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Abstract: In this paper we presented a reliable efficient numerical scheme to find
analytical supportive solution of Caputo-time-fractional Wu-Zhang system. A modi-
fied version of generalized Taylor power series method is used in this work. Graphical
justifications of the reliability of the proposed method are provided. Finally, the
effects of the fractional order on the solution of Wu-Zhang system is also discussed.
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1 Introduction

Wu-Zhang system is known also as (1+1)-dimensional dispersive long wave equations [25].
It is very helpful for coastal and civil engineers to apply the nonlinear water wave model
in harbor and coastal design. Abundant soliton solutions are obtained to this model
using the extended hyperbolic tangent expansion method. In [20], the Wu-Zhang system
is considered to study dispersive long waves. The extended trial equation method is used
and solitary wave solutions are obtained. Also, they used the mapping method to extract
more solitonic solutions.

Finding analytical solution to fractional nonlinear differential equations is a difficult
task. In the literature, different computational schemes were developed for either finding
numerical solutions over a specific range or considering a few terms of an iterative com-
putational series solution as an approximate. Such available methods are the variational
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iteration method [21], the iterative Laplace transform method [17], Adomian’s decom-
position method [23], homotopy analysis (perturbation) methods [12, 15, 16, 22], gener-
alized iterative-monotone methods [11, 13, 24] and the fractional power series method
[1–10,14,18,19].

The motivation of this work is to study for the first time the fractional Wu-Zhang
system

Dα
t v(x, t) = −v(x, t)vx(x, t)− wx(x, t),

Dα
t w(x, t) = −(v(x, t)w(x, t))x −

1

3
vxxx(x, t), (1)

where 0 < α ≤ 1 in Caputo sense and 0 < t < R < 1. Also, we desire to study the effect
of the fractional derivative α on the solution of (1).

The generalized Taylor fractional series will be used as an alternative method to
extract a reliable analytical supportive solution of the time-fractional Wu-Zhang system.
The accuracy of the method will be provided and graphical analysis is conducted to study
the effect of the fractional order α on the behavior of the obtained solution.

2 Analysis of the Proposed Method

In this section, we present in details the construction of the generalized Taylor fractional
series. The suggested solutions of the problem are sought to have the form

v(x, t) =

∞∑
j=0

cj(x)
tjα

Γ(jα+ 1)
, (2)

w(x, t) =

∞∑
j=0

dj(x)
tjα

Γ(jα+ 1)
. (3)

The target of this study is obtaining a supportive approximate solution to the proposed
model. Thus, we may write the suggested solution as

v(x, t) =

m∑
j=0

cj(x)
tjα

Γ(jα+ 1)
= c0(x) +

m∑
j=1

cj(x)
tjα

Γ(jα+ 1)
, (4)

w(x, t) =

m∑
j=0

dj(x)
tjα

Γ(jα+ 1)
= d0(x) +

m∑
j=1

dj(x)
tjα

Γ(jα+ 1)
. (5)

In Caputo sense, we recall the fact that

Dα
t t
β =


Γ(β+1)

Γ(β−α+1) t
β−α, β ≥ α,

0, β < α.

Therefore, applying the operator Dα
t on equations (4) and (5), will produce the formulas

Dα
t vm(x, t) =

m−1∑
j=0

cj+1(x)
tjα

Γ(jα+ 1)
, (6)

Dα
t wm(x, t) =

m−1∑
j=0

dj+1(x)
tjα

Γ(jα+ 1)
. (7)
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Next, we substitute both (4)-(7) in the fractional equation (1). Therefore, we arrive at
the following recurrence relations

0 =

m−1∑
j=0

cj+1(x)
tjα

Γ(jα+ 1)
+

m∑
j=0

d′j(x)
tjα

Γ(jα+ 1)

+

 m∑
j=0

cj(x)
tjα

Γ(jα+ 1)

 m∑
j=0

c′j(x)
tjα

Γ(jα+ 1)

 (8)

and

0 =

m−1∑
j=0

dj+1(x)
tjα

Γ(jα+ 1)
+

1

3

m∑
j=0

c′′′j (x)
tjα

Γ(jα+ 1)

+

 m∑
j=0

cj(x)
tjα

Γ(jα+ 1)

 m∑
j=0

d′j(x)
tjα

Γ(jα+ 1)


+

 m∑
j=0

c′j(x)
tjα

Γ(jα+ 1)

 m∑
j=0

dj(x)
tjα

Γ(jα+ 1)

 . (9)

We follow the same analogue used in obtaining the Taylor series coefficients. In particular,
to determine the functions cn(x), dn(x), n = 1, 2, 3, ..., we have to solve the following
two systems simultaneously

D
(m−1)α
t {L1(x, t, α,m)} ↓t=0= 0,

D
(m−1)α
t {L2(x, t, α,m)} ↓t=0= 0, (10)

where

L1(x, t, α,m) =

m−1∑
j=0

cj+1(x)
tjα

Γ(jα+ 1)
+

m∑
j=0

d′j(x)
tjα

Γ(jα+ 1)

+

 m∑
j=0

cj(x)
tjα

Γ(jα+ 1)

 m∑
j=0

c′j(x)
tjα

Γ(jα+ 1)

 (11)

and

L2(x, t, α,m) =

m−1∑
j=0

dj+1(x)
tjα

Γ(jα+ 1)
+

1

3

m∑
j=0

c′′′j (x)
tjα

Γ(jα+ 1)

+

 m∑
j=0

cj(x)
tjα

Γ(jα+ 1)

 m∑
j=0

d′j(x)
tjα

Γ(jα+ 1)


+

 m∑
j=0

c′j(x)
tjα

Γ(jα+ 1)

 m∑
j=0

dj(x)
tjα

Γ(jα+ 1)

 . (12)
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Now, we explain the derivations of the first few terms of the sequence {cm(x)}N1 and
{dm(x)}N1 . We start with the index m = 1;

L1(x, t, α, 1) = c1(x) + d′0(x) + d′1(x)
tα

Γ(α+ 1)

+

(
c0(x) + f1(x)

tα

Γ(α+ 1)

)(
c′0(x) + c′1(x)

tα

Γ(α+ 1)

)
,

L2(x, t, α, 1) = d1(x) +
1

3

(
c′′′0 (x) + c′′′1 (x)

tα

Γ(α+ 1)

)
+

(
c0(x) + c1(x)

tα

Γ(α+ 1)

)(
d′0(x) + d′1(x)

tα

Γ(α+ 1)

)
+

(
c′0(x) + c′1(x)

tα

Γ(α+ 1)

)(
d0(x) + d1(x)

tα

Γ(α+ 1)

)
. (13)

Solving L1(x, 0, α, 1) = 0 and L2(x, 0, α, 1) = 0, yields

c1(x) = −c0(x)c′0(x)− d′0(x),

d1(x) = −1

3
c′′′0 (x)− (c0(x)d′0(x) + c′0(x)d0(x)) . (14)

To determine c2(x) and d2(x), we consider L1(x, t, α, 2) & L2(x, t, α, 2) and we solve
Dα
t {L1(x, t, α, 2)} ↓t=0= 0 and Dα

t {L2(x, t, α, 2)} ↓t=0= 0. Therefore

c2(x) = −(c1(x)c′0(x) + c′1(x)c0(x))− d′1(x),

d2(x) = −1

3
c′′′1 (x)− (c0(x)d′1(x) + c′0(x)d1(x))

− (c1(x)d′0(x) + c′1(x)d0(x)) . (15)

We should point here that chain rule differentiation is not applicable when using
Caputo sense. Thus, in the preceding step ”as well as the forthcoming steps” we
had to expand all the terms involved in both L1(x, t, α, 2), L2(x, t, α, 2) ”in general
L1(x, t, α, n), L2(x, t, α, n)” and use the following fact

Dα
t t
β ↓t=0=


0, β < α,

Γ(α+ 1), β = α,

0, β > α.

To determine c3(x) and d3(x), we consider L1(x, t, α, 3) and L2(x, t, α, 3) and we solve
D2α
t {L1(x, t, α, 3)} ↓t=0= 0 and D2α

t {L2(x, t, α, 3)} ↓t=0= 0. Therefore

c3(x) = −(c2(x)c′0(x) + c′2(x)c0(x))− Γ(1 + 2α)

Γ2(1 + α)
c1(x)c′1(x)− d′2(x),

d3(x) = −1

3
c′′′2 (x)− (c0(x)d′2(x) + c′0(x)d2(x))− (c2(x)d′0(x) + c′2(x)d0(x))

− Γ(1 + 2α)

Γ2(1 + α)
(c1(x)d′1(x) + c′1(x)d1(x)) . (16)

Finally, we proceed as above to obtain the other coefficient functions ck(x) and dk(x) by

solving D
(k−1)α
t {L1(x, t, α, k)} ↓t=0= 0 and D

(k−1)α
t {L2(x, t, α, k)} ↓t=0= 0.
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3 Discussion and Concluding Remarks

The purpose of this section is to test the validity of the proposed scheme and to study the
effect of the fractional order α on the solution of the time-fractional Wu-Zhang system.
To achieve these goals, we solve (1) subject to the initial conditions

v(x, 0) =
2

3

(
1− tanh

(√
1

3
x

))
,

w(x, 0) =
2

9

(
1− tanh2

(√
1

3
x

))
. (17)

Provided that the exact solution of (1) when α = 1 is [25]

v(x, t) =
2

3

(
1− tanh

(√
1

3

(
x− 2

3
t

)))
,

w(x, t) =
2

9

(
1− tanh2

(√
1

3

(
x− 2

3
t

)))
. (18)

For a reliability verification, we consider the 4-th order approximation

v4(x, t) = v(x, 0) +

4∑
k=1

ck(x)
tkα

Γ(kα+ 1)
,

w4(x, t) = w(x, 0) +

4∑
k=1

dk(x)
tkα

Γ(kα+ 1)
, (19)

as the supportive solution of the time-fractional Wu-Zhang system. We present here
the plots of this obtained approximate solution against the exact solution (18) when
α = 1, see Figure 1 (i) and (ii) and Figure 4 (a) and (b). For the accuracy of the used
method, we provide Figures 2 and 5 which represent respectively |v(x, t)− v4(x, t)| and
|w(x, t)− w4(x, t)|.

Figure 3 provides profile solutions of the function v(x, t) for different values of the
fractional order α, the plot on the left when t is fixed, t = 0.2, and the plot on the right
when x is fixed, x = 0.5. Figure 6 provides profile solutions of the function w(x, t) for
different values of the fractional order α, the plot on the left when t is fixed, t = 0.2, and
the plot on the right when x is fixed, x = 0.5.

We point here that the proposed method is effective for all nonlinear equations. If
the order of the nonlinear terms involved in the equation is small, then a few terms of the
fractional power series provide a high accuracy approximation. But, if the order of the
nonlinear term is big, it is required to add more terms to reach the desired reasonable
approximation.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 182–190 187

HiL v 4Hx,tL for Α = 1
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Figure 1: The approximate v4(x, t) and exact v(x, t) solutions, respectively, when −1 < x < 15
and 0 < t < 0.5 and α = 1.
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Figure 2: Absolute error |v(x, t)− v4(x, t)|
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Figure 3: Profile solutions of v4(x, 0.2) on the left and v4(0.5, t) on the right for different values
of the fractional order α.
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HaL w 4Hx,tL for Α = 1
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Figure 4: The approximate w4(x, t) and exact w(x, t) solutions, respectively, when −1 < x < 15
and 0 < t < 0.5 and α = 1.
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Figure 5: Absolute error |w(x, t)− w4(x, t)|.
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Figure 6: Profile solutions of w4(x, 0.2) on the left and w4(0.5, t) on the right for different
values of the fractional order α.
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