Nonlinear Dynamics and Systems Theory, 18(3) (2018) 213-224

Existence of Solution for Nonlinear Anisotropic Degenerated Elliptic Unilateral Problems

Y. Akdim^{1*}, M. Rhoudaf² and A. Salmani¹

¹ Laboratory LSI, Polydisciplinary Faculty, Taza, Morocco
² Laboratory LMA Faculty of Sciences, Meknes, Morocco

Received: May 10, 2017; Revised: June 18, 2018

Abstract: In this paper, we prove the existence of entropy solutions of anisotropic elliptic equations $Au + \sum_{i=1}^{N} g_i(x, u, \nabla u) = f$, where the operator Au is a Leray-Lions anisotropic operator from $W_0^{1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega})$ into its dual $W^{-1,\overrightarrow{p}}(\Omega,\overrightarrow{\omega^*})$. The critical growth condition on g_i is with respect to ∇u and there is no the growth condition with respect to u and no the sign condition. The right-hand side f belongs to $L^1(\Omega)$.

Keywords: nonlinear elliptic equations; quasilinear degenerated unilateral problems; non-variational inequalities.

Mathematics Subject Classification (2010): 35J60, 35J70, 35J87.

1 Introduction

Let Ω be a bounded open subset of \mathbb{R}^N $(N \geq 2)$ with Lipschitz continuous boundary and let $Au = -\sum_{i=1}^N \partial_i a_i(x, u, \nabla u)$ be a degenerate anisotropic operator of Leray-Lions type defined in the weighted anisotropic Sobolev space $W^{1, \overrightarrow{p}}(\Omega, \overrightarrow{\omega})$, where $\overrightarrow{\omega} = (\omega_0, \omega_1, ..., \omega_N)$ is a vector of weight functions defined on Ω and $\overrightarrow{p} = (p_0, ..., p_N)$ is a vector of real number such that $p_i > 1$ for i = 0, ..., N.

We consider the following nonlinear elliptic anisotropic problem

$$\begin{cases} -\sum_{i=1}^{N} \partial_i a_i(x, u, \nabla u) + \sum_{i=1}^{N} g_i(x, u, \nabla u) = f & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(1)

where $g_i(x, s, \xi)$ is a Carathéodory function satisfying only the following growth condition $|g_i(x, s, \xi)| \leq \gamma(x) + \rho(s)|\xi_i|^{p_i}$ and where the right-hand side f belongs to $L^1(\Omega)$. In the

^{*} Corresponding author: mailto:akdimyoussef@yahoo.fr

^{© 2018} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua213