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Abstract: In this paper we prove the existence of entropy solutions for weighted
p(x)-parabolic problem associated with the equation:

(z)
%—FAu:g(u)w(w)‘Vup +f in Qx(0,7),
. p(z)—2 . .
where the operator Au = —div (w(w)‘Vu Vu) and on the right-hand side f

belongs to L'(Q x (0,7)) and w(x) is a weight function.
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1 Introduction

Let Q be an open bounded subset of RY, N > 2, T be a positive real number and
Q = Q x (0,7T), while the variable exponent p: Q — (1,00) is a continuous function,
the data f € L1(Q) and ug € L' (). The objective of this paper is to study the existence
of an entropy solution for the obstacle parabolic problems of the type:

u >, a.e. in Qx (0,7,
p(z)—2 p(x)

Qu _ div(w(x)‘Vu‘ Vu) - w(x)g(u)‘Vu +f, in Q x (0,7),

u(zx,0) = up, in Q,

u =0, on 90 x (0,T).

(1)
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p(z)—2
The operator —div (w(:z:) Vu
L™ (0, T; W™ (Q,w)) which is coercive.

In recent years, the study of partial differential equations and variational problems
with variable exponent has received considerable attention in many models coming from
various branches of mathematical physics, such as elastic mechanics,electro-rheological
fluid dynamics and image processing, etc. We refer the readers to [12/22]. Degenerate
phenomena appear in the area of oceanography, turbulent fluid flows, induction heating
and electrochemical problems.The notion of entropy solutions has been proposed by
Beénilan et al. in [8] for the nonlinear elliptic problems.

Recently, when w(z) = 1, the existence and uniqueness of entropy solutions of p(x)-
Laplace equation with L' data were proved in [24]by Sanchén and Urbano. This notion
was adapted to the study of the entropy solutions for nonlinear elliptic equations with
variable exponents by Chao Zhang in [26] and the existence of solutions of some unilateral
problems in the framework of Orlicz spaces has been established by M. Kbiri Alaoui, D.
Meskine, A. Souissi in [17] in terms of the penalization method. E. Azroul, H. Redwane
and M. Rhoudaf [5] have proved the existence of renormalized solution in Orlicz spaces
in the case where b(u) = u. Fortunately, Kim, Wang and Zhang |18Jhave shown good
properties of a function space and the so-called weighted variable exponent Lebesque-
Sobolev spaces, and the existence and some properties of solutions for degenerate elliptic
equations with exponent variable have been proved by Ky Ho, Inbo Sim [16].Other work
in this direction can be found in [4] by Y. Akdim, C. Allalou, N. El gorch.

Now we review some definitions and basic properties of the weighted variable ex-
ponent Lebesgue spaces Lp(“’)(Q,w) and the weighted variable exponent Sobolev spaces
WLrE)(Q, w).

Let w be a mesurable positive and a.e. finite function in RY. Set

Vu) is a Leray-Lions operator defined on

Cy(Q) ={h e C(Q):minh(z) > 1}.
€
For any h € C(Q), we define  h" = max, g h(z), h~ =min g h(z).
For any p € C, (), we introduce the weighted variable exponent Lebesgue space
LP®)(Q, w) which consists of all measurable real-valued functions u such that

/Q ‘u(x)‘p(m)w(m)dx < 00,

endowed with the Luxemburg norm

p(x)
w

: u(z
[ull Lee (0,0) = mf{)\ >0: /Q ’¥‘ (z)dx < 1}

becomes a normed space. When w(z) = 1, we have LP(*)(Q,w) = LP®)(Q) and we use
the notation |[u|[ e (q) instead of [[ul| o) (.- The following Hélder type inequality is

useful for the next sections. The weighted variable exponent Sobolev space W1»(#) (Q,w)
is defined by

WP (Q,w) = {u e LP@)(Q); ‘Vu) € Lp(:”)(Q,w)}

with the norm

lullwrre @w) = Ul ee @) + VUl oo .0 (2)
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or, equivalently

. u(x) |p(@) Vu(z) |p@)
lullwrve @w) = lnf{/\ >0: /Q ‘%‘ +w(x)‘ ( )‘ dr < 1}

A

for all w € WHP)(Q, w).

It is significant that smooth functions are not dense in W17 (Q) without additional
assumptions on the exponent p(z). This feature was observed by Zhikov [27] in connec-
tion with the Lavrentiev phenomenon. However, when the exponent p(z) is log-Holder
continuous, i.e., there is a constant C' such that

p(e) - ply)| < —C 3)

~ —log|x —yl

for every x,y with |z — y| < %, then smooth functions are dense in variable exponent
Sobolev spaces and there is no confusion in defining the Sobolev space with zero boundary
values, Wol’p(x)(ﬂ), as the completion of C§°(Q2) with respect to the norm [|uly1.p6) ()
(see [15]). Wol’p(m)(Q,w) is defined as the completion of C§°(Q) in WP(*)(Q,w) with
respect to the norm [[ulyy1.() (). Throughout the paper, we assume that p € C, (Q)
and w is a measurable positive and a.e. finite function in 2.

The plan of the paper is as follows. Section 2 presents the mathematical preliminaries.
In Section 3 we make precise all the assumptions on A, g, f and ug,and give the definition

of an entropy solution of (P). In Section 4 we establish the existence of such a solution
in Theorem .11

2 Preliminaries

In this section, we state some elementary properties for the weighted variable exponent
Lebesgue-Sobolev spaces which will be used in the next sections. The basic properties
of the variable exponent Lebesgue-Sobolev spaces, that is when w(z) = 1, can be found
in [13}[19].

Lemma 2.1 (See [13,19])(Generalised Hélder inequality).
i) For any functions u € LP@)(Q) and v € LP @) (Q), we have

1 1
| [ uvda] < =+ Ml oll0) < 2l ol
Q p p

i1) For all p, q¢ € C(Q) such that p(x) < q(x) a.e. in Q, we have
L90) — LP(®) gnd the embedding is continuous.

()
Lemma 2.2 (See [18]) Denote p(u) = / w(x)‘u(x)‘p dx for allu € LP®) (9, w).

Q
Then
[ul| o) (@) < 1(= 15> 1) if and only if p(u) < 1(=1;> 1), (4)
. - +
lf HUHLP(I)(Q,UJ) > 1then Hu||ip(.7:)(97w) < p(u) < ||u‘|§,p(z)(52_’w)7 (5)

. + -
i Nl sy < 1 then [l 2y < 00) < Il (6)
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Remark 2.1 ( [23].) We set
I(u) = /Q ‘“(w)‘p(z) +w(@)|Vu(@) P dz.

Then, following the same argumen, we have
+

. - - +
it {0l gy 1 o gy F = TC0) < 5 {1l s Il 0

Throughout the paper, we assume that w is a measurable positive and a.e. finite
function in Q satisfying the following relations:

(W1) w€ Lj,.q)and w™ GED € L, .(Q);
(W3) w=*@) ¢ LY(Q) with s(x) € (%,oo) N [ﬁ,oo).
The reasons why we assume (W) and (W3) can be found in [18].
Remark 2.2 ( [18].) (i) If w is a positive measurable and finite function, then

LP®)(Q, w) is a reflexive Banach space.
(ii) Moreover, if (W) holds, then WP(®)(Q, w) is a reflexive Banach space.

For p, s € C4(Q), denote

pa(a) = W < pla),

where s(z) is given in (W3). Assume that we fix the variable exponent restrictions

p(z)s(z) N .
pi(a) = | T EN-—peswy TN > pe@),
arbitrary, if N < p4(z),

for almost all x € €. These definitions play a key role in our paper. We shall frequently
make use of the following (compact) imbedding lemma for the weighted variable exponent
Lebesgue-Sobolev space in the next sections.

Lemma 2.3 ( [18].) Let p,s € C(Q) satisfy the log-Holder continuity condition
(@, and let (Wy) and (W2) be satisfied. If r € C1(Q)) and 1 < r(z) < p%, then we
obtain the continuous imbedding

WP (Q,w) < L"@(Q).
Moreover, we have the compact imbedding
WhPE)(Qw) «— L"@ (),
provided that 1 < r(z) < p:(x) for all x € Q.
From Lemma we have Poincaré-type inequality immediately.

Corollary 2.1 ( [18].) Let p € C(Q) satisfy the log-Hélder continuity condition
(). If (W1) and (Wa) hold, then the estimate

[ull Loy (@) < ClIVUl| oo (0,0)

holds for every u € C§°(Q2) with a positive constant C' independent of u.
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Throughout this paper, let p € C, (Q) satisfy the log-Hélder continuity condition
and X := Wy (0, w) be the weighted variable exponent Sobolev space that consists of
all real valued functions u from W1»(®) (Q, w) which vanish on the boundary 912, endowed

with the norm @
x
lullx = inf{)\ >0: / ]M]p w(z)de < 1},
ol

which is equivalent to the norm due to Corollary The following proposition gives
the characterization of the dual space (W:’p(m)(Q,w))*, which is analogous to [ [19),
Theorem 3.16]. We recall that the dual space of weighted Sobolev spaces I/VO1 P (yv)(Q,w)
is equivalent to W‘l”’/(’”)(Q,w), where w* = w17 (@),

We will also use the standard notation for Bochner spaces, i.e., if ¢ > 1 and X
is a Banach space, then L9(0,T; X) denotes the space of strongly measurable function
u: (0,T) - X for which ¢t — |lu(t)||x € L9(0,T) Moreover, C([0;T]; X) denotes the
space of continuous function u : [0;7] — X endowed with the norm |lulc(o:r;x) =
mazeor||ul x,

L? (0,T; Wol’p(m)(Q,w)) = {u :(0,7) — Wol’p(x)(ﬂ,w) measurable;

T - 1/p~
([ Hsog,,) <)

and we define the space
L>(0,T;X) = {u :(0,T) — X measurable; 3C > 0/||u(t)||x < C a.e.},
where the norm is defined by:
Jullw o) = inf {€ > 03 Ju()]|x < Cae.}.
We introduce the functional space (see [6])
v={rer 0" (0 w) VIl e Q). (7)

endowed with the norm
1£llv = IVl Lo ()

or the equivalent norm

171 = 151 o ozt gy + IV oo (@

which is a separable and reflexive Banach space. The equivalence of the two norms is an
easy consequence of the continuous embedding LP(*)(Q) < LP™ (0, T; LP®)(Q)) and the
Poincaré inequality. We state some further properties of V' in the following lemma.

Lemma 2.4 Let V be defined as in @ and its dual space be denoted by V*. Then
i) We have the following continuous dense embeddings:

L7 (0, T; W™ (Q,w)) = V s LP (0, T; WeP™(Q,w)).
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In particular, since D(Q) is dense in e (0,T; Wol’p(w)(Q,w), it is dense in V and for
the corresponding dual spaces, we have

L0, T5 (Wo P (@,0))) = VE o L (0,15 W) (@,0))),
Note that we have the following continuous dense embeddings
L7 (0,75 L") (Q,w)) = LPH(Q,w) = LY (0,75 177 (2, w)).

it) One can represent the elements of V* as follows: if T € V*, then there exists F' =
(fiy oo fN) € (LP@(Q)N such that T = divx F and

T
(T,€)yey = / / F - Vedudt
0o Jo
for any £ € V.. Moreover, we have

1]

e = max{”fi”Lp(.)(Q_’ww i=1, n}

Remark 2.3 The space V N L*°(Q), endowed with the norm

lollversg) = max {[vllv, [vlz= }, v € VN L*(Q),

is a Banach space. In fact, it is the dual space of the Banach space V + L'(Q) endowed
with the norm

lellv-+21@ = inf {Jurllv- + lleallzg) i v =01 + 2, o1 € V02 € LY(Q),

2.1 Some technical results

This subsection introduces some basic technical lemmas and results that will be needed
throughout this paper. For some details concerning the related issues, the reader can
consult papers [7}/9].

Lemma 2.5 (see [§]) Assume (O) and let (un)n, be a sequence in
L (0,T, Wol’p(w)(Q,w)) such that u, — u weakly in LP (0,T, Wol’p(m)(ﬂ,w)) and

/ (a(x,t,un, Vuy) — a(z, t, Uy, Vu)) - V(up, —u)dzdt — 0. (8)
Q

Then u, — u strongly in LP~ (0, T, Wa "™)(Q, w)).

p(z)—2
Besides, a(z,t,u, Vu) = (‘Vu

Vu) in our case.

Lemma 2.6 ( [6]) Let ¢ € LP9(Q,w) and let g, € LP¥(Q,w), with
gnllrer ey < ¢ 1 < r(x) < oo If gn(z) — g(x) ae in Q, then g, — g in
Lp(')(Q,w), where — denotes weak convergence and w is a weight function on Q.

Lemma 2.7 (See [23]) W := {u eViug €V + Ll(Q)} < O([0,T); LY (Q)) and
W A L=(Q) < O([0, T]; L2(%)).
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3 Assumptions and Definition

Throughout this paper, we assume that the following assumptions hold true.

3.1 Basic assumptions

Let © be an open bounded subset of RV, N > 2, T > 0 be a positive real number
and let us set Q = Q x (0,7) and let p € Cy(Q) and assume that p(z) satisfies the
log-Holder condition with 1 < p~ < p(z) < p™ < oco. The differential operator
A:Qx[0,T] xR x RY — R defined by

‘P(m)*Q

Ay = —div (w(x) ‘Vu Vu) , (9)

is a Leray-Lions operator which is coercive and

g: R—R"T (10)
is a bounded and continuous positive function that belongs to L*°(R),
fis an element of L'(Q),up € L'(R), wuo > 0andp € C(Q). (11)

Let 1 be a measurable function with values in R such that v € Wol’p(z)(Q,w) NL>(Q),
(see |17]), K is defined by: K = {u € Wol’p(m)(Q,w); u(z) > Y(x) ae. in Q} and

consider the convex set
Ky = {ueV7 u(t) EK}.

We recall that, for k£ > 0 and s € R, the truncation function Ty (.) is defined by

s, if s <k,

Is[”

3.2 Definition of entropy solution

Definition 3.1 Let f € L1(Q) and ug € L'(Q2). A measurable function u defined on
@ is a unilateral entropy solution of problem (P) if

u > ae. inQ, (12)
Te(u) € LP (0, T; WeP(Q,w)), forallk >0and ue C(0,T;LY (),  (13)

/ {Sk(u - v)} Td:t + / %Tk(u —v)dxdt
0 0 Q ot
p(z)—2
+/ w(x)’Vu
Q

VuVT(u — v)dxdt
S/Qw(x)g(u)‘Vu

p(z)
‘ Ti(u — v)dzdt (14)
+/ fTe(u — v)dzdt,

Q

for all v € Ky N L¥Q),% e L&) 0,T;(Wa"(,w)*), where Si(s) =
/Tk(r)dr Yk > 0.
0
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4 The Principal Result

The aim of the present work is to prove the following result.

Theorem 4.1 Under assumptions @—, there exists at least one unilateral en-
tropy solution of problem ,

Proof of Theoreme Existence of entropy solutions.

We first introduce the approximate problems. Find two sequences of functions {f,} C
LT‘,(I)(Q) and {ug,} C D(Q) strongly converging with respct to f in L}(Q) and to ug in
L'(Q) such that

Ifallzr@) < Ifllzr@)  and  luonllzr @) < lluollLr(@)- (15)

Then, we consider the approximate problem of

p(z)—2
Qun — div (w(m)‘Vun Vun) —nT, ((un - w)_)
p(x)
= w(x)g(un)|Vun + fu, in D'(Q), (16)
u, =0, on 90 x (0,7,
un(t = O) = Uon; in €.

Moreover, since f, € L) (0, T (Wol’p(x)(Q,w))*), proving the existence of weak solu-
tion u, € LP (0, T} Wol’p(‘)(Q)) of is an easy task (see [4] ).

Our aim is to prove that a subsequence of these approximate solution w, converges
to a measurable function u, which is an entropy solution of the problem.

Step 1: A priori estimates. The estimate derived in this step relies on standard
techniques for problems of the type (|16)).

Proposition 4.1 Assume that @- hold true and let u, be a solution of the
approximate problem . Then for all k > 0, we have

HTk(un)HLf(OyT,Wol,p(z)(Q’w)) <Ck forallneN,

where C' is a constant independent of n.

Proof. Let h > k > 0 and consider the test function ¢ = Th(un —
Tk(un)) exp(G(uy)) € LP (0,T; Wol’p(x)(ﬂ,w)) U L*(Q) in the approximate problem

(16)), where G(s) = / g(r)dr, we have
0

<<88%7Th (un - Tk(un)) exp(G(un))>>

p(z)
+/ (w(z)‘Vun
{k<|un|<k+h}

Jr/Q (w(x)’Vun p(x)_QVun) Vu, Ty, (un - Tk(un))g(un) exp(G(uy,))dzdt

_ /Q nTn<(un - z/J)_)Th (un — Tk(un)) exp(G(uy,))dxdt

-2
Vun) Vuy, exp(G(uy,))dzdt
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/Qw(x)g(un)
+ /Q FuTh (un —Tk(un)) exp(G(uy))dxdt,

p(x)
Vuy, Th (un — Ty (un)> exp(G(uy,))dxdt

then

<<%7 T (wn — Ti(un)) eXp(G(Un))>> * /

{k<|un|<k+h}

f / nTn((un - w)’)Th(un Ty (un)) exp(G(un))dadt
Q

p(z)

w(x) ’Vun exp(G(uy,))dzdt

= / InTh (un - Tk(un)) exp(G(uy,))dxdt.
Q
On the one hand, we have
Ouy, B & &
(% T (e~ Talun)) exp(Glun)) ) = /QSh(un(T))d:c—/QSh(uOn)dx,
where SF(s) = / Ty (q — Tk(q)) exp(G(q))dq, and by using the fact that

0
/ S,’f(un(T))dx >0 and / S,’f(u()n)da: < hexp(||gll @) | won |l 1 (), we get
Q Q

/ w(x)’Vun
{k<|un|<k+h}

_ /Q nT, ((Un — w)_)Th (un — Tk(un)> exp(G(uy,))dxdt

p(z)

exp(G(uy,))dxdt

< hexp(lgllw) [Ifallzri@) + lonllzr oy |

We have

/ w(x)’Vun
{k<|un|<k+h}
- /Q nT, ((m7 — w)f)Th (un — Tk(un)) exp(G(uy,))dxdt
< C1h. (17)

p(z)
exp(G(uy,))dxdt

‘We obtain

/ w(m)’Vun
{k<|un|<k+h}

< Cih+ (h+ k)||g||ooexp(||g||L1(R))/QnTn<(un - z/;)_)dxdt,

()
! exp(G (uy,))dxdt

then

p(z)

exp(G(uy,))dzdt < Cgh/

; nT, ((un - w)*)dxdt.

/ w(x)‘Vun
{k<lun|<k+h}
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Let us take p(u,) = / / 9(8)x{|s|<kyds exp(G(uy,)) as a test function of , we obtain
0

T

[/ QDQ('LLn)de:| +/ w(x)‘Vun
Q 0 Q
—/ nT,, ((un - w)_>p1 (uy,)dzdt
Q

<(/ " gs)ds ) exp (lgllirce )1l oo

p(x)
9(un) exp(G(un))X{ju, |<kydrdt

p(z)

g(un) exp(G (uy,))dzdt

< lglloo exp (llglzr ) [I1£allir @ + luollzr e
+(h+ K)glloe exp(llg]21 ) /Q nT (= ) ) dadt
Then

p(x)g(un) exp(G(uy,))dzdt

/ w(m)’Vun
{lun|<k}
< hCs / nT, ((un - w)’)da:dt.
Q

Similarly, taking ps = / ’g(s)x{|5‘2k+h}ds exp(G(uy,)) as a test function of , we
0

conclude that

/ ‘Vun

{|un|2k+h}

Consequently, we have :

/ w(x)‘Vun
Q

< / w(x)’Vun
{lun|>k+h}

()
+ w(x)‘Vun ' g(uyn) exp(G(uy,))dxdt
{lun|<k}

p(z)

g(un) exp(G(uy))dzdt < hCy /Q nT, ((un, — )7 )dadt.

p(z)

g(uyn) exp(G(uy,))dxdt

p(z)

g(un) exp(G(uy,))dzdt

p(x)g(un) exp(G(uy,))dxdt

+ w(:v)‘Vun
{k<|un|<k+h}

< hC5/ nT ((uyp — )7 )dxdt, where Cs = Max(Cq,Cs,Cy).
Q

Using , we have

/Qw(:r)’Vun g(un)exp(G(un))dm’dt—/

Q
< hC’5/ nT,, ((un - w)*)dxdt,
Q

p(x)

nT,, ((un—w)_)Th (un—Tk (un)) exp(G(un))dzdt
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we obtain

- /Q nTy ((un — w)f)Th (un — Tk(un)) exp(G(un))dzdt < hC's /Q nTy, ((un - z/))f)dxdt
so that

— /Q nT, ((un — w)_) Th(unth(un)) exp(G(uyn))dzdt < Cs /Q nT, ((un — w)_)dxdt.

Let us now fix k > [|1||, by the fact that
T ((un — V) (Un — E)X{u, <vik<u,<k+r} > 0 and letting b — 0, one has

/ nT, ((un - w)*)d:rdt < Cp. (18)
Q
Let use v = Tj(uyn) exp(G(un))x(0,7) as a test function of
[/ﬂ wg(u,L)dx}:—l-/Tw(x)’Vun p
—&—/T w(m)’Vun p(m)Tk(un)g(un)exp(G(un))dxdt
_ / 0Ty (= )7 ) Tt exp(Gi ()l

= /T w(m)‘Vun p(x)g(un)Tk(un)eXp(G(un))dxdt
+ T (uy) exp(G(uy,))dxdt,

QT

Vu, VT (uy,) exp(G(uy,))dxdt

where 3(r / s)exp(G(s))ds. Due to the definition of 3 and the
<

fact that |G(u,)| < exp(|lgllz: R))”UOnHLl(Q we have 0 < /(pg(uon)daﬁ <
Q

kexp(||g||L1(R))||uon||L1(Q), and by using we arrive at

[ wte)|9Ti(wn)

p(@)
exp(G(uy,))dxdt

< kexp(lgllr®) [ fallr@ + luollzi oy ey ]
Let us take py(up) = / 9(8)X{s>0yds exp(G(uy)) as a test function of we obtain
0

[ [ eatunras]  + /Q @)V

—/QnTn((un —1/))7)p4(un)dxdt

< (/Ooog(s)ds) exp (Hg”Ll(R)) 1fnllLr (@)

p(x)
9(un) exp(G(un)) X {u, >0y dzdt




118 Y. AKDIM, C. ALLALOU, N. EL GORCH AND M. MEKKOUR
T
where @p4(r) = / p4(8)ds, which implies, in view of @4 (r) > 0, that
0

/ w(z)‘Vun
{un 20}

p(x)

g(uy) exp(G(uy,))dzdt

< ligloexp (llgllzs ) [1Fnll 1@ + luoll ey | + Cs,

then -
/ w(w)‘Vun ' 9(un) exp(G(uy))dzdt < Cy.
{u,>0}
0
Similarly, taking ps = / 9(8)x{s<oydsexp(G(uy,)) as a test function of , we con-
clude that o o
/ w(x)’Vun ' g(uyn) exp(G(uy,))dzdt < Chp.
{’U.,LSO}
Consequently,
(x)
/ w(x))Vun : g(un) exp(G(uy,))dzdt < Cqy.
Q
As Cy, ....,Cq; are constants independent of n, we deduce that
p(z)
/wuﬂvnmm dzdt < k Cs
Q
= ||Tk(un)||Lp7(07T7W01’p(z)(Q7w)) < Cis k. (19)

Then, we conclude that Ty (u,) is bounded in LP (0,T; Wy P (Q,w)), independently
of n for any k& > 0.

Now we turn to proving that (u,), is a Cauchy sequence in measures. Let & > 0 be
large enough and Br be a ball of 2. Using and applying Hoélder’s inequality and
Poincare’s inequality, we obtain that

T
>HOBRXNH):A AlHB
un|>kNBRr

S/OT/BR T (un)

< CVTk(un) || Lo (0,0

<c (/Q Vi)

< Cks,

Uy, T (up,)|dxdt

k meas ({

dxdt

1
6

x)
wd:cdt)

where

g 47 i I Te(un)llee 0w <1
pt,if 1 Tk(un) e ow) > 1



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 18(2) (2018) 119

This implies that

meas ({

Un| >k} N (Bg x [0,T]> < kfi%, VE > 1. (20)

So, we have

lim (meas ({ Up,

k——+o0

>k} N (Bg x [o,T])) = 0.

Then, we obtain for all § > 0

meas ({

Up —um‘ >0} N (Bg x [O,T]) < meas({

un| > kY N (Bg x [o,T])

—&—meas({‘um) >k} N (Bgr x [O,T])

—&—meas({‘Tk(un) - Tk(um)’ > 5})

Since Ty (uy,) is bounded in LP~ (0, T; Wo "™ (9, w)), it is clear that Ty (u,) — vy strongly
in LP(*)(Q,w) and almost everywhere in Q. Hence (Tj(uy))n is a Cauchy sequence in
measure in Q.

Let € > 0, then by (20)), there exists a k(€) > 0 such that

meas ({

Up — um‘ >0} N(Bg x [O,T}) <e Vn,m>ng(k(e),d,R).

This proves that (uy,)), is a Cauchy sequence in measures in Bp.
Consider a non-decreasing function gx € C?(R) such that

s, ifls| <35,

gk;(s) — f | | 2
k, if|s| > k.

Multiplying the approximate equation by gj,(u,,), we get

89%7(;‘") — div (w(ﬂ?)‘vun

p(z)

p(z)—2
g;c/(un)

YVun)gr (un)> + w(z) ’Vun

()

T (=) ) gk (10n) = (@) (un) Gh(tn) + fagh(un) (21)

Vu,

in the sense of distributions. This implies, thanks to the fact that g, has compact
support, that gi(u,) is bounded in LP (0,T; Wol’p(w)(Q,w)), while its time derivative
% is bounded in L'(Q) + V* Due to the choice of gy, we conclude that for each k,
the sequence Ty (u,) converges almost everywhere in @), which implies that the sequence
u, converges almost everywhere to some measurable function v in Q). Thus, by using the
same argument as in [9], |10], [11], we can show the following lemma.

Lemma 4.1 Letw, be a solution of . Then
Uy, — u  ae in Q. (22)
We can deduce from that

Ti(un) = Te(uw)  in LP (0,T; Wy (Q,w)). (23)
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Lemma 4.2 [9] Let u, be a solution of (16). Then

lim lim sup / a(x,t, un, V(u,))Vu,dzdt = 0. (24)
{m<|un|<m+1}

m—00 noo

Step 3: Almost everywhere convergence of the gradients. This step is devoted
to introducing, for a fixed k > 0, a time regularization of the function Ty (u) in order
to apply the monotonicity method. This specific time regularization of Ty (u) (for fixed
k > 0) is defined as follows. Let (vf), be a sequence of functions defined on € such that

vy € L) N Wol’p(x)(ﬂ,w) forall p>0, (25)
v |y <k forall >0, (26)
1
vy = Tr(uo) a.e. in Q and —||vg || Lo (@w) — 0, as p — oo. (27)
P ,

For fixed k, g > 0, let us consider the unique solution (T(u)), € L*>®(Q) N
L (0,T; Wol’p(x)(Q, w)) of the monotone problem:

Tk (u))

S+ (L)~ Tuw) =0 in D'(Q), (28)

(Ti(u)(t =0) = fuf)‘ in Q. (29)
Note that due to , we have for y > 0 and k>0

% e LP (0,T; Wo™(Q,w)). (30)

We just recall here that 7 imply that
(Ti(w), — Ti(u) a.e. in Q, (31)

as well as weakly in L>°(Q) and strongly in LP (0,T; Wol’p(x)(ﬂ,w)) as p — oo. Note
that for any p and any k > 0, we have

(Tl @y < max (IT(w) 25 106 o)) < K (32)
We introduce a sequence of increasing C°°(R)—functions S, such that
Sm(r) =71 for |r| <m, supp(Sy,) C [=(m+1),m+1], ISy [lp=®) <1,
for any m > 1, and we denote by w(n, i, n, m) the quantities such that

lim lim lim lim w(n,p,n,m)=0.
m— 00 n—0 p—00 n—o0

Lemma 4.3 ( [2,11]). We have

/ ' (T (= (B000)) ” explGun) i) ) e > i) ¥ > 1. (33)
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+
Taking now v = T, (u - (Tk(u))u) S! (1) exp(G(un)) of (18), we get
T/ oun + y
[ (% (= @w)))  exp(Glun))Sin(un) ) de
o \ ot
(z)—2
—|—/ (w(m)‘Vun !
Q

+/ (w(w)‘Vun
{m<|un[<m+1}

+ /Q (w@)|vu p(“)’Qvun) (1)t exp(G )Ty (0 — (Te(w)),)) " S )l

n /Q To (i = )7 T (1 - (Tk(u))u)+ exp(G(un)) Sty (wn ) dadt (34)

Vun ) V(T (i (Tk(u))u)Jr) exp(G () Sty () dadt

p(z)—2

vun)T,, (tn — (Th(u))p) " exp(G(un))SLh (un) Vundadt

p(z)
Un

.
— [ wl@g(u)|Fun "1 (= (L)) S0 ) exp(Glwn) o

Q
+
+/ foTy (un — (Tk(u))u) Sy (un) exp(G(uy))dadt.
Q
From ,,, it follows that

/Q (w(a)| Vun ")V (T (s~ @w)) ) exp(Gu)) S ()t

< Cn+w(n,p,n,m), (35)

where C' is a constant independent of n and m. On the other hand, let
A={0<Ti(un) — (Th(w), <n} and B = {0 < up, — (Tx(u)), < n}. Then, we have

/Q(w(x)’Vun
/B (w@)|vu
_ /A (w(@)[7un

—I—/ (w(x)‘Vun
{lun|>k}nB
Given the definition of S/ [S],(u,) = 1 ae. in {|u,| < k} if & < m], it is possible to

obtain from and , that

p(w)—2

Vo ) V(T (un (Tk(u))u>+) exp(Gl(tun)) St (un ) dadt

p(z)—2

V) (Vun —V(Ts, (u))u) exp(G(un))Sh (un)dzdt  (36)

p(z)—2

Vun)) (VTk(un) — V(T (u))u) exp(G (un)) St (un ) dzdt

p(z)—2

V) (Vun — (T3, (u))u> exp(G (un)) St (un ) dzdt.

/A (w(m)‘VTk(un) O G T (un)) (VTk (un) — V(T (u))u) exp(G(tn) S (wn ) ddt
< / (w(m)‘Vun 2 )V (T (1)) 0 exp (G (1)) Sl (1t ) dardlt
{lun|>k}NB
+Cn + w(n, p,n,m). (37)

Since VTjiy(u,) is bounded in (LP ) (Q,w))N and u, — u ac. in Q,one has
VTt (tin) = VThin(u) weakly in (LP @) (Q,w))N. Consequently,

/ ) [ VT 1)
{lun|>k}NB

p(z)—2

VT ()| V (T ()| €xD(G (1)) St (1)

_ ) [V T 1) P G (T () exp(G (1)) St (w)ddt + w(n).

/{\u\>k}ﬁ{0§u*(Tk(u))u <n}
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Thanks to one easily has

p(z)—2

)| VTiin()] V(T exp(G)) S ()it = )

/{|u>k}ﬂ{0<U(Tk(U))u<n}

/ (w(m)‘Vun
A
On the other hand, note that

[ (6@ )

:/ (w(;z:)‘VTk(un)|p(I)_2VTk(un)) (VTk Un) — VT (u )exp ))dxdt
A

+/A (w(x)‘VTk(un) !

and the last integral tends to 0 as n — co and p — oo. Indeed, we have that

/A (w(:c)‘VTk(un)

— (w(x)‘VTk(u)
{0< T, (u) = (Tk (u)) p<n}
as n — oo.

Using and Lebesgue’s theorem, we have

Hence,

p(x)—2

Vun ) V(T (un (Tk(u))u)Jr) exp(G (un)) Sl (un ) dadt

< Cn+ w(n,u,n,m). (38)

p(z)—2

VTk(un)) (VTk (un) — V(Tk(u) M) exp(G(uy))dzdt

(z)—2

VT (un)) (VTk(u) —V(Ts, (u))u> exp(G(un))dzdt, (39)

p(x)—2

VT (un)) (VTk(u) - V(Tk(u))u) exp(G (un))dzdt

p(z)—2

VTi(u)) (VTk (u) — V(T (u))u) exp(G(u))dzdt

p(z)—2

) ‘VTk(u)

/ ( VTk(u))(VTk (u) — V(T;, (u))u) exp(G(w))dzdt — 0
{0< T, (u) = (Th (u)) p<m}

as pt — 0o. We deduce then that

/ (w(w)‘VTk (un)
A

< Cn+ w(n,u,n,m). (40)
p(z)—2

p(z)—2

VT (un)) (VTk(un) — VT (u)) exp(G (un )dzdt

Let M,, = ([(w(x)‘VTk(un)
Then, for any 0 < 6 < 1, we write

I, = / MSdxdt = / MEdxdt
{Jun —(Ti () 2] >0} (1T () = (T () | <7, =T () >0}

+ M dadt.

{ITk (un) = (T (W) | >n, vn — (T (v)), 20}

VTk(un)] [VTk(un) - VTk(u)D x (exp(G(un))).

Since VTi(u,) is bounded in (LP*)(Q,w))N, we obtain by applying Holder’s inequality
that

4
o< af / My dzdt) (41)
{0< Tk (un)—(Tk (u)) <n}

1-6
+Cy meas{(m)eQ; Ty (un) — (Tio(u \>n Un — (Ti(u)),e 20} .
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On the other hand, we have

/ M,, dx dt
{0< T (un) — (T (u)) ) <n}
p(z)—2

/ (w(m) ‘VTk(un) VTk(un)) X
{0<T% (un)—(Tx (“))u)<77}

x (VTk(un) - VTk(u)) exp(G(uy)) dz dt (42)

-/ ()| VT
{0<Tk (un)=(Ty (u) ) <n}

x (VTk(un) - VTk(u)) exp(G(uy)) dz dt

()2
' VTi(w) %

=1I'+12
Using , we have
I, < Cn+wln, p,n,m). (43)

Concerning I2, that is the second term of the right-hand side of the , it is easy to
see that
I? = w(n, ). (44)

Therefore, for all i = 1,..., N, we have 8Tga(ff") — 87{;’;(7,“) in LP(®)(Q,w). Combining (4I),
7 and , we get / '

I, <Cy (C’ n er(n,u,n,m))Q + Cs (w(n,/i))l_e

and by passing to the limit sup over n, u and n

(w(x) HVTk(un) rle)=

p(z)—2
VTk(un)) = [VTk(un)

/ VTk(u))} x
{un_(Tk (u))u ZO}

X [VTk () — VTk(u)} )9 dz dt = w(n). (45)

On the other hand, we choose v = T;, (un — (Tx (u))u) B exp(—G(uy)) in and obtain:

p(z)—2 p(z)—2
/ ([w(w)‘VTk(un) VT (un)) — ‘VTk(un) VTk(u))] X
{tn—Tg(u), <0}
X [VTk () — VTk(u)] )9 dz dt = w(n). (46)
Moreover, and imply that
p(a)—2 p(a)—2
/Q (0@ |Vt I~ [9Tk )| VT ()]
X [VTk () — VTk(u)] )9 de dt = w(n), (47)
which implies that
Ti(un) = Ti(u) in  LP (0,T; WP (Q,w)) V k > 0. (48)

According to [9L[10], there exists a subsequence also denoted by w, such that

Vu, - Vu ae. in Q. (49)
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Proposition 4.2 Let u, be a solution of . Then w > a.e. inQ.

Proof. Thanks to (18), we can write fQ Tn((un — w)’)dxdt < % So, by using

Fatou’s lemma as n — oo, we infer that fQ (u—1)~dxdt = 0 ,which implies that (u—)~ =
0 a.e. in Q). Consequently, we conclude that u > ¢ a.e. in Q.
Step 4: Passing to the limit

a) we claim that u € C(0,T; L(Q2)) .We will show that
U, —u in  C(0,T;L*(Q)).

Since Ty(u) € Ky, for every k > |[1)||p~ there exists a sequence v; € Ky N D(Q) such
that -
v; = Ti(u) in  LP(0,T; Wo"™ (9, w))
for the modular convergence.
il _ . .

Let wy, = (Ti(v;))u+e *Ty(n;) withn; > 0 converge to ug in LY (), where (T3(vj)),
is the mollification of Tj(v;) with respect to time. Note that w;L is a smooth function
having the following properties:

aw;it il il il
5 = u(Ti(vg) = wi), @i, (0) =Tim),  lwy,| <1, (50)
w;L — Ty(vj) in LP (0,T; Wol’p(m)(Q,w)) as [t — 00. (51)

Choosing now v = T (u, — W;’,L)X(o,r) as a test function of , we get

ouy, il p(z)—2 iy
<W’Tk(un - wj,u)>QT + / ] w(x)‘Vun Vu, VT (un — wy,)dodt
_ / T, (Cun =) ) T — il (52)
(z) . )
- /T w(z)g(un)|Vun, : Tr(uy — w;-zlu)dxdt + o FoTw (uy — w;:l“)dxdt.

By using the fact that — fQT nTy, (uy, — ) Ti(up — wéi)d:cdt > 0, we deduce that:

p(:E)*Q il
Vu, VT (u, — wj,u)d:vdt

<88L;7Tk(un —w;-i)>QT —i—/T w(m)’vun
- [ @t

e On the one hand, we have

p(x) ) )
Vu, Tr(up, — w;:L)dxdt + FuTx (wy — w;:L)dxdt.

QT

p(x)

-2 ,
I = / w(z)‘Vun VunVTk(unfw;i)dxdt

(z)—2 )
w(w)‘Vun N VT () — Ve Jdadt. (53)

/{lTk(un)—w;i;LSk}
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In the following, we pass to the limit in : By letting n and p to infinity and by using
Lebesgue theorem, we have

‘17(90)—2

w(z) ’VTk (u) VT (u) [VTk(u) - VTZ(UJ-)] dxdt + e(n, 1),

1= /
{I Tk (w) =T (v;)| <k}
consequently, by taking the limit as 5 — co, we deduce that
I'=e(n,p,j,1).

e On the other hand, we have

7= [ w@glw)

p(z)

Vu,

Ti(ty — w!, ) dadt. (54)

In the following, we pass to the limit in : Taking the limit as n — oo in and since
W(2)g(tn) |V P — w(2)g(u)|VuP® in L1(Q), and by using Lebesque theorem, we
obtain J = / g(w)| VulP O Ty (u — w;:L)dxdt + €(n) and by letting p and j to infinity,

we have
J = e(n,p, j,1).
e Due to , Up, — ug and letting n , p and j to infinity, we have

/ Fo [ Tiun — )| dedt = e(n, . 5,1)
and by using Vitali’s theorem, we get
. . . . . 8un il
lim sup lim sup lim sup lim sup lim < Ti(up — Wy )>Q <0. (55)

) —
koo im0  jooo p—oo Moo \ Ot Tkt

We have (see( [1]))

05, il il il .
(Tt Tt =) o = n [ (Bales) = i) Tulun = ) = enadopd) (56)

uniformly on 7. Therefore, by writing

3 ot i) = (G =),

8&)“ .
_ Js bl _ )
< S T (un wM)>QT + /Q S (un(()) Tl(m))d:z: (57)
and using (55)) and (56])) and (57)), we see that
/ S (un(T) - wéi(ﬂ)dm < e(n,j,um,l), (58)
Q

which implies, by writing

(a5 [ st = )

+/st (um(‘r) - w;:L(T))dx)» (59)
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that

‘We deduce then that

/ |tun (T) — um (7)|dz < €2(n, m), independently of 7 (60)

and thus (u,) is a Cauchy sequence in C(0,T; L*(2)), and since u, — u, a.e. in Q, we deduce
that
up —u in  C(0,T; L' (Q)). (61)
b) We prove that u satisfies

Indeed, let v € Ky, N L¥(Q), 22 e L®) (0,T; (Wy*™ (9,w))*). By the pointwise multiplica-
tion of by Tk (un — v), we get

/Q Sk (un(T) — v(T))dac - /Q Sk (u()n - v(O))dx

ov p(z)—2

+ ET}C( v)dﬂcdtJr/Q(w(a:)’Vu

Vu) VT (un — v)dzdt

_ /Q T, ((un . w)*):rk(un — v)dzdt

:/w@c)( ")

/ fn Tk dl‘dt

p(z)

T (un — v)dxdt

where Sk (s) :/ Ty (r)dr.
0

Since v € Ky N L*™(Q), we have —/ nTn(un — )" Tk(un — v)dzdt > 0, we deduce that
Q

/QSk (un(T) — U(T))dx — /Q Sk (u(m — U(O))dl‘ + o %Tk( — v)dzdt

+/Q (w(w)‘Vu pe

< / ()9 )

/ fn Tk d{l? dt.

Vu) VT (un — v)dzdt

()
Vun g Tk (un — v)dzdt (62)

e Let us pass to the limit with n — oo in each term in . We saw that u, — wu in
C(0,T, LI(Q)). Therefore un (t) — u(t) in LI(Q) forall t <T.
As Sy is Lipschitz of coefficient k, when n — oo, we have

/ Sk (un —v)(T)dx — / Sk(u—v)(T)dz

cmd/ Sk(un —v)(0)dx = / Sk (uon — ))dx — / Sk(uo — v(0))dz.
Q
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ince 20 ¢ L®) (0. T (WhP@) .
e Since 57 € L (0,T; (W (©Q,w))™), one has

ot
[ G- [ (Gt

e On the other hand, we note M = ||v||s. Then, we get

/Q (w(x)‘wn
:/()T/Q(w(x)]wn
:/OT/Q(W(Q;)]wn
—/OT/Q (w(x))wn

As Ty ar(un) is bounded in LP~ (0, T; WP (Q)) and Vu, — Vu ae. in Q, then

p(z)—2

Vun) VT (un — v)dzdt

p(z)—2

Vun) VT (Tk+M (un) — v) dwdt

p(w)—2

vu") Vk+nm (u”))l{\Tk+M (un)*v\ﬁk}dl‘dt

p(z)—2

Vu”) Vvl{‘Tk+1\/1(un>,v|§k}dxdt.

VTiiri(un) = VTym(u) almost everywhere,

and by using Lebesgue theorem, we deduce that

/Q (w(x)‘wn
%/Q(w(x).Vu

/OT/Q(UJ(;C)‘WH
/0 /Q(w(ac)‘Vu

p(z)—2

p(x)—2

Vun)VTk+M(un))l{|Tk+M<un>fv\3k}dmdt

p(z)—2

W) LTk ar (u—v) <kydadl

and

p(z)—2

V'an.) V’U].{\T]H,Iw (“n)*v|§k}d13dt —

p(z)—2

VU) VU7, 4 s (u—v)|<ky dadt,

then
p(z)—2

/Q (w(m)‘wn

e Let us pass to the limit for other term. Due to s Ti(un) = Tk(u) in - V V k>0 and
Un — U a.e. in @, we have

Vun )Tk (up — v)dzdt — /Q (w(x)‘Vu

Vu) Tr(u — v)dzdt.

FnTi(tn —v) = fTe(u —v) strongly in L'(Q)

and by Lebesgue theorem, we have
/ foTk(un —v) — / fTx(u — v) strongly in L'(Q).
Q Q

e Similarly, since g is a bounded and continuous function belonging to L'(R) and u, — u a.e.
in @, we obtain

/Q w(@)g(un)

Then, we conclude that u satisfies .
As a conclusion of Step 1 to Step 4, the proof of Theorem is complete. O

p(z)—2

Vi, Ti(u — v) strongly in L' (Q).

p<z)72Tk(un —v) = /Qw(w)g(u)‘Vu
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