
Nonlinear Dynamics and Systems Theory, 18 (1) (2018) 196–211

Sufficient Conditions for the Existence of Optimal

Controls for Some Classes of Functional-Differential

Equations

O. Kichmarenko 1∗ and O. Stanzhytskyi 2

1 Odesa National I.I. Mechnikov University,
2, Dvoryanskaya Str., Odesa, 65082 Ukraine

2 Taras Shevchenko National University of Kyiv,
64/13, Volodymyrska Str., Kyiv, 01601, Ukraine

Received: November 20, 2017; Revised: March 29, 2018

Abstract: Sufficient conditions for the existence of optimal controls for system of
functional-differential equations which is nonlinear by phase variables and linear by
control function are given. These conditions are obtained in terms of right-hand sides
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1 Introduction

Let h > 0 be a value of delay, |·| denote the norm of the vector in the space Rd, ‖·‖ be
the norm of d×m -dimensional matrix which is consistent with the norm of the vector.

Let us denote by C = C
(
[−h, 0] ;Rd

)
the Banach space of continuous maps of

[−h, 0] into Rd with the uniform norm ‖ϕ‖C = max
θ∈[−h;0]

|ϕ (θ)| . Also denote by

Lp = Lp ([−h, 0] ;Rm) , p > 1 , the Banach space of p-integrable m-dimensional vector-

functions with standard norm ‖ϕ‖Lp
=
(∫ 0

−h |ϕ (τ)|pdτ
) 1

p

.
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Let x ∈ C
(
[0, T ] ;Rd

)
, ϕ ∈ C. If x (0) = ϕ (0), then the function

x (t, ϕ) =

{
ϕ(t) , t ∈ [−h, 0] ,
x (t) , t ≥ 0,

is continuous on [−h, T ].
For each t ∈ [0, T ] in the standart way by θ ∈ [−h, 0] we put an element xt (ϕ) ∈ C

as xt (ϕ) = x (t+ θ, ϕ). In what follows we shall write xt instead of xt (ϕ).
Let t ∈ [0, T ], D be some domain in [0, T ]×C, ∂D be its boundary and D = D∪∂D.
In this paper we consider the optimal control problems for systems of functional

differential equations

ẋ = f1 (t, xt) +

∫ 0

−h
f2 (t, xt, y)u (t, y) dy, t ∈ [0, τ ] , (1.1)

x (t) = ϕ0 (t) , t ∈ [−h, 0] ,

with the quality criterion

J [u] =

∫ τ

0

L (t, xt, u (t, ·)) dt→ inf (1.2)

on [0, T ] , where ϕ0 ∈ C is a fixed element such that (0, ϕ0) ∈ D, x (t) is the phase
vector in Rd, xt is the phase vector in C, τ is the moment of the first exit (t, xt) on the
boundary ∂D , f1 : D → Rd, f2 : D× [−h, 0]→Md×m are d×m -dimensional matrices,
and for each (t, ϕ) ∈ D, f2 (t, ϕ, ·) ∈ Lq

(
[−h, 0] ;Md×m) with the norm ‖f2 (t, ϕ, ·)‖Lq

=(∫ 0

−h ‖f2(t, ϕ, y) ‖qdy
) 1

q

, 1
q + 1

p = 1 , L : D × Lp → R1.

The control parameter u ∈ Lp ([0, T ]× [−h, 0]) is such that u (t, y) ∈ U , and U is a
convex and closed set in Rm for almost all t, y.

Many works are devoted to the optimal control problems for functional-differential
equations systems. We note the monograph [1] devoted to the application of the method
of dynamic programming and the principle of maximum to such problems. There is also
a wide bibliography. Althought these methods, as a rule, give the necessary conditions
of optimality, it would be desirable to have suitable sufficient conditions for checking to
apply them.

In this regard, we cite the work [2] in which in the case of compactness of the set of
admissible controls an analogue of the Filippov theorem on optimal control existence for
ordinary differential equations was obtained.

For noncompact set of admissible controls an analogue of the Cessari theorem is
obtained in [4]. In the mentioned work the condition of compactness is imposed on a
set of constraints and a certain condition of growth is established which connects the
right-hand sides of the system and the quality criterion.

In [5] under the condition of compactness of the set of admissible controls values
sufficient conditions for optimality on a fixed interval [t0, t1] for neutral-type equations
are obtained.

In [6] the problem of optimal control of a delayed linear system is rewritten in a form
that does not depend on the delay and which is studied by the methods of ordinary
differential equations. In the works [7]- [9] the optimal control problem of the system

ẋ (t) = rx (t) + f0

(
x (t) ,

∫ 0

−T
a (ς)x (t+ ς) dς

)
− u (t)
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is considered.
In [7] certain Hamilton-Jacobi-Bellman equations are obtained for certain quality

functionals and, in terms of their solutions, sufficient conditions for optimality in the
form of a reverse link are obtained.

In [8] similar questions are considered for problems with phase restriction.
In [9] for such problems the authors obtained sufficient conditions for optimality under

the condition of nondecreasing function rx+f0 (x, y) in both variables and for the quality
criterion

J(u) =

∫ ∞
0

e−ϕtatσ(t)dt, σ ∈ (0, 1) .

The main goal of this work is to obtain the theorem on the existence of optimal
controls for a wider class of problems under weaker conditions as compared with the
above mentioned works [2]- [9].

This paper is organized as follows. In Section 2 we give rigorous formulations of the
considered problems and state main results. Section 3 is devoted to the proof of the main
results.

In Subection 3.1 we prove the existence theorem, the uniqueness and extension of the
solution of the initial problem (1.1) to the boundary ∂D of the domain D.

In Subsection 3.2 the theorem on the existence of optimal control for problem (1.1)-
(1.2) is proved.

Examples of the application of the results obtained for ordinary differential equations,
equations with delaying argument and equations with maxima are given in Section 4.

2 Statement of the Problems and Main Results

Now we give exact statement of the problem and formulate the main results of this paper.
The main conditions for the problem (1.1)-(1.2) are assumed as follows.

Assumption 2.1 Admissible controls are m-dimensional vector functions u ∈
Lp ([0, T ] [−h, 0] ,Rm), such that u (t, y) ∈ U for almost all t ∈ [0, T ] and y ∈ [−h, 0].

The set of admissible controls is denoted by U .

Assumption 2.2 The maps f1(t, ϕ) : D → Rd and f2(t, ϕ, y) : D× [−h, 0]→Md×m

are defined and measurable with respect to all their arguments in the domains D and
D1 = {(t, ϕ) ∈ D, y ∈ [−h, 0]} respectively, and satisfy the linear growth condition and
the Lipschitz condition with respect to ϕ, i.e. there exists a constant K > 0 such that

|f1(t, ϕ)|+ ‖f2(t, ϕ, y)‖ ≤ K (1 + ‖ϕ‖C) (2.1)

for any (t, ϕ) ∈ D, y ∈ [−h, 0],

|f1(t, ϕ1)− f1(t, ϕ2)|+ ‖f2(t, ϕ1, y)− f2(t, ϕ2, y)‖ ≤ K‖ϕ1 − ϕ2‖C (2.2)

for all (t, ϕ1), (t, ϕ2) ∈ D, y ∈ [−h, 0].

Assumption 2.3 Conditions for the criterion function are:

1) the map L(t, ϕ, z) : D × Lp → R1 is defined and continuous with respect to all its
arguments in the domain D2 = {(t, ϕ) ∈ D, z ∈ Lp};
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2) there exists a > 0 such that

|L(t, ϕ1, z)− L(t, ϕ2, z)‖ ≤ a‖ϕ1 − ϕ2‖C

for all (t, ϕ1, z), (t, ϕ2, z) ∈ D2;

3) the Frechet derivative Lu of the map L is continuous with respect to all its argu-
ments in the domain D2, and there exist constants C1 > 0, α > 0 such that for all
(t, ϕ, z) ∈ D2 the following inequality holds:

‖Lu(t, ϕ, z)‖Lq
≤ C1(1 + ‖ϕ‖αC + ‖z‖p−1Lp

);

4) there exists a constant C > 0 such that L(t, ϕ, z) ≥ C‖z‖pLp
for all (t, ϕ, z) ∈ D2;

5) L(t, ϕ, z) is convex with respect to z for any fixed t, ϕ;

Our first result concerns the existence, uniqueness and extension of the solution of
the original problem (1.1) to the boundary ∂D of the domain D. It is some analogue of
the Carathéodory theorem for ordinary differential equations.

Definition 2.1 The solution of the initial problem (1.1) on the segment [−h,A],
A > 0, is called a continuous on the segment [−h,A] function x(t) such that

1) x(t) = ϕ0(t), t ∈ [−h, 0];

2) (t, xt) ∈ D on t ∈ [0, A];

3) for t ∈ [0, A] the function x(t) satisfies the integral equation

x(t) = ϕ0(0) +

∫ t

0

[
f1(s, xs) +

∫ 0

−h
f2(s, xs, y)u(s, y)dy

]
ds. (2.3)

.

Remark 2.1 It is obvious that for t ∈ [0, A] the solution x(t) is an absolutely con-
tinuous function and satisfies the equation (1.1) for almost all t on [0, A].

Theorem 2.1 Suppose that Assumptions 2.1 and 2.2 are satisfied. Then there exists
a solution of the initial problem (2.3) on the maximal segment [−h, τ ], τ > 0 and (τ, xτ ) ∈
∂D.

The following theorem gives for the problem (1.1)-(1.2) the existence conditions of the
optimal pair x∗(t), u∗(t, θ)), which provides the minimum of the quality criterion (1.2).

In this case u∗ ∈ U is called the optimal control and the corresponding trajectory
x∗(t) (1.1) is called the optimal trajectory.

Theorem 2.2 Suppose that Assumptions 2.1-2.3 are satisfied. Then there exists a
solution of the optimal control problem (1.1)-(1.2).
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3 Proofs of the Theorems

3.1 Proof of Theorem 2.1

Let us fix an admissible control u∗ ∈ U . First, we shall prove the local existence and
uniqueness of the solution of the problem (1.1), on some segment [−h, α], α > 0.

To do this, we use the standard principle of contraction mappings.
Obviously, there exist α0 > 0 and β0 > 0 such that all (t, ϕ) for which 0 ≤ t ≤ α0,

and ‖ϕ− ϕ0‖C ≤ β0 belong to D are equivalent to ϕ0 on [−h, 0].
Now we consider the class B(α, β0) of all continuous on [−h, α] functions x(t) that

are equivalent to ϕ0 on [−h, 0] and |x(t)− ϕ0(0)| ≤ β0 for t ∈ [0, α].
Obviously, the set B(α, β0) is closed relatively uniformly metric on [−h, α] .
In this case there exists α0 ≥ α1 > 0 such that if x(t) ∈ B(α, β0) at 0 < α ≤ α1, then

the following inequality holds:

‖xt − ϕ0(0)‖C ≤ β0, t ∈ [0, α]. (3.1)

Indeed, under the condition of uniform continuity of ϕ0 on [−h, 0] there exists α1 > 0
such that if |θ1 − θ2| ≤ α1, then

|ϕ0(θ1)− ϕ0(θ2)| ≤ β0
3

(3.2)

for all θ1, θ2 ∈ [−h, 0].
Hence, for each t ∈ [0, α1] at α ≤ α1 from (3.2) and the properties of the set B(α, β0)

we have

‖xt − ϕ0‖C ≤ sup
θ∈[−h,−t]

|x(t+ θ)− ϕ0(θ)|+ sup
θ∈[−t,0]

|x(t+ θ)− ϕ0(θ)| ≤

≤ sup
θ∈[−h,−t]

|ϕ0(t+ θ)− ϕ0(θ)|+ sup
θ∈[−t,0]

|x(t+ θ)− ϕ0(θ)|+

+ sup
θ∈[−t,0]

|ϕ0(θ)− ϕ0(0)| ≤ β0
3

+
β0
3

+
β0
3

= β0.

Next we shall prove that α > 0 can be choosen so that the operator

(Ax) (t) =

{
ϕ0(t), t ∈ [−h, 0],

ϕ0(0) +
∫ t
0
f1(s, xs)ds+

∫ t
0

∫ 0

−h f2(s, xs, y)u(s, y)dyds, t ∈ [0, α],
(3.3)

maps the set B(α, β0) into itself and this operator is a contraction.
Indeed, by Lemma 2.2.1 [10] it follows that xt is a continuous function with respect

to t ∈ [0, α]. Therefore, from Assumption 2.1 f1(s, xs) is continuous with respect to
s ∈ [0, α] and the function ∫ 0

−h
f2(s, xs, y)u(s, y)dy (3.4)

is measurable with respect to s and satisfies the estimate

∣∣∣∣∫ 0

−h
f2(s, xs, y)u(s, y)dy

∣∣∣∣ ≤ C2

(∫ 0

−h
|u(s, y)|p dy

) 1
p
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for some constant C2 > 0. From this we have the integrability of (3.4) with respect to s
and hence the absolute continuity of the second integral in (3.4).

Now we evaluate the difference |(Ax)(t)− ϕ0(0)| at t ∈ [0, α], α ≤ α0.
With (2.1) and (2.2) using Holder’s inequality and Fubini’s theorem we get

|(Ax)(t)− ϕ0(0)| ≤
∫ t

0

|f1(s, xs)| ds+

∫ t

0

(∫ 0

−h
‖f2(s, xs, y)‖ |u(s, y)| dy

)
ds ≤

≤
∫ t

0

K(1 + ‖xs‖C)ds+

∫ t

0

(∫ 0

−h
Kq (1 + ‖xs‖C)

q
dy

) 1
q

·
(∫ 0

−h
|u(s, y)|p dy

) 1
p

ds ≤

≤ K(1 + β0 + ‖ϕ0‖C)α+Kh
1
q (1 + β0 + ‖ϕ0‖C)

(∫ α

0

∫ 0

−h
|u(s, y)|p ds

) 1
p

α
1
q .

Here q = p
p−1 .

Let us choose now α2 ≤ α1 from the condition

K(1 + β0 + ‖ϕ0‖C (α+ α
1
q h

1
q

(∫ α

0

∫ 0

−h
|u(s, y)|p dyds

) 1
p

≤ β0
3
. (3.5)

Thus, for all α ≤ α1 the operator A maps B(α, β0) into itself.
Let us show that there exists α3 ∈ [0, α2] such that the operator A will be a contraction

on B(α3, β0).
Let x and z ∈ B(α, β0). By (2.2) we have

|(Ax)(t)− (Az)(t)| ≤
∫ t

0

K ‖xs − zs‖C ds+

∫ t

0

K ‖xs − zs‖C
∫ 0

−h
|u(s, y)| dyds ≤

≤

(
Kα+Kα

1
q h

1
q

(∫ α

0

∫ 0

−h
|u(s, y)|p dyds

) 1
p

)
sup

t∈[−h,α]
|x(t)− z(t)| .

And now from this we have

sup
t∈[−h,α]

|(Ax)(t)− (Az)(t)| ≤

≤

(
Kα+Kα

1
q h

1
q

(∫ α

0

∫ 0

−h
|u(s, y)|p dyds

) 1
p

)
sup

t∈[−h,α]
|x(t)− z(t)| . (3.6)

Now choosing 0 < α3 ≤ α2 from the condition

Kα+Kα
1
q h

1
q

(∫ α

0

∫ 0

−h
|u(s, y)|p dyds

) 1
p

< 1

we get that the operator A : B(α3, β0) → B(α3, β0) is a contraction. Thus, on the
segment [−h, α3) there exists a unique solution to the initial problem (1.1).

To prove the extension of this solution to the boundary ∂D, we use the approach of
Theorem 2.3.2 [10]. Note that by (2.1) for (t, ϕ) ∈ D the following estimates hold:

|f1(t, ϕ)| ≤ K(1 + ‖ϕ‖C) (3.7)
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and ∣∣∣∣∫ 0

−h
f2(t, ϕ, y)u(t, y)dy

∣∣∣∣ ≤ K(1 + ‖ϕ‖C)h
1
q

∫ 0

−h
|u(s, y)| dy. (3.8)

Let [−h, τ ] be the maximum interval of existence of the solution x(t). For its extension
to the boundary ∂D it is necessary to show that for any closed set G ∈ DtG there
exists tG such that (t, xt) /∈ G for t ∈ [tG, τ ]. The last statement can be proved by
contradiction. Indeed, if this is not the case, then, similar to Theorem 2.3.2 [10], the set
Q̄ = {(t, xt) : t ∈ [−h, τ ]} is closed and bounded in D.

Therefore, the estimates (3.7) and (3.8) imply the existence of a constant M such that

for (t, ϕ) ∈ Q̄ we have |f1(t, ϕ)| ≤M and
∣∣∣∫ 0

−h f2(t, ϕ, y)u(t, y)dy
∣∣∣ ≤M ∫ 0

−h |u(s, y)| dy.
From (2.3) for each t1, t ∈ [0, τ ] we have

|x(t2)− x(t1)| ≤M(t2 − t1) +Mh(t2 − t1)
1
q

(∫ T

Q

∫ 0

−h
|u(s, y)|p dyds

) 1
p

. (3.9)

This implies that {(t, x) : t ∈ [−h, τ ]} belongs to a compact set in D. The last state-
ment contradicts Corollary 2.3.1 from [10]. The theorem is proved. 2

3.2 Proof of Theorem 2.2

First note that controls u(t, θ) = u(θ) are admissible.
Let x(t) be a solution that coresponds to u(t) and τ be a moment of the first exit

(t, xt) on the boundary ∂D.
Now we shall prove that x(t) is bounded on [0, τ ].
From (2.3) for ∈ [0, τ ] we have

|x(t)| ≤ |ϕ0(0)|+
∫ t

0

K(1 + ‖xs‖C)ds+Kh
1
q

∫ t

0

(1 + ‖xs‖C)ds ‖u‖Lp
≤

≤ |ϕ0(0)|+KT +Kh
1
q ‖u‖Lp

T + (K + h
1
q u ‖u‖Lp

)

∫ t

0

‖xs‖C ds =

= C3 + C4

∫ t

0

‖xs‖ ds ≤ C3 + C4

∫ t

0

max
s1∈[−h,s]

|x(s1)| ds (3.10)

Since
max

s∈[−h,t]
|x(s)| ≤ max

s∈[−h,0]
|ϕ0(s)|+ max

s∈[0,t]
|x1(s1)| ,

and from (3.10) we have

max
s∈[−h,t]

|x(s)| ≤ C5 + C4

∫ t

0

max
s∈[−h,s]

|x(s1)| ds

for some constant C5 > 0. Using Gronwall’s inequality we have max
s∈[−h,t]

|x(s)| ≤ C5,

t ∈ [0, τ ] for some constant C6 > 0 which does not depend on t. From this it follows that

max
s∈[−h,τ ]

|x(s)| ≤ C6

and max
s∈[−h,τ ]

‖xt‖ ≤ C6.
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Since from Lemma 2.2.1 [10] xt is continuous with respect to t ∈ [0, τ ], under the first
condition of Assumption 2.3 we have L(t, xt, u(θ)) (where (u(t, θ)) = u(θ) is continuous
with respect to t and hence ∫ τ

0

L(t, xt, u(θ)dt (3.11)

is bounded. Therefore inf
u∈U

J(u) < ∞. Since J(u) ≥ 0, there exists a nonnegative

lower limit m of the values J(u). Let u(n)(t, θ) be a minimizing sequence such that
J(un)→ m, n→∞ monotonously.

Let x(n) be a sequence of coresponding to u(n) solutions of equation (2.3), [−h, τn] be

a maximal interval of its existense. From Theorem 2.1 it follows that [τn, x
(n)
τn ] ∈ ∂D.

We have

m+ 1 ≥
∫ τn

0

L(t, x
(n)
t , u(n))dt ≥ C

∫ T

0

∫ 0

−h

∣∣∣u(n)(t, y)
∣∣∣p dydt (3.12)

for sufficiently large n. Consequently u(n)(t, y) is weakly compact in Lp([0, T ]× [−h, 0]).
Therefore one can choose a sequence (also denoted by u(n)(t, y)) which is weakly

converging to uk(f) ∈ Lp([0, T ]× [−h, 0]) in Lp([0, T ]× [−h, 0]).
By Mazur’s lemma ( [11], Ch. 5) there exists a convex combination bk(t, y) =∑n(k)
τ=1 αi · (K)u(i) · (t, u) of elements u(i)(t, y) such that bk → u(∗) strongly converges

in Lp([0, T ]× [−h, 0]).
Therefore there exists a subsequence bkj (t, y) of sequence bk(t, y) such that for almost

all (t, y) on [0, T ]× [−h, 0] it converges to ux(t, y).
Since U is convex, we have bkj (t, y) ∈ U, and from the closedness of U it follows that

u∗(t, y) ∈ U for almost all (t, y). So, the control function u∗(t, y) is admissible.
Let us prove uniform boundedness of solutions x(n) on [−h, τn] . From (2.3) under

Assumptions 2.1 and 2.2 we have for t ∈ [0, τn]∣∣∣x(n)(t)∣∣∣q ≤ 3q−1 |ϕ(0)|q +KqT
q
p 2q−1

∫ t

0

(1 +
∥∥∥x(n)s

∥∥∥q
C

)ds+

+h

(∫ T

0

∫ 0

−h

∣∣∣u(n)(t, y)
∣∣∣p) 1

p

Kqh

∫ t

0

2q−1(1 +
∥∥∥x(n)s

∥∥∥q
C

)ds.

With (3.12), from the last inequality for some positive constants C7 and C8 which do
not depend on t, y and n, we have∣∣∣x(n)(t)∣∣∣q ≤ C7 + C8

∫ t

0

‖xs‖q ds

for t ∈ [0, τn].
Thus we have the estimate

max
s∈[−h,t]

|x(s)| ≤ C9 + C8

∫ t

0

max
s1∈[−h,s]

|x(s1)| ds

for some constant C9.
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Using Gronwall’s inequality we have

max
t∈[−h,τn]

∣∣∣x(a)(t)∣∣∣ ≤ C10, (3.13)

where C10 is a positive constant which does not depend on n.
So x(n)(t) are uniform bounded. Let us extend the functions x(n)(t) to the whole

segment [0, T ] as follows

y(n)(t) =

{
x(n)(t), t ∈ [0, τn],
x(n)(τn), t ∈ [τn, T ].

(3.14)

If s1 ≤ s2 ≤ τn, then from (3.9) it follows the estimate∣∣∣y(n)(s1)− yn(s2)
∣∣∣ ≤ C11(s2 − s1) + C12(s2 − s1)

1
q . (3.15)

If s1 ≤ τn ≤ s2, then similarly to (3.15) we have∣∣∣y(n)(s1)− yn(s2)
∣∣∣ =

∣∣∣x(n)(s1)− x(n)(τn)
∣∣∣ ≤ C11|τn − s1|+ C12|τn − s1| ≤

≤ C11 (s2 − s1) + C12(s2 − s1)
1
q .

This implies the equicontinuity of the function set {y(n)(t)} on [0, T ] and from (3.14)
and (3.13) it follows uniform boundedness of this set. Hence the set

{
y(n)(t)

}
includes a

subsequence which converges uniformly on [0, T ] and which we denote as
{
y(n)(t)

}
. Let

y(x)(t) be its uniform limit on [0, T ].
Function y∗(t) is defined and continuous on [0, T ]. Therefore, we also have y∗t =

y∗(t + θ) for all t ∈ [0, T ]. Let τ∗ be a moment of the first exit (t, y∗t ) on the boundary
∂D, i.e.

τ∗ =

{
inf{t ∈ [O, T ] : (t, y∗t ) ∈ ∂D},
T, if (t, y∗t ) ∈ D,∀t ∈ [O, T ].

Note that if
y(n)τn = y(n)(τn + θ) = x(n)(τn + θ) = x(n)τn ,

then τn is the moment of the first exit (t, ynt ) on ∂D.
Let us prove that

τ∗ ≤ lim
n→∞

inf τn. (3.16)

Suppose that it is not true. Then

τ∗ > lim
n→∞

inf τn = τ. (3.17)

Obviously, there exists a subsequence τnk
such that τnk

→ τ for nk →∞. Therefore
for sufficiently large nk we have τ < τ∗ and

(τ, y∗τ ) ∈ D. (3.18)

But (τnk
, y

(nk)
τnk

) ∈ ∂D.
On the other hand, taking into account the uniform convergence of the sequence yn(t)

to y∗(t) on [−h, T ] and uniform on [−h, T ] continuity of y∗(t) it is not difficult to see

that y
(nk)
τnk
→ y∗τ in C for nk →∞.
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Since the set ∂D is closed, we have (τ, y∗τ ) ∈ D. The latter contradicts (3.18).
Therefore

τ∗ ≤ τ = lim
n→∞

inf τn.

Let x∗(t) = y∗(t) for t ∈ [0, τ∗]. Show that x∗(t) is a solution of the equation (1.1)
which corresponds to the equation u∗(t).

We consider two cases.
1. Let τ∗ < τ . Then by the theorem of the characterization of the lower bound, the

set {n ∈ N : τn ≤ τ∗} is finite. Consequently, there exists a subsequence {τnk
} of the

sequence τn, such that τnk
> τ∗. Then y(nk)(t) = x(nk)(t) for t ∈ [0, τ∗] and x(nk)(t)

converges uniformly to x∗(t) for nk →∞. We have

x(nk)(t) = ϕ0(0) +

∫ t

0

f1(s, xnk
s )ds+

∫ t

0

∫ 0

−h
f2(s, xnk

s y)unk(s, y)dyds (3.19)

for t ∈ [0, τ∗].
Then we get

x(uk)(t) = ϕ0(0) +

∫ t

0

f1(s, xnk
s )ds+

∫ t

0

∫ 0

−h
f2(s, xnk

s y)u∗(s, y)dyds+

+

∫ t

0

∫ 0

−h
(f2(s, x(nk)

s , y)− f2(s, x∗s, y))(u(uk)(s, y)− u∗(s, y)dyds+

+

∫ t

0

∫ 0

−h
f2(s, x∗s, y)(u(uk)(s, y)− u∗(s, y)dyds. (3.20)

It is obvious that x
(nk)
t → x∗t on C for all t ∈ [0, τ∗].

From (2.2) we have ∫ t

0

f1(s, x(nk)
s )ds→

∫ t

0

f1(s, x∗s)ds (3.21)

and in view of the Lebesgue theorem on dominanted convergence, we also obtain that∫ t

0

∫ 0

−h
f2(s, x(nk)

s , y)u∗(s, y)dyds→
∫ t

0

∫ 0

−h
f2(s, x∗s, y)u∗(s, y)dyds. (3.22)

Similarly, we establish that the third integral in (3.20) tends to zero for nk →∞.
Taking into account Assumption 2.2 with respect to f2, it is easy to see that

the expression
∫ t
0

∫ 0

−h f2(s, x∗s, y)u(s, y)dyds defines a linear continuous functional on
L2([0, t]× [−h, 0]).

Therefore the last integral in (3.20) tends to zero because of the weak convergence of
u(nk)(s, y) to u∗(s, y). Using the limiting transition in (3.20) we obtain that x∗(t) is the
solution of the initial problem (1.1) on [0, τ∗] which corresponds to the control u∗(t, y).

2. Let τ∗ = τ . Take an arbitrary t1 ∈ [0, τ ] such that t1 < τ∗. Then the set
{n ∈ N : τn ≤ t1} is finite.

In the case of the finiteness of the set Z = {n ∈ N : t1 < τn ≤ t∗} the proof reduces
to the preceding case. Let Z be infinite and δnk

be a subsequence of the sequence τn
such that τnk

∈Z. Then for each t ∈ [0, t] we have y(nk)(t) = x(nk)(t) y∗(t) = x∗(t).
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Similarly to the previous case then x∗(t) is the solution of the initial problem (1.1) on
[0, t1] corresponding to the control u∗(t, y), that is

x∗(t) = ϕ0(0) +

∫ t

0

f1(s, x∗s)ds+

∫ t

0

∫ 0

−h
f2(s, x∗s, y)u∗(s, y)dyds (3.23)

for t ∈ [0, t1]. Since t1 < τ∗ is arbitrary, the equality (3.23) holds on the interval [0, τ∗].
Let us show it holds also for t = τ∗. Let tn ∈ [0, τ∗] and tn → τ∗, then x∗(tn) →

x∗(τ∗).
Similarly to the inequality (3.9) we get for n→∞∣∣∣∣∣

∫ τ∗

0

[f1(s, x∗s) +

∫ 0

−h
f2(s, x∗s, y)u∗(s, y)dy]ds−

∫ tn

0

[f1(s, x∗s) +

∫ 0

−h
f2(s, x∗s, y)u∗(s, y)dy]ds

∣∣∣∣∣→0.

Therefore x∗(t) satisfies (3.23) for t = τ∗ too.
It remains to show that the control u∗(s, y) is optimal. We have two cases.
1. Let τ∗ < T .
a) Let τ∗ < lim

n→∞
inf τn = τ . Then, similarly to the above, there exists a subsequence

τnk
of the sequence τn such that τnk

> τ∗ and for t ∈ [0, τ∗] y(nk)(t) = x(nk)(t) and
y∗(t) = x∗(t).

We show the integrability of the function L(t, x∗t , u
(nk)(t, ·)) on [0, τ∗]

Using inequality ∣∣∣L(t, x∗t , u
(nk)(t, ·))− L(t, x∗t , u0)

∣∣∣ ≤
≤ sup
λ∈[0,1]

∥∥∥Lu(t, x∗t , u0 + λ(u(nk)(t, ·)− u0)
∥∥∥
Lq

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

,

where u0 = const, u0 ∈ U , we have

L(t, x∗tu
(nk)(t, ·)) ≤ L(t, x∗t , u0)+

+ sup
λ∈[0,1]

∥∥∥Lu(t, x∗t , u0 + λ(u(nk)(t, ·)− u0)
∥∥∥
λq

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

.

Using condition 3) of Assumption 2.3 we have

L(t, x∗t , u
(nk)(t, ·)) ≤ L(t, x∗t , u0) + C1

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

+

+C1 ‖x∗t ‖
α
C

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

+

+ C1 sup
λ∈[0,1]

∥∥∥u0 + λ(u(nk)(t, ·)− u0)
∥∥∥p−1
Lp

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

. (3.24)

The first term in (3.24) is integrable in accordance with (3.11). The second and third
terms are also integrable on [0, τ∗] due to (3.12), (3.13) and the uniform convergence of
x(nk)(t) to x∗(t) on [0, τ∗].

The integrability of the last term in (3.24) follows from the estimate∫ τ∗

0

(‖u0‖Lp
+ ‖unk(t, ·)− u0‖)p−1

∥∥∥u(nk)(t, ·)− u0
∥∥∥
Lp

dt ≤
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≤ 2
(p−1)2

p

(∫ τ∗

0

(‖u0‖pLp
+ ‖unk(t, ·)− u0‖pLp

)dt

) p−1
p
(∫ τ∗

0

(‖unk(t, ·)− u0‖pLp
)dt

) 1
p

.

Therefore the function α(t, x∗t ,u
(nk)(t, ·) is integrable on [0, τ∗].

Let χR(t) be a characteristic function of the set
{
t ∈ [0, t] : ‖u∗(t, ·)‖Lp

< R
}

for some

R > 0.
Since L(t, y, z) is convex on z (condition 5) from Assumption 2.3), the following

inequality holds
L(t, x∗t , υ(t, ·)χR(t) ≥ L(t, x∗t , u

∗(t, ·))χR(t)+〈
L
′

u(t, x∗t , u
∗(t, ·), υ(t, ·)− u∗(t, ·)

〉
χR(t) (3.25)

for any admissible control υ(t, y) ∈ Up t ∈ [0, τ∗]. Here
〈
L
′

u, υ − u∗
〉

is the action of the

linear continuous functional Lu on the element υ(t, ·) − u∗(t, ·) ∈ Lp. Putting in (3.25)
υ(t, ·) = u(nk)(t, ·) we have∫ τ∗

0

L(t, x∗t , u
(nk)(t, ·))χR(t)dt ≥

∫ τ∗

0

L(t, x∗t , u
∗(t, ·))χR(t)dt+

+

∫ τ∗

0

〈
L
′

u(t, x∗t , u
∗(t, ·), u(nk)(t, ·)− u∗(t, ·)

〉
χR(t)dt. (3.26)

Under condition 3) of Assumption 2.3 we have

‖Lu(t, x∗t , u
∗(t, ·)‖Lq

χR(t) ≤ K(1 + ‖x∗t ‖
α
C +R)p−1,

therefore, the second term defines a linear continuous functional in Lp([0, τ
∗]× [−h, 0]).

So, the second integral in (3.26) tends to zero, because of the weak convergence of unk(t, s)
to u∗(t, s).

Therefore

lim
n→∞

inf

∫ τ∗

0

L(t, x∗t , u
(uk)(t, ·))χR(t)dt ≥

∫ τ∗

0

L(t, x∗t , u
∗(t, ·))χR(t)dt.

Since L(t, y, z) ≥ 0, χR(t) ≤ 1 and χR(t) → 1 forR → ∞, we get from the last
inequality that ∫ τ∗

0

L(t, x∗t , u
∗(t, ·)dt ≤ lim

n→∞
inf

∫ τ∗

0

α(t, x∗t , u
(uk)(t, ·)dt. (3.27)

The integrability of L(t, x∗t , u
(nk)(t, ·) on [0, τ∗] is taken into account.

Let us also consider the difference∫ τ∗

0

∣∣∣L(t, x
(nk)
t , u(uk)(t, ·))− L(t, x∗t , u

(uk)(t, ·))
∣∣∣ dt. (3.28)

Using condition 2) of Assumption 2.3 we have∫ τ∗

0

∣∣∣L(t, x
(nk)
t , u(uk)(t, ·))− L(t, x∗t , u

(uk)(t, ·))
∣∣∣ dt ≤
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≤ α
∫ τ∗

0

∥∥∥x(nk)
t − x∗t

∥∥∥ dt→ 0, nk →∞. (3.29)

The limit transition in (3.29) is possible by the Lebesgue theorem on the majorization
of convergence (3.13) and the uniform convergence of x(nk)(t) to x∗(t) on [0, τ∗]. From
(3.29) we find that the expression (3.28) tends to zero for nk →∞.

Further, we have

lim
n→∞

inf

∫ τ∗

0

L(t, x
(nk)
t , u(nk)(t, ·))dt ≥

≥ lim
n→∞

inf

∫ τ∗

0

[L(t, x
(nk)
t , u(nk)(t, ·)− L(t, x∗, u(nk))]dt+

+ lim
n→∞

inf

∫ τ∗

0

∣∣∣L(t, x∗t , u
(uk)(t, ·))− L(t, x∗t , u

∗(t, ·))
∣∣∣ dt+∫ τ∗

0

L(t, x∗t , u
∗(t, ·))dt. (3.30)

As is shown above, the first limit on the right-hand side (3.30) is zero, and the second
limit is non-negative with (3.27).

Then

m = lim
nk→∞

inf

∫ τnk

0

L(t, x
(nk)
t , u(nk)(t, ·))dt ≥ lim

nk→∞
inf

∫ τ∗

0

L(t, x
(nk)
t , u(nk)(t, ·))dt ≥

≥
∫ τ∗

0

L(t, x∗t , u
∗(t, ·))dt.

Thus J(u∗) = m, so the pair (x∗(t), u∗(t, s)) is optimal.

b) Let τ∗ = τ = lim
n→∞

inf τn.

Let us consider the set Z ={n ∈ N : t1 < τn ≤ τ∗}, where we again take an arbitrary
t1 ∈ [0, T ] such that t1 < τ∗. It is enough to consider the case when this set is infinite.
Then, in the same way as in a), we can show that∫ t1

0

L(t, x∗t , u
∗(t, ·))dt ≤ m.

Thus, by the limit transition for t1 → τ∗ we establish that∫ τ∗

0

L(t, x∗t , u
∗(t, ·))dt ≤ m.

Hence J(u∗) = m.

2. Let τ∗ = T . Then from (3.16) we have τ = lim
n→∞

inf τn = τ∗, and the proof reduces

to case 1, b ). The theorem is proved. 2

Remark 3.1 The method of proving the existence of optimal control and optimal
trajectory is constructive if we take into account the fact that the approach of works [16,
Chapter 7], or [17, Chapter 4] can be used to construct a minimizing control sequence.
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4 Applications

As an application of the obtained results, we consider some particular cases of problem
(1.1)-(1.2).

Example 4.1 If u = u(t) and does not depend on the value y, then the problem
(1.1)-(1.2) reduces to the ”ordinary” optimal control problem for functional-differential
equations

ẋ(t) = f1(t, xt) + g(t, xt)u(t), t ∈ [0, τ ],

x(t) = ϕ0(t), t ∈ [−h, 0],

J [u] =

∫ τ

0

L(t, xt, u(t))dt → inf,

where g(t, xt) ∈Md×m and g(t, xt) =
∫ 0

−h f2(t, xt, y)dy, u(t) ∈ Lp ([0, T ]), u(t) ∈ U .

Example 4.2 Equations with maximum.

A particular case of the problem (1.1)-(1.2) is the optimal control problem with
maximum on the interval [−h, T ], h > 0.

ẋ(t) = f1(t, xt, max
s∈I(t)

x(s)) + f2(t, xt, max
s∈I(t)

x(s))u(t), (4.1)

x(t) = ϕ(t), t ∈ [−h, 0],

J [u] =

∫ τ

0

L(t, x(t), u(t))dt → inf, (4.2)

where I(t) = [β(t), α(t)], maxx(s) = (maxx1(s), . . . ,maxxd(s)), β(t), α(t) are continu-
ous on [0, T ] functions such that β(t) ≤ α(t) ≤ t and min

t∈[0,T ]
(β(t)−t) = −h, G is a domain

in Rd, f(t, x, y) : [0, T ]×G×G→Md×m, u ∈ U ⊂ Rm, L(t, x, u) : [0, T ]×G×U → R1.
The general theory of equations with maxima is presented in the monograph [12].
The problem (4.1)-(4.2) reduces to problem (1.1)-(1.2) if we put

u(t, y) = u(t) ∈ Lp([0, T ]),

f̃1(t, ϕ) = f1(t, ϕ(0), max
θ∈[β(t)−t,α(t)−t]

ϕ(θ)),

f̃2(t, ϕ) =

∫ 0

−h
f2(t, ϕ(0), max

θ∈[β(t)−t,α(t)−t]
ϕ(θ), s)ds.

Let the following conditions be satisfied:
4.A. Functions f1(t, x, y) and f2(t, x, y, s) are defined and measurable with re-

spect to all its arguments in domains Q = {t ∈ [0, T ], x ∈ G, y ∈ G} , and Q1 =
{t ∈ [0, T ], x ∈ G, y ∈ G, s ∈ [−h, 0]} and satisfies with respect to x, y the linear growth
and the Lipschitz condition with constant K > 0 in these domains, i. e.

|f1(t, x, y)|+ ‖f2(t, x, y, s)‖ ≤ K(1 + |x|+ |y|) (4.3)

|f1(t, x, y)− f1(t, x1, y1)|+ ‖f2(t, x, y, s)− f2(t, x1, y1, s)‖ ≤

≤ K (|x0 − x1|+ |y − y1|) (4.4)
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for all t ∈ [0, T ], x, y, x1, y1 ∈ Q s ∈ [−h, 0].
4.B. 1) The function L(t, x, y) : [0, T ] ×G × U → R1 is defined and continuous with

respect to all its arguments and satisfies the Lipschitz condition with respect to x;
2) the partial derivative Lu is continuous in the domain of definition and satisfies for

some C0 > 0, α > 0 the following estimate:

‖Lu(t, x, u)‖ ≤ C0(1 + |x|α + |u|p−1);

3) there exists a constant C1 > 0 such that

L(t, x, u) ≥ C1 |u|p , p > 1;

4) the function L(t, x, u) is convex with respect to u for each fixed t ∈ [0, T ], x ∈ G.
The optimal control problem (4.1)-(4.2) can be written as follows:

ẋ(θ) = f1(t, xt), max
θ∈I(t)

x(t)) +

∫ 0

−h
f2(t, x(t)) max

θ∈I(t)
xt, s)ds u(t) (4.5)

x(t) = ϕ(t), t ∈ [−h, 0]

I(t) = [β(t)− t, α(t)− t]

I(u) =

∫ τ

0

L(t, x(t), u(t))dt→ inf . (4.6)

Then all of the conditions of Assumptions 2.1-2.3 hold.
Moreover, the domain D ⊂ [−h, T ] × C is a set {(t, ϕ) : t ∈ [−h, T ] , ϕ ∈ Ω, where

Ω is a set of functions ϕ ∈ C such that ϕ(θ) ∈ G for θ ∈ [−h, 0], ∂Ω is a set of
functions ϕ ∈ C such that ϕ(θ) ∈ Ḡ, and for each of these functions there exists a point
θ ∈ [−h, 0] such that ϕ(θ) ∈ ∂G. It is obvious that the set [0, T ] × Ω = D is open, and
∂D = ([0, T ]× ∂Ω) ∪ ({T} × Ω̄) is closed.

Let us check the conditions of Assumptions 2.1-2.3. Indeed, by 4.A we have∣∣∣f̃1(t, ϕ)
∣∣∣ =

∣∣∣∣f1(t, ϕ(0), max
θ∈[β(t)−t,α(t)−t]

ϕ(θ))

∣∣∣∣ ≤
≤ K

(
1 + |ϕ(0)|+

∣∣∣∣ max
θ∈[β(t)−t,α(t)−t]

ϕ(θ)

∣∣∣∣) ≤ K (1 + ‖ϕ‖C + ‖ϕ‖C)

and for f̃1(t, ϕ) the condition (2.1) holds. For f̃2(t, ϕ) the situation is similar. Further∣∣∣f̃1(t, ϕ)− f̃1(t, ϕ1)
∣∣∣ ≤

≤ K
(
|ϕ(0)− ϕ1(0)|+

∣∣∣∣ max
θ∈[β(t)]−t,α(t)−t]

ϕ(θ)− max
θ∈[β(t)−t,α(t)−t]

ϕ1(θ)

∣∣∣∣) ≤
≤ K

(
‖(ϕ− ϕ1‖C +

∣∣∣∣ max
θ∈[β(t)−t,α(t)−t]

|ϕ(θ)− ϕ1(θ)|
∣∣∣∣) ≤ 2K ‖ϕ− ϕ1‖C ,

that is the condition (2.2) holds.
Further, since the mapping L is finite-dimensional with respect to u, the Frechet

derivative Lu is the Jacobi matrix ∂L
∂u , and the norm ‖Lu‖Lq

= ‖Lu‖. Therefore, con-
dition 3) from Assumption 2.3 is trivially satisfied. It is obvious that other conditions
from Assumption 2.3 are also satisfied. Therefore, for problems (4.1) and (4.2), when
conditions 4.1 and 4.2 are satisfied, Theorems 2.1 and 2.2 hold.
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