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Abstract: An active backstepping scheme is proposed to attain three different types
of synchronization between the chaotic Cai system and the Chen system. Complete
synchronization, anti-synchronization and hybrid synchronization are accomplished
by using the active backstepping method between different switches of the Cai and
Chen systems, where the Cai system is considered as a master system and the Chen
system is considered as a slave system. The goal is to design appropriate controllers
by using the Lyapunov stability criteria and active backstepping method so that
asymptotically stable synchronized state for different switches of the master and slave
systems can be obtained. The results obtained by theoretical and graphical analysis
are in agreement.
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1 Introduction

In the area of applied sciences “chaos” is an important field as one of its beautiful features
is its applications in several areas such as ecology, secure communication, medicine,
biology etc. So many integer order chaotic and hyperchaotic systems have been obtained
after the invention of the classical “Lorenz system” in 1963, and so many chaotic and
hyperchaotic systems have also been developed in the field of fractional calculus. In the
field of chaos, synchronization has been a fascinating branch for the last three decades
and researchers have shown their interest to this branch.
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Since 1990, when the important phenomenon of synchronization was discovered by
Pecora and Carroll [10], the field of synchronization has been growing day by day. Numer-
ous new researches have been done theoretically and experimentally in the field of syn-
chronization. Several researches have been done to extend the phenomenon of synchro-
nization from complete synchronization [10] to a new range of synchronizations [2, 9, 17]
and to develop the new techniques [6,15,16] to achieve synchronization. The active back-
stepping technique has been applied widely to achieve synchronization in different cases.
In the last few years, outstanding work has been done on synchronization via active back-
stepping such as complete synchronization between identical systems [1], combination
synchronization [11], reduced order synchronization [8], multi-switching synchronization
for three chaotic systems [13] etc. The active backstepping method is found very effec-
tive for the cases given above. Some of these works have been done on multi-switching
synchronization. Since 2008, when a new type of synchronization was achieved for two
identical chaotic systems by Ucar [12], multi-switching synchronization has been a hot
topic among researchers. Later, multi-switching synchronization between the Lorenz sys-
tem and the Chen system with fully unknown parameters [14] has also been achieved.
Inspite of all the work that has been done, there is a large scope of work in the field of
multi-switching synchronization.

In this paper, for different switches of the chaotic Cai system and the Chen system
three types of synchronizations are achieved by the active backstepping method. It is
clear from numerical simulations that the active backstepping method is very fast, by
which synchronization can be achieved very quickly. The proposed scheme has significant
applications in the field of secure communications as the synchronization attained by any
arbitrary pair increases the grade of security. Secure communication [5] is a field where
synchronization is being used very widely. It was found by some researchers that because
of arbitrary multiplying factor projective synchronization is an important tool to make
communication more reliable [7]. Multi-switching synchronization is defined in such a
manner that any pair of state variables may achieve synchronization, which increases the
level of security. The advantage of the presented scheme is that by choosing different
values of scaling factors different synchronizations can be achieved by a single approach.

This manuscript has been arranged in the following manner. Problem formulation
is given in Section 2. In Section 3 dynamics of the Cai system and the Chen system
is given. Section 4 contains the scheme for multi-switching synchronization achieved by
the active backstepping method and Section 5 contains simulation results for three types
of synchronization between the Cai system and the Chen system. In Section 6, main
features of this work are highlighted.

2 Problem Formulation

Suppose an n-dimensional system is considered as the master system

v̇1 = h11(v1, v2, . . . , vn), v̇2 = h21(v1, v2, . . . , vn), . . . , v̇n = hn1(v1, v2, . . . , vn), (1)

and the n-dimensional slave system is

ẇ1 = h12(w1, w2, . . . , wn) + u1, ẇ2 = h22(w1, w2,

. . . , wn) + u2, . . . , ẇn = hn2(w1, w2, . . . , wn) + un,
(2)
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where u1, u2, . . . , un ∈ Rn → R are the controllers and hi1, hi2 ∈ Rn → R for i =
1, 2, . . . , n are continuous functions. Suppose the errors are defined as

ė1 = p1w1 + q1v1, ė2 = p2w2 + q2v2, . . . , ėn = pnwn + qnvn, (3)

where, pi, qi, i = 1, 2, ..., n are arbitrary scaling factors. By using equations (1) and (2)
the error dynamical system can be expressed as

ė1 = g1 + f1 + p1u1, ė2 = g2 + f2 + p2u2, . . . , ėn = gn + fn + pnun, (4)

where e = (e1, e2, ....en)′ is the error vector, g1, g2, . . . , gn are the functions which contain
only error components and f1, f2, . . . , fn are the nonlinear functions which contain the
terms of master and slave systems. First, put l1 = e1 and consider the l1 subsystem
so that l̇1 = G1(l1, f1, p1u1), where a virtual controller e2 = ϑ(l1) is assumed. The aim
is to design the virtual controller ϑ(l1) and the controller p1u1 by using the Lyapunov
stability criteria so that the l1 subsystem will be stabilized. The same procedure will be
repeated in the next step to stabilize the (l1, l2) subsystem, where l2 = e2−ϑ(l1) and the
virtual controller e3 = ϑ(l1, l2) . Thus, eventually an asymptotically stable (l1, l2, . . . , ln)
system will be achieved so that the master and slave systems will attain asymptotically
stable synchronization state.

3 The Cai System and the Chen System

The Cai system [3] is considered as the master system which is given below

v̇1 = ζ1(v2 − v1),

v̇2 = η1v1 + θ1v2 − v1v3,
v̇3 = v1

2 − δ1v3,
(5)

which shows chaotic behavior for the parameter values ζ1 = 20, η1 = 14, θ1 = 10.6, δ1 =
2.8 and the well known Chen system [4] is considered as the slave system which is given
below

ẇ1 = ζ2(w2 − w1),

ẇ2 = (θ2 − ζ2)w1 + θ2w2 − w1w3,

ẇ3 = w1w2 − η2w3,

(6)

which exhibits chaotic behavior for the parameter values ζ2 = 35, η2 = 3, θ2 = 28.

4 Multi-Switching Synchronization Methodology

The slave system with controller is

ẇ1 = ζ2(w2 − w1) + u1j ,

ẇ2 = (θ2 − ζ2)w1 + θ1w2 − w1w3 + u2j ,

ẇ3 = w1w2 − η2w3 + u3j ,

(7)

where u1j , u2j , u3j , represent different controllers and j = 1, 6 represent different switch-
ing states.
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First, we will define a general synchronization methodology using the active back-
stepping technique. In order to explain the method, for j = 1, the errors are defined as
follows:

e11 = p1w1 + q1v1,

e21 = p2w2 + q2v2,

e31 = p3w3 + q3v3,

(8)

where pi, qi, i = 1, 2, 3 are arbitrary scaling factors. If p1 = p2 = p3 = 1 and q1 =
q2 = q3 = 1, then anti-synchronization will be achieved for the pairs of state variables
(w1, v1), (w2, v2), (w3, v3). If p1 = p2 = p3 = 1 and q1 = q2 = q3 = −1, then complete
synchronization will be achieved and if p1 = p2 = p3 = 1 and q1 = 1, q2 = −1, q3 = 1,
then hybrid synchronization will be achieved.

Hybrid synchronization has been defined as the synchronization for which some state
variables attain completely synchronized state and some state variables attain anti-
synchronized state. But in this paper, since we have chosen the master-slave combination
in multi-switching manner, we assume in the case of hybrid synchronization that any state
variable which is taken with w1 and w3 will be completely synchronized with these state
variables and the state variable which is taken with w2 will be anti-synchronized. From
(8) the error dynamics can be written as

ė11 = p1ẇ1 + q1v̇1,

ė21 = p2ẇ2 + q2v̇2,

ė31 = p3ẇ3 + q3v̇3.

(9)

By using (5) and (7) in (9), we get

ė11 = p1 {ζ2(w2 − w1) + u11}+ q1 {ζ1(v2 − v1)} ,
ė21 = p2 {(θ2 − ζ2)w1 + θ2w2 − w1w3 + u21}+ q2 (η1v1 + θ1v2 − v1v3) ,

ė31 = p3 (w1w2 − η2w3 + u31) + q3
(
v1

2 − δ1v3
)
.

(10)

Hence the error dynamical system can be written as

ė11 = ζ2(p1w2 − p1w1) + ζ1(q1v2 − q1v1) + p1u11

=
p1ζ2
p2

(e21 − q2v2)− ζ2(e11 − q1v1) + ζ1(q1v2 − q1v1) + p1u11,

=
p1ζ2
p2

e21 − ζ2e11 + f1 + p1u11.

(11)

Similarly

ė21 = p2 {(θ2 − ζ2)w1 + θ2w2 − w1w3}+ q2(η1v1 + θ1v2 − v1v3) + p2u21

=
p2(θ2 − ζ2)

p1
(e11 − q1v1) + θ2(e21 − q2v2)− p2

p1p3
(e11 − q1v1)(e31 − q3v3)

+ q2(η1v1 − θ1v2 − v1v3) + p2u21 =
p2(θ2 − ζ2)

p1
e11 −

p2
p1p3

e11e31 +
p2q3
p1p3

e11v3

+
p2q1
p1p3

e31v1 + θ2e21 + f2 + p2u21

(12)
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and

ė31 = p3(w1w2 − η2w3) + q3(v1
2 − δ1v3) + p3u31

=
p3
p1p2

(e11 − q1v1)(e21 − q2v2)− η2(e31 − q3v3) + q3(v1
2 − δ2v3) + p3u33

=
p3
p1p2

e11e21 −
p3q2
p1p2

e11v2 −
p3q1v1
p1p2

e21 − η2e31 + f3 + p3u31,

(13)

where

f1 =
−p1ζ2
p2

q2v2 + ζ2q1v1 + ζ1q1v2 − ζ1q1v1,

f2 = −q1p2
p1

(θ2 − ζ2)v1 −
p2q3q1
p1p3

v1v3 − θ2q2v2 + q2(η1v1 − θ1v2 − v1v3),

f3 =
p3
p1p2

q1q2v1v2 + η2q3v3 + q3(v1
2 − δ2v3).

(14)

Let l1 = e11. Then its derivative will be

l̇1 = ˙e11 =
p1ζ2
p2

e21 − ζ2l1 + f1 + p1u11, (15)

where e21 = ϑ1(l1) is considered as a virtual controller. Our aim is to design ϑ1(l1) so
that the l1 subsystem (15) could be stabilized. Consider the following Lyapunov function

K1 = 0.5l1
2. (16)

Then the derivative of K1 will be

K̇1 = l1 l̇1 = l1

(
p1ζ2
p2

ϑ1(l1)− ζ2e11 + f1 + p1u11

)
. (17)

If ϑ1(l1) = 0 and u11 = − 1
p1

(f1), then K̇1 = −ζ2e211 which is negative definite. Hence by
the Lyapunov stability criteria the l1 subsystem is asymptotically stable. Suppose the
error between e21 and ϑ1(l1) is denoted by l2 = e21 − ϑ1(l1). Then we have the (l1, l2)
subsystem given below

l̇1 =
p1ζ2
p2

l2 − ζ2l1,

l̇2 =

(
p2(θ2 − ζ2)

p1
− p2
p1p3

e31 +
p2q3
p1p3

v3

)
l1 + θ2l2 +

p2q1
p1p3

e31v1 + f2 + p2u21.

(18)

In order to make the (l1, l2) subsystem stable, e31 = ϑ2(l1, l2) is taken as a virtual
controller. Now, we take the Lyapunov function and its derivatives as

K2 = K1 + (0.5)l2
2,

K̇2 = −ζ2l12 − θ2l22 + l2

[(
p2(θ2 − ζ2)

p1
− p2
p1p3

ϑ2(l1, l2) +
p2q3
p1p3

v3

)
l1 + 2θ2l2

+
p2q1
p1p3

v1ϑ2(l1, l2) +
p1ζ2
p2

l1 + f2 + p2u21

]
.

(19)
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Hence by choosing the controller u21 in the following way

u21 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v3 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
(20)

and the virtual controller ϑ2(l1, l2) = 0, we get K̇2 = −ζ2l12 − θ2l22 which is negative
definite. Hence the (l1, l2) subsystem is asymptotically stable. Now, suppose the error
between e31 and ϑ2(l1, l2) is l3 = e31 − ϑ2(l1, l2). Then

l̇3 =
p3
p1p2

l1l2 −
p3q2
p1p2

l1v2 −
p3
p1p2

l2q1v1 − η2l3 + f3 + p3u31. (21)

Now to stabilize the (l1, l2, l3) system, the controller u31 is defined as

u31 = − 1

p3

[{(
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v2

}
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v1 + f3

]
(22)

and the Lyapunov function K3 as

K3 = K2 + 0.5l3
2. (23)

Its derivative will be

K̇3 = −ζ2l12 − θ2l22 − η2l32 (24)

which is negative definite. Hence according to the Lyapunov stability theory (0, 0, 0)
equilibrium point of (l1, l2, l3) system is now asymptotically stable. The (l1, l2, l3) system
is given by 

l̇1 =
p1ζ2
p2

l2 − ζ2l1,

l̇2 = − p2
p1p3

l1l3 +
p2
p1p3

q1v1l3 − θ2l2 −
p1ζ2
p2

l1,

l̇3 =
p2
p1p3

l2l1 − η2l3 −
p2q1
p1p3

l2v1.

(25)

Now, for the second switch the errors are defined as follows

e12 = p1w1 + q1v2, e22 = p2w2 + q2v3, e32 = p3w3 + q3v1. (26)

Then, the controllers are

u12 = − 1

p1
(f1),

u22 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v1 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u32 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v3

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v2 + f3

]
,

(27)

where l1 = e12, l2 = e22, l3 = e32. For the third switch the errors are

e13 = p1w1 + q1v3, e22 = p2w2 + q2v1, e32 = p3w3 + q3v2. (28)
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The controllers defined by using the above procedure are

u13 = − 1

p1
(f1),

u23 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v2 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u33 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v1

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v3 + f3

]
,

(29)

where l1 = e13, l2 = e23, l3 = e33. In case of switch four the errors are defined as

e14 = p1w1 + q1v1, e24 = p2w2 + q2v3, e34 = p3w3 + q3v2 (30)

and the controllers are

u14 = − 1

p1
(f1),

u24 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v2 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u34 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v3

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v1 + f3

)
,

(31)

where l1 = e14, l2 = e24, l3 = e34. For switch five the errors are taken as

e15 = p1w1 + q1v3, e25 = p2w2 + q2v2, e35 = p3w3 + q3v1. (32)

For switch five the controllers are

u15 = − 1

p1
(f1),

u25 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v1 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u35 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v2

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v3 + f3

]
,

(33)

where l1 = e15, l2 = e25, l3 = e35. For switch six the errors are

e16 = p1w1 + q1v2, e26 = p2w2 + q2v1, e36 = p3w3 + q3v3 (34)

and the controllers are

u16 = − 1

p1
(f1),

u26 = − 1

p2

(
p2
p1

(θ2 − ζ2)l1 +
p2q3
p1p3

l1v3 + 2θ2l2 +
p1ζ2
p2

l1 + f2

)
,

u36 = − 1

p3

[((
p3
p1p2

− p2
p1p3

)
l2 −

p3q2
p1p2

v1

)
l1 −

(
p3
p1p2

− p2
p1p3

)
q1l2v2 + f3

]
,

(35)

where l1 = e16, l2 = e26, l3 = e36. It is obvious that the values of f1, f2, f3 will be
different in all the switches, since the values of f1, f2, f3 will be changed according to
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Figure 1: (a) Synchronization between the state variables w1, v1 in switch one; (b) Synchro-
nization between the state variables w2, v2 in switch one; (c) Synchronization between the state
variables w3, v3 in switch one; (d) Convergence of e11, e21, e31 to zero for switch one.

the error defined. If q1, q2, q3 are chosen as any arbitrary scalars but not equal and all
p1 = p2 = p3 = 1, then this will become a case of modified projective synchronization.
If q1 = q2 = q3 are chosen as any arbitrary scalars and all p1 = p2 = p3 = 1, then
the problem will be reduced to projective synchronization which is a particular case of
modified projective synchronization. The method described above is easy to apply for
the dynamical systems having dimension greater than three also.

5 Numerical Simulations

5.1 Complete synchronization

Numerical simulations are shown only for three switches as the remaining ones can be
achieved in a similar manner. The values of p′is and q′is are chosen in such a manner
which lead to complete synchronization, anti-synchronization and hybrid synchronization
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Figure 2: (a) Anti-synchronization between the state variables w1, v2 in switch two; (b) Anti-
synchronization between the state variables w2, v3 for switch two; (c) Anti-synchronization be-
tween the state variables w3, v1 in switch two; (d) Convergence of the errors e12, e22, e32 to zero
for switch two.

between different state variables of the drive and response systems.

The case of complete synchronization is considered for the first switch and the values
of scaling factors are p1 = p2 = p3 = 1 and q1 = q2 = q3 = −1.

The initial conditions are kept fixed for the slave system throughout the paper, which
are (−5, 25, 1), but in each type of synchronization the initial conditions for the master
system are different. In the case of complete synchronization the initial conditions for
the master system are (8, 20, 30). Hence for the first switch the initial conditions for the
errors are (−13, 5,−29). Complete synchronization between w1, v1 and w2, v2 is shown in
Figure 1a-b. Figure 1c-d show synchronization between w3, v3 and the errors e11, e21, e31
converging to zero.
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Figure 3: (a) Complete synchronization between the state variables w1, v3; (b) Anti-
synchronization between w2, v1 for switch three; (c) Complete synchronization between the
state variables w3, v2; (d) Convergence of e13, e23, e33 to zero for switch three.

5.2 Anti-synchronization

Anti-synchronization is shown for the second switch. In order to achieve anti-
synchronization, the values of p1 = p2 = p3 = 1 and q1 = q2 = q3 = 1 are chosen. Since
the initial conditions for the master and slave systems are (15, 40, 6) and (−5, 25, 1), the
initial conditions for the errors are (35, 31, 16). Figure 2 a-b show anti-synchronization
between w1, v2 and w2, v3, and Figure 2 c-d show anti-synchronization between the state
variables w3, v1 and the errors e12, e22, e32 converging to zero.

5.3 Hybrid synchronization

In this subsection the case of hybrid synchronization is considered for the third switch. In
order to attain hybrid synchronization, the values of p1 = p2 = p3 = 1 and q1 = 1, q2 =
−1, q3 = −1 are chosen. In the case of hybrid synchronization the initial conditions for the
master system are (26, 10, 6). According to the initial conditions for the master and slave
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systems (26, 10, 6) and (−5, 25, 1) respectively, for the third switch the initial conditions
for the errors are (−11, 51,−9). Figure 3 a-b show complete synchronization between
w1, v3 and anti-synchronization for w2, v1. Figure 3 c-d exhibit the state variables w3, v2
in complete synchronized states and the errors e13, e23, e33 converging to zero.

The numerical results presented in this paper are obtained by using Matlab software.
In numerical simulations, complete synchronization, anti-synchronization and hybrid syn-
chronization are shown and other types of synchronization can be achieved by choosing
different scaling factors.

6 Conclusion

In this manuscript, we have investigated multi-switching synchronization between the
Cai system and the Chen system by using the active backstepping method. An effi-
cient and easy method is proposed to design suitable controllers and fruitful results are
obtained. Both theoretical and graphical analysis lead to the same conclusion. The con-
trollers designed by this approach are very effective as synchronizations are achieved very
rapidly by this method. Since the chaos synchronization has its applications in secure
communications and multi-switching increases the grade of security as it is very difficult
to guess which pair of state variables will attain synchronization, the proposed method
has significant applications in the field of secure communication. The approach is also
significant in the sense that by simply taking different scaling factors, various types of
synchronization can be achieved. This work can be extended to fractional order systems
and various higher dimensional systems.
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