Corollary 3.1 Let

∂qtm(x, t)− k∂
2m(x, t)

∂x2
≤ 0 on QT ,

m(0, t) ≤ 0,m(L, t) ≤ 0 on ΓT ,

Γ(q)t1−qm(x, t)|t=0 ≤ 0 on Ω.

Then m(x, t) ≤ 0 on QT .

Proof. Suppose m(x, t) has a positive maximum at (x1, t1). Let m(x1, t1) = K.
Let m(x, t) = m(x, t) − K. Then, t1−qm(x, t) ≤ 0 on (0, t1] and m(x1, t1) = 0. Using
Lemma 2.1, we get ∂qtm(x1, t1) ≥ 0. Also, mxx(x1, t1) ≤ 0. Combining these two, we get
∂qtm(x1, t1)−Kmxx(x1, t1) ≥ 0.
We can also observe

∂qtm(x, t)−Kmxx = ∂qtm−Kmxx −K
tq−1

Γq
< ∂qtm−Kmxx < 0, (26)

which gives a contradiction. Hence, m(x, t) ≤ 0.
We can also prove this corolary by other method. We can show it is true first for

the strict inequality and then for the instrict inequality by using the strict inequality.
The solution of the linear problem is unique which follows from this maximum principle.
This maximum principle is used to show the uniqueness of iterates and the monotonicity
of the iterates. In next section, we will develop a generalized monotone method for
the nonlinear Riemann-Liuoville fractional reaction diffusion equation (17) using coupled
lower and upper solutions of type I. The generalized monotone method yields monotone
sequences which converge uniformly and monotonically to coupled minimal and maximal
solutions of (17). Further using the uniqueness condition, we prove the uniqueness of the
solution of (17). The next result is a generalized monotone method for (17).
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4 Main Results

Theorem 4.1 (i) Let (v0, w0) be the coupled lower and upper solutions of (17) such
that t1−qv0 ≤ t1−qw0 on QT .
(ii) Suppose f(x, t, u) is nondecreasing and g(x, t, u) is nonincreasing in u on QT , re-
spectively. Then there exist monotone sequences {t1−qvn(x, t)} and {t1−qwn(x, t)} such
that t1−qvn(x, t) → t1−qρ(x, t) and t1−qwn(x, t) → t1−qr(x, t) uniformly and monotoni-
cally on QT , where ρ(x, t) and r(x, t) are coupled minimal and maximal solutions of (17)
respectively. That is, ρ(x, t) and r(x, t) satisfy

∂qt ρ(x, t)− k∂
2ρ(x, t)

∂x2
= f(x, t, ρ) + g(x, t, r) on QT ,

ρ(0, t) = A(t), ρ(L, t) = B(t) on ΓT ,

Γ(q)t1−qρ(x, t)|t=0 = f0(x) on Ω

and

∂qt r(x, t)− k
∂2r(x, t)

∂x2
= f(x, t, r) + g(x, t, ρ) on QT ,

r(0, t) = A(t), r(L, t) = B(t) on ΓT ,

Γ(q)t1−qr(x, t)|t=0 = f0(x) on Ω

such that t1−qv0(x, t) < t1−qρ(x, t) < t1−qu(x, t) < t1−qr(x, t) < t1−qw0(x, t).

Proof. We construct the sequences {vn(x, t)} and {wn(x, t)} as follows:

∂qt vn(x, t)− k∂
2vn(x, t)

∂x2
= f(x, t, vn−1) + g(x, t, wn−1) on QT ,

vn(0, t) = A(t), vn(L, t) = B(t),

Γ(q)t1−qvn(x, t)|t=0 = f0(x)

(27)

and

∂qtwn(x, t)− k∂
2wn(x, t)

∂x2
= f(x, t, wn−1) + g(x, t, vn−1) on QT ,

wn(0, t) = A(t), wn(L, t) = B(t),

Γ(q)t1−qwn(x, t)|t=0 = f0(x).

(28)

It is easy to observe that v1(x, t) and w1(x, t) exist and are unique by the representation
form of linear equation and Corollary 3.1. By induction and the assumptions on f and g,
we can prove that the solutions vn(x, t) and wn(x, t) exist and are unique by Corollary
3.1, for any n.

Let us prove first that v0(x, t) ≤ v1(x, t) and that w1(x, t) ≤ w0(x, t) on QT . Let
p(x, t) = v0(x, t)− v1(x, t). Then

∂qt p(x, t)− k
∂2p(x, t)

∂x2

= ∂qt v0(x, t)− k∂
2v0(x, t)

∂x2
−
(
∂qt v1(x, t)− k∂

2v1(x, t)

∂x2
)
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≤ f(x, t, v0(x, t)) + g(x, t, w0(x, t))− (f(x, t, v0(x, t)) + g(x, t, w0(x, t))) = 0,

p(0, t) = 0, p(L, t) = 0 on Ω and Γ(q)t1−qp(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary
3.1, it follows that p(x, t) ≤ 0 on QT and t1−qv0(x, t) ≤ t1−qv1(x, t) on QT .
Similarly, we can show that w1(x, t) ≤ w0(x, t) on QT .
Then, we prove that v1(x, t) ≤ w1(x, t). Let p(x, t) = v1(x, t)− w1(x, t). Then from our
hypothesis, we get

∂qt p(x, t)− k
∂2p(x, t)

∂x2

= ∂qt v1(x, t)− k∂
2v1(x, t)

∂x2
− (∂qtw1(x, t)− k∂

2w1(x, t)

∂x2
)

≤ f(x, t, v0(x, t)) + g(x, t, w0(x, t))− (f(x, t, v0(x, t)) + g(x, t, w0(x, t))) = 0,

p(0, t) = 0, p(L, t) = 0 on Ω and Γ(q)t1−qp(x, t)|t=0 = 0 on ΓT . Therefore, by Corollary
3.1, it follows that p(x, t) ≤ 0 on QT and t1−qv1(x, t) ≤ t1−qw1(x, t) on QT . Hence,

t1−qv0(x, t) ≤ t1−qv1(x, t) ≤ t1−qw1(x, t) ≤ t1−qw0(x, t) on QT .

By mathematical induction, we have

t1−qv0(x, t) ≤ ... ≤ t1−qvn(x, t) ≤ t1−qwn(x, t) ≤ ... ≤ t1−qw0(x, t) on QT for all n.

Furthermore, if t1−qv0(x, t) ≤ t1−qu(x, t) ≤ t1−qw0(x, t) on QT , then for any u(x, t) of
(17), we establish the following inequality by the method of induction.

t1−qv0(x, t) ≤ ... ≤ t1−qvn(x, t) ≤ t1−qu(x, t) ≤ t1−qwn(x, t) ≤ ... ≤ t1−qw0(x, t) (29)

on QT for all n.

It is certainly true for n = 0, by hypothesis. Assume the inequality (29) to be true
for n = k, that is

t1−qv0(x, t) ≤ ... ≤ t1−qvk(x, t) ≤ t1−qu(x, t) ≤ t1−qw− k(x, t) ≤ ... ≤ t1−qw0(x, t) (30)

on QT for all n.

Let p(x, t) = vk+1(x, t)− u(x, t). Then from our hypothesis, we get

∂qt p(x, t)− k
∂2p(x, t)

∂x2

= ∂qt vk+1(x, t)− k∂
2vk+1(x, t)

∂x2
− (∂qt u(x, t)− k∂

2u(x, t)

∂x2
)

≤ f(x, t, vk) + g(x, t, wk)− (f(x, t, u) + g(x, t, u)) ≤ 0,

p(0, t) = 0, p(L, t) = 0 on Ω and Γ(q)t1−qp(x, 0)|t=0 = 0 on ΓT . Therefore, by Corollary
3.1, it follows that p(x, t) ≤ 0 on QT . Therefore, t1−qvk+1(x, t) ≤ t1−qu(x, t) on QT . In
a similar way, we can show that t1−qu(x, t) ≤ t1−qwk+1(x, t) on QT .

Hence we constructed the monotonic sequences. Using the integral representation
of the linear problem and an appropriate computation process, we can show that the
sequences {t1−qvn(x, t)} and {t1−qwn(x, t)} are uniformly bounded and equicontinu-
ous. Using the Ascoli-Arzela theorem, we obtain subsequences of {t1−qvn(x, t)} and
{t1−qwn(x, t)} which converge uniformly and monotonically on QT . Since the sequences



270 P.G. CHHETRI AND A.S. VATSALA

{t1−qvn(x, t)} and {t1−qwn(x, t)} are monotone, the entire sequences {t1−qvn(x, t)} and
{t1−qwn(x, t)} converge to t1−qρ(x, t) and t1−qr(x, t), respectively. From this it follows
that

t1−qv0(x, t) ≤ t1−qv1(x, t) ≤ ... ≤ t1−qvn(x, t) ≤ ... ≤ t1−qρ(x, t) ≤ t1−qu(x, t) (31)

≤ t1−qr(x, t) ≤ ...t1−qwn(x, t) ≤ ... ≤ t1−qw0(x, t) on QT .

Consequently, ρ(x, t) and r(x, t) are coupled minimal and maximal solutions of (17) since

t1−qv0(x, t) ≤ t1−qρ(x, t) ≤ t1−qu(x, t) ≤ t1−qr(x, t) ≤ t1−qw0(x, t) on QT . (32)

Since f(x, t, u) and g(x, t, u) satisfy the one sided Lipschitz condition, we prove the
uniqueness of the solution of (17). The next result is precisely this.

Theorem 4.2 Let all the assumptions of Theorem 4.1 hold. Further, let f(x, t, u)
and g(x, t, u) satisfy the one sided Lipschitz condition of the form

f(x, t, u1)− f(x, t, u2) ≤ L1(u1 − u2),

g(x, t, u1)− g(x, t, u2) ≥ −L2(u1 − u2),

whenever u1 ≥ u2 and L1, L2 > 0. Then the solution u(x, t) of (17) exists and is unique.

Proof. We have already proved (ρ, r) are coupled minimal and maximal solutions of
(17) on QT . Hence it is enough to show that r(x, t) ≤ ρ(x, t) on QT .
It is known from Theorem 4.1 that ρ(x, t) ≤ r(x, t) on QT .
Let p(x, t) = r(x, t)− ρ(x, t). By the hypothesis, we get

∂qt p(x, t)− k
∂2p(x, t)

∂x2

= ∂qt r(x, t)− k
∂2r(x, t)

∂x2
−
(
∂qt ρ(x, t)− k∂

2ρ(x, t)

∂x2
)

≤ f(x, t, r) + p(x, t, ρ)− (f(x, t, ρ) + g(x, t, r))

≤ t1−qL1|r − ρ|+ t1−qL2|r − ρ|

≤ (L1 + L2)|p|,

p(0, t) = 0, p(L, t) = 0 on Ω and Γ(q)t1−qp(x, t)|t=0 = 0 on ΓT . It follows from Corollary
3.1 that p(x, t) ≤ 0. This proves that r(x, t) = ρ(x, t) = u(x, t) on QT and the proof is
complete.

5 Conclusion

In this work, initially we have obtained an integral representation for the solution of
the Riemann-Liouville reaction diffusion equation with Q(x, t), f0(x), A(t), B(t) being
the non-homogeneous term, the initial function and the boundary functions respectively.
In addition, we assume that the boundary conditions and the initial function satisfy
the compatibility condition. We also establish, when Q(x, t), f0(x), A(t) and B(t) are
bounded, the solution u(x, t) converges, by using the convergence of the series involving
the Mittag-Leffler function. In addition, when Q(x, t) = Q(x) is independent of t and
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A(t) = B(t) = 0, we have proved that the solution of the Riemann-Liouville fractional
reaction diffusion equation converges to the steady state solution. We have proved the
maximum principle and comparison theorem relative to the non-linear Riemann-Liouville
fractional reaction diffusion equation of (17) onQT . Using the comparison result as a tool,
we have developed a generalized monotone method for the Riemann-Liouville fractional
reaction diffusion equation of (17). The generalized monotone method yields monotone
sequences which converge uniformly and monotonically to coupled minimal and maximal
solutions of (17). Under the uniqueness assumption, we have proved that the unique
solution of u(x, t) of (17) exists and is unique. In our future work, we plan to use our
method relative to the physical application problem.
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