
Nonlinear Dynamics and Systems Theory, 18 (2) (2018) 154–169

Different Schemes of Coexistence of Full State Hybrid

Function Projective Synchronization and Inverse Full

State Hybrid Function Projective Synchronization

A. Gasri ∗

Department of Mathematics, Constantine University, Algeria.

Received: January 28, 2018; Revised: April 17, 2018

Abstract: This paper presents new synchronization schemes, which assure the co-
existence of the full-state hybrid function projective synchronization (FSHFPS) and
the inverse full-state hybrid function projective synchronization (IFSHFPS) between
wide classes of three-dimensional master systems and four-dimensional slave systems.
In order to show the capability of co-existence approaches, numerical examples are
reported, which illustrate the co-existence of FSHFPS and IFSHFPS between 3D
chaotic system and 4D hyperchaotic system in different dimension.
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1 Introduction

Synchronization refers to a process wherein two dynamical systems (master and
slave systems, respectively) adjust their motion to achieve a common behavior, mainly
due to a control input [1]. The issue of synchronization of chaotic dynamical systems
was first studied by Pecora and Carroll [2]. By considering the historical timeline of
the topic, it can be observed that a large variety of synchronization types has been
proposed such as matrix projective synchronization [3], generalized synchronization [4],
inverse generalized synchronization [5], Λ−φ generalized synchronization [6,7] and Φ−Θ
synchronization [8, 9] and so on. Among the different types, full state hybrid projective
synchronization (FSHPS) has been introduced, wherein each slave system variable syn-
chronizes with a linear combination of master system variables [10]. Different types
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of synchronization such as complete synchronization, anti-synchronization, projective
synchronization and hybrid synchronization can be achieved from the FSHPS scheme
depending on the choice of scaling functions. On the other hand, when the inverted
scheme is implemented, i.e., each master system state synchronizes with a linear com-
bination of slave system states, the inverse full-state hybrid projective synchronization
(IFSHPS) is obtained [11]. Moreover, when the scaling factors are replaced by scaling
functions, function-based hybrid synchronization schemes are obtained, i.e., the full-state
hybrid function projective synchronization (FSHFPS) [12] and the inverse full-state hy-
brid function projective synchronization (IFSHFPS) [13], respectively.

Recently, the topic of coexistence of several synchronization types between chaotic
systems has recently started to attract increasing attention. In fact, very recent papers
have investigated the co-existence of different types of synchronization when synchroniz-
ing two chaotic systems. For example, the approach developed in [14,15] has illustrated a
rigorous study to prove the co-existence of some synchronization types between discrete-
time chaotic (hyperchaotic) systems. Referring to integer-order chaotic systems, in [16]
two synchronization schemes of co-existence have been proposed. The problem of coex-
istence of some types of synchronization between different dimensional fractional order
chaotic systems has been studied [17, 18]. New approaches to study the co-existence of
some types of synchronization between integer order and fractional order chaotic systems
with different dimensions have been introduced in [19]. Meanwhile, to the best of our
knowledge, the investigation of coexistence of FSHFPS and IFSHFPS for integer-order
differential dynamical systems with different dimensions is not yet explored. The present
research work focuses on coexistence of FSHFPS and IFSHFPS between chaotic and
hyperchaotic systems.

Based on these considerations, this paper aims to give a further contribution to the
topic by considering the co-existence of FSHFPS and IFSHFPS between non-identical and
different dimensions chaotic and hyperchaotic systems. Specifically, the paper illustrates
new schemes, which prove the co-existence of the full-state hybrid function projective
synchronization (FSHFPS) and the inverse full-state hybrid function projective synchro-
nization (IFSHFPS) between a three-dimensional master system and a four-dimensional
slave system in 4D and 3D, respectively. These master-slave systems belong to general
classes, which include several chaotic (hyperchaotic) systems characterized by different
dimensions. The conceived schemes are general approches and the only restriction on
the scaling functions is that they must be differentiable and bouned functions.

The paper is organized as follow: Section 2 gives some definitions related to FSHFPS
and IFSHFPS. Sections 3 and 4 give the basic mathematical background of the coex-
istence of FSHFPS and IFSHFPS in 4D and 3D respectively. Section 5 presents some
numerical examples of co-existence of synchronization types with the aim to show the
effectiveness of the approach developed herein. Section 6 concludes the paper.

2 Definition of FSHFPS and IFSHFPS

We consider the following master and slave systems

Ẋ(t) = F (X(t)), (1)

Ẏ (t) = G(Y (t)) + U, (2)

where X(t) = (xi(t))1≤i≤n , Y (t) = (yi(t))1≤i≤m are the states of the master system and
the slave system, respectively, F : Rn → Rn, G : Rm → Rm and U = (ui)1≤i≤m is a
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vector controller.

Definition 2.1 The master systems (1) and the slave system (2) are said to be
full state hybrid function projective synchronized (FSHFPS), if there exist a controller
U = (ui)1≤i≤m and differentiable functions αij (t) : R+ → R, i = 1, 2, ...,m; j = 1, 2, ..., n,
such that the synchronization errors

ei (t) = yi(t)−
n∑

j=1

αij (t)xj (t) , i = 1, 2, ...,m, (3)

satisfy limt→∞ ei (t) = 0.

Definition 2.2 The master systems (1) and the slave system (2) are said to be
inverse full state hybrid function projective synchronized (IFSHFPS), if there exist a
controller U = (ui)1≤i≤m and differentiable functions βij (t) : R+ → R, i = 1, 2, ..., n;
j = 1, 2, ...,m, such that the synchronization errors

ei (t) = xi(t)−
m∑
j=1

βij (t) yj (t) , i = 1, 2, ..., n, (4)

satisfy limt→∞ ei (t) = 0.

3 Scheme 1

Here, we assume that the master system can be considered as

ẋi(t) = fi(X(t)), i = 1, 2, 3, (5)

where X(t) = (xi(t))1≤i≤3 is the state vector of the master system (5), fi : R3 → R,
i = 1, 2, 3. Also, consider the slave system as

ẏi(t) =

4∑
j=1

bijyj (t) + gi(Y (t)) + ui, i = 1, 2, 3, 4, (6)

where Y (t) = (yi)1≤i≤4 is the state vector of the slave system (6), (bij) ∈ R4×4, gi : R4 →
R are nonlinear functions and ui, i = 1, 2, 3, 4, are controllers to be designed.

Definition 3.1 Let (αj (t))1≤j≤4 , (βj (t))1≤j≤3 , (γj (t))1≤j≤4 and (θj (t))1≤j≤3 be
continuously differentiable and boundary functions, it is said that IFSHFPS and FSHFPS
coexist in the synchronization of the master system (5) and the slave system (6), if there
exist controllers ui, = 1, 2, 3, 4, such that the synchronization errors

e1(t) = x1 (t)−
4∑

j=1

αj (t) yj (t) , (7)

e2(t) = y2 (t)−
3∑

j=1

βj (t)xj (t) ,

e3(t) = x3 (t)−
4∑

j=1

γj (t) yj (t) ,

e4(t) = y4 (t)−
3∑

j=1

θj (t)xj (t) ,
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satisfy lim t−→+∞ei (t) = 0, i = 1, 2, 3, 4.

Sufficient conditions for co-existence of IFSHFPS and FSHFPS between systems (5)
and (6) are given by the following theorem.

Theorem 3.1 The coexistence of IFSHFPS and FSHFPS between the master system
(5) and the slave system (6) will occur if α3 (t) γ1 (t) − α1 (t) γ3 (t) 6= 0 and the control
law is designed as follows:

u1 =

4∑
i=1

Pi

 4∑
j=1

(bij − cij) ej(t)−Ri

 , (8)

u2 =

4∑
j=1

(b2j − c2j) ej(t)−R2,

u3 =

4∑
i=1

Qi

 4∑
j=1

(bij − cij) ej(t)−Ri

 ,

u4 =

4∑
j=1

(b4j − c4j) ej(t)−R4,

where (cij)4×4 are control constants to be selected and

P1 =
γ3 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
, (9)

P2 =
γ3 (t)α2 (t)− α3 (t) γ2 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

P3 =
−α3 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

P4 =
γ3 (t)α4 (t)− α3 (t) γ4 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

Q1 =
−γ1 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

Q2 =
α1 (t) γ2 (t)− α2 (t) γ1 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

Q3 =
α1 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

Q4 =
α1 (t) γ4 (t)− α4 (t) γ1 (t)

α3 (t) γ1 (t)− α1 (t) γ3 (t)
,

and

R1 = f1(X(t))−
4∑

j=1

α̇j (t) yj (t)−
4∑

i=1

αi (t)

 4∑
j=1

bijyj (t) + gi(Y (t))

 , (10)

R2 =

4∑
j=1

b2jyj (t) + g2(Y (t))−
3∑

j=1

β̇j (t)xj (t)−
3∑

j=1

βj (t) ẋj (t) , (11)
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R3 = f3(X(t))−
4∑

j=1

γ̇j (t) yj (t)−
4∑

i=1

γi (t)

 4∑
j=1

bijyj (t) + gi(Y (t))

 ,

R4 =

4∑
j=1

b4jyj (t) + g4(Y (t))−
3∑

j=1

θ̇j (t)xj (t)−
3∑

j=1

θj (t) ẋj (t) .

Proof. The error system (7) can be differentiated as follows:

ė1(t) = ẋ1 (t)−
4∑

j=1

α̇j (t) yj (t)−
4∑

j=1

αj (t) ẏj (t) , (12)

ė2(t) = ẏ2 (t)−
3∑

j=1

β̇j (t)xj (t)−
3∑

j=1

βj (t) ẋj (t) ,

ė3(t) = ẋ3 (t)−
4∑

j=1

γ̇j (t) yj (t)−
4∑

j=1

γj (t) ẏj (t) ,

ė4(t) = ẏ4 (t)−
3∑

j=1

θ̇j (t)xj (t)−
3∑

j=1

θj (t) ẋj (t) .

Furthermore, the error system (12) can be written as

ė1(t) =

4∑
j=1

αj (t)uj +R1, (13)

ė2(t) = u2 +R2,

ė3(t) =

4∑
j=1

γj (t)uj +R3,

ė4(t) = u4 +R4,

where Ri, i = 1, 2, 3, 4, were described by (10). By substituting the control law (8) into
(13), the error system can be described as

ėi(t) =

4∑
j=1

(bij − cij) ej(t), i = 1, 2, 3, 4, (14)

or in the compact form
ė(t) = (B − C) e(t), (15)

where B = (bij)4×4 and C = (cij)4×4 is the control matrix. If we select the control
matrix C such that all the eigenvalues of B − C are strictly negative, it is immediate
that all solutions of the error system (15) go to zero as t → ∞. Therefore, the systems
(5) and (6) are globally synchronized in 4D.

4 Scheme 2

Now, the master and the slave systems can be described in the following forms

ẋi(t) =
∑3

j=1 aijxj(t) + fi(X(t)), i = 1, 2, 3, (16)

ẏi(t) = gi(Y (t)) + ui, i = 1, 2, 3, 4, (17)
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where X(t) = (xi)1≤i≤3 , Y (t) = (yi)1≤i≤4 are the states of the master system and the

slave system, respectively, (aij) ∈ R3×3, fi : R3 → R are nolinear functions, gi : R4 → R
and ui, = 1, 2, 3, 4, are controllers to be constructed.

Definition 4.1 Let (λj (t))1≤j≤3 , (µj (t))1≤j≤4 and (σj (t))1≤j≤3 be continuously
differentiable and boundary functions, it is said that IFSHFPS and FSHFPS coexist in
the synchronization of the master system (16) and the slave system (17), if there exist
controllers ui, = 1, 2, 3, such that the synchronization errors

e1(t) = y1 (t)−
3∑

j=1

λj (t)xj (t) , (18)

e2(t) = x2 (t)−
4∑

j=1

µj (t) yj (t) ,

e3(t) = y3 (t)−
3∑

j=1

σj (t)xj (t) ,

satisfy lim t−→+∞ei (t) = 0, i = 1, 2, 3.

Hence, we have the following result.

Theorem 4.1 To achieve the coexistence of IFSHFPS and FSHFPS between the
master system (16) and the slave system (17), we assume that µ2 (t) 6= 0 and the control
law is constructed as follows:

u1 =

3∑
j=1

(a1j − l1j) ej(t)−R1, (19)

u2 = −µ1 (t)

µ2 (t)

 3∑
j=1

(a1j − l1j) ej(t)−R1

− 1

µ2 (t)

 3∑
j=1

(a2j − l2j) ej(t)−R2


−µ3 (t)

µ2 (t)

 3∑
j=1

(a3j − l3j) ej(t)−R3

 ,

u3 =

3∑
j=1

(a3j − l3j) ej(t)−R3,

u4 = 0,

where (lij)3×3 are control constants to be determined, whereas R1, R2 and R3 are chosen
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as follows

R1 = g1(Y (t))−
3∑

j=1

(a1j − l1j) ej(t)−
3∑

j=1

λ̇j (t)xj (t) (20)

−
3∑

i=1

λi (t)

 3∑
j=1

aijxj(t) + fi(X(t))

 , (21)

R2 =

3∑
j=1

a2jxj(t) + f2(X(t))−
3∑

j=1

(a2j − l2j) ej(t) (22)

−
4∑

j=1

µ̇j (t) yj (t)−
4∑

j=1

µj (t) gj(Y (t)),

R3 = g3(Y (t))−
3∑

j=1

(a3j − l3j) ej(t)−
3∑

j=1

σ̇j (t)xj (t) (23)

−
3∑

i=1

σi (t)

 3∑
j=1

aijxj(t) + fi(X(t))

 .

Proof. Error system (18), between master system (16) and the slave system (17),
can be derived as

ė1(t) = ẏ1 (t)−
3∑

j=1

λ̇j (t)xj (t)−
3∑

j=1

λj (t) ẋj (t) , (24)

ė2(t) = ẋ2 (t)−
4∑

j=1

µ̇j (t) yj (t)−
4∑

j=1

µj (t) ẏj (t) ,

ė3(t) = ẏ3 (t)−
3∑

j=1

σ̇j (t)xj (t)−
3∑

j=1

σj (t) ẋj (t) .

Error system (24), after some algebraic manipulations, becomes

ė1(t) =

3∑
j=1

(a1j − l1j) ej(t) + u1 +R1, (25)

ė2(t) =

3∑
j=1

(a2j − l2j) ej(t)−
4∑

j=1

µj (t)uj +R2,

ė3(t) =

3∑
j=1

(a3j − l3j) ej(t) + u3 +R3,

where Ri, i = 1, 2, 3, were given by (21). By considering the control law (19), it follows
that the error dynamics between systems (16) and (17) are described by

ėi(t) =

4∑
j=1

(bij − lij) ej(t), i = 1, 2, 3, (26)
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or in the compact form
ė(t) = (A− L) e(t), (27)

where e(t) = (ei(t))1≤i≤3 , A = (aij)3×3 , L = (lij)3×3. Construct the candidate Lya-

punov function in the form: V (e(t)) = eT (t)e(t), we obtain

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)
= eT (t)(A− L)T e(t) + eT (t) (A− L) e (t)
= eT (t)

[
(A− L)T + (A− L)

]
e(t).

If the control matrix L is chosen such that (A − L)T + (A − L) is a negative definite
matrix, we get V̇ (e(t)) < 0. Thus, from the Lyapunov stability theory, the zero solution
of the error system (27) is globally asymptotically stable, i.e,

lim
t→∞

ei(t) = 0, i = 1, 2, 3. (28)

Therefore, systems (16) and (17) are globally synchronized in 3D.

5 Numerical Examples

This section provides several examples of coexistence of FSHFPS and IFSHFPS between
3D chaotic systems and 4D hyperchaotic systems in 4D and 3D, respectively. Each
numerical example is related to one of the theorems developed in previous sections.

5.1 Example 1

In this example, the master system is defined by the following new 3D system [20]

ẋ1 = a1 (x2 − x1) , (29)

ẋ2 = x1x3,

ẋ3 = 50− a2x21 − a3x3.

When a1 = 2.9, a2 = 0.7, a3 = 0.6 and the initial conditions are taken as
(x1 (0) , x2 (0) , x3 (0)) = (0.6, 0.5, 0.4), system (29) exhibits chaotic attractors as shown
in Figures 1 and 2.

The salve system is described by

ẏ1 = b1 (y2 − y1) + y2y3 + y4 + u1, (30)

ẏ2 = b2y1 + y4 − b3y1y3 + u2,

ẏ3 = −b4y3 + b5y1y2 + u3,

ẏ4 = −y1 − y2 + u4.

When the controllers u1 = u2 = u3 = u4 = 0, (b1,b2,b3,b4, b5) = (18,40,5,−3, 4)
and the initial conditions are given as (y1 (0) , y2 (0) , y3 (0) , y4 (0)) = (0.5, 0.8, 0.2, 1.3) ,
system (30) exhibits hyperchaotic attractors as shown in Figure 2 [21].

Based on the notations used in Section 3, the linear part B and the nonlinear part g
of the slave system (30) are given as follows

B =


−18 18 0 1
40 0 0 1
0 0 −3 0
−1 −1 0 0

 and g =


y2y3
−5y1y3
4y1y2

0

 .
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Figure 1: Phase portraits of the master system (25) in 2D.

Figure 2: Phase portraits of the slave system without control (26) in 3D.
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According to the approach developed in Section 3, the synchronization errors between
the master system (29) and the slave system (30) are defined as:

e1 = x1 − α1 (t) y1 − α2 (t) y2 − α3 (t) y3 − α4 (t) y4, (31)

e2 = y2 − β1 (t)x1 − β2 (t)x2 − β3 (t)x3,

e3 = x3 − γ1 (t) y1 − γ2 (t) y2 − γ3 (t) y3 − γ4 (t) y4,

e4 = y4 − θ1 (t)x1 − θ2 (t)x2 − θ3 (t)x3,

where α1 (t) = sin t, α2 (t) = 1, α3 (t) = 1
t+1 , α4 (t) = 2, β1 (t) = 3, β2 (t) = cos t,

β3 (t) = 4, γ1 (t) = e − t, γ2 (t) = 2, γ3 (t) = 0, γ4 (t) = 1
t2+1 , θ1 (t) = t

t+1 , θ2 (t) = 0,
θ3 (t) = sin 3t. So,

α3 (t) γ1 (t)− α1 (t) γ3 (t) =
1

et (t+ 1)
6= 0. (32)

The coexistence of IFSHFPS and FSHFPS, in this example, is achieved when the
control matrix C is selected as

C =


0 18 0 1
40 1 0 1
0 0 0 0
−1 −1 0 1

 , (33)

and the controllers ui, 1 ≤ i ≤ 4, are constructed according to (8) as follows:

u1 = −2et (−e2 −R2) + et (−3e3 −R3)− et

t2 + 1
(−e4 −R4) , (34)

u2 = −e2 + 5y1y3 − 40y1 − y4 −R2,

u3 = − (t+ 1) (−18e1 −R1) + et (t+ 1) (35)[
− (2 + 2e2 + 2R2 + 3e3 +R3) sin t+

(
sin t

t2 + 1
− e−t

)
(−e4 −R4)

]
,

u4 = −e4 + y1 + y2 −R4,

where

R1 = 2.9 (x2 − x1)− y1 cos t+
1

(t+ 1)
2 y3 − sin t (18 (y2 − y1) + y2y3) (36)

+
1

t+ 1
(4y1y2 − 3y3)− y1 − y2, (37)

R2 = −5y1y3 + 40y1 + y4 + x2 sin t− 8.7 (x2 − x1)− x1x3 cos t,

R3 = 50− 0.7x21 − 0.6x3 + e−ty1 +
2t

(t2 + 1)
2 y4 − e

−t (18 (y2 − y1) + y2y3) (38)

+10y1y3 + 80y1 − 2y4 +
1

t2 + 1
(y1 + y2) ,

R4 = −y1 − y2 −
t+ 1− t2

(t+ 1)
2 x1 − 3x3 cos 3t− 2.9t

t+ 1
(x2 − x1) (39)

−
(
50− 0.7x21 − 0.6x3

)
sin 3t.
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Figure 3: Time evolution of the errors e1, e2, e3 and e4.

We can show that all eigenvalues of B − C have negative real parts. It can be seen
that all conditions of Theorem 1 are satisfied. Consequently, the error functions between
systems (29) and (30) are described by

ė1 = −18e1, (40)

ė2 = −e2,
ė3 = −3e3,

ė4 = −e4.

Numerical results plotted in Figure 3 are obtained, indicating that the coexistence of
IFSHFPS and FSHFPS is effectively achieved in 4D.

5.2 Example 2

Herein, the master system is selected as a 3D chaotic system proposed in [22] by the
following ODE system

ẋ1 = x2, (41)

ẋ2 = x3,

ẋ3 = −c1x1 (1− x1)− x2 + c2x
2
2.

System (41), when (c1, c2) = (0.2, 0.01) and (x1 (0) , x2 (0) , x3 (0)) =
(0.0.1,−0.0.1, 0.0.1), possesses chaotic attractors plotted in Figures 4.

Using the notations presented in Section 4, the linear part A and the nonlinear part
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Figure 4: Phase portraits of the master system (33) in 2D.

f of the master system (41) are given as follows

A = (aij)3×3 =

 0 1 0
0 0 1
−0.2 −1 0

 and f =

 0
2

0.2x21 + 0.01x21

 .

As the slave master system, we consider a novel 4D hyperchaotic system introduced
in [23] by the following ODE system

ẏ1 = d1 (y2 − y1) + y2y3 − y4 + u1, (42)

ẏ2 = d2y2 − y1y3 + y4 + u2,

ẏ3 = y1y2 − d3y3 + u3,

ẏ4 = −d4 (y1 + y2) + u4.

System (42), when u1 = u2 = u3 = u4 = 0, (d1, d2, d3, d4) = (40, 20.5, 5, 2.5) and
(y1 (0) , y2 (0) , y3 (0) , y4 (0)) = (0.5, 0.8, 0.6, 0.2) , displays hyperchaotic attractors shown
in Figure 5.

In this example, according to the control scheme presented in Section 4, the synchro-
nization errors are given as

e1 = y1 − λ1 (t)x1 − λ1 (t)x1 − λ1 (t)x1, (43)

e2 = µ1 (t) y1 + µ2 (t) y2 + µ3 (t) y3 + µ4 (t) y4 − x2,
e3 = y3 − σ1 (t)x1 − σ2 (t)x2 − σ3 (t)x3,

where λ1 (t) = e−t, λ2 (t) = sin 2t, λ3 (t) = 0, µ1 (t) = 0, µ2 (t) = 1√
t+1

, µ3 (t) = 1
1+cos2 t ,

µ4 (t) = 4, σ1 (t) = 1
lin(t+1) , σ2 (t) = 1

1+sin2 t
and σ3 (t) = 0.
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Figure 5: Phase portraits of the slave system (34) without control in 3D.

We selecte the control matrix L as

L =

 1 0 0
0 2 0
0 0 3

 , (44)

and by using (19), the controllers u1, u2, u3 and u4 are designed as follows

u1 = −e1 −R1, (45)

u2 = −
(√

t+ 1
)

(−2e2 −R2)−
√
t+ 1

1 + cos2 t
(−3e3 −R3) ,

u3 = −3e3 −R3,

u4 = 0,

where

R1 = 40 (y2 − y1) + y2y3 − y4 + e1 + e−tx1 − 2x2 cos 2t− x2e−t − x3 sin 2t, (46)

R2 = x3 + 2e2 −
y2

2
√
t
(√
t+ 1

)2 − y3 2 sin t cos t

(1 + cos2 t)
− 1√

t+ 1
(47)

(20.5y2 − y1y3 + y4)− 1

1 + cos2 t
(y1y2 − 5.5y3) + 10 (y1 + y2) ,

R3 = y1y2 − 5.5y3 + 3e3 +
1

(t+ 1) lin2 (t+ 1)
x1 +

2 sin t cos t(
1 + sin2 t

)x2 (48)

− x2
lin (t+ 1)

− x3

1 + sin2 t
.

It is easy to see that (A−L)T +(A−L) is a negative definite matrix. It can be readily
shown that all conditions of Theorem 2 are satisfied. Consequently, the error functions



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18 (2) (2018) 154–169 167

Figure 6: Time evolution of the errors e1, e2 and e3.

between systems (41) and (42) are described by

ė1 = −0.1e1, (49)

ė2 = −2e2,

ė3 = −3e2.

According to numerical results obtained in Figure 6, it can be concluded that the
coexistence of FSHFPS and IFSHFPS synchronization is effectively achieved in 3D.

6 Conclusion

When analyzing the synchronization of chaotic systems, an interesting phenomenon that
may occur is the co-existence of some synchronization types. Based on these consid-
erations, this paper has presented new results related to the co-existence of FSHFPS
and IFSHFPS between non-identical and different dimensions chaotic systems charac-
terized. Specifically, the manuscript has proposed new schemes, which assures the co-
existence of FSHFPS and IFSHFPS between a three-dimensional master system and a
four-dimensional slave system. Note that the approach developed herein enables to prove
the co-existence of FSHFPS and IFSHFPS in several cases. Specifically, the approach
can be applied to: i) wide classes of chaotic (hyperchaotic) master-slave systems; ii) non-
identical systems with different dimensions; iii) schemes wherein the scaling factor of the
linear combination can be any arbitrary differentiable function. Numerical examples,
describing the co-existence of FSHFPS and IFSHFPS between chaotic and hyperchaotic
systems, have clearly highlighted the effectiveness of the approach proposed herein.
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