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1 Introduction

Integral inequalities are a necessary tool in the study of various classes of equations. In
1919, Gronwall [10] introduced the famous Gronwall inequality in the study of the solu-
tions of differential equations. Since then, many contributions have been made (see [1]-
[3]). The applications of integral inequalities were developed in a remarkable way in
the study of the existence, the uniqueness, the comparison, the stability and continuous
dependence of the solution in respect to data. In the last few years, a series of gen-
eralizations of these inequalities appeared. The problem of stability can be solved by
Lyapunov techniques for differential equations (see [12]- [14]), or in terms of nonlinear
integral inequalities. These inequalities can be used in the analysis of various problems
in the theory of nonlinear differential equations and control systems (see [3] and ref-
erences therein). There is an extensive literature on the inequalities, for example, the
Barbalats lemma is an integral inequality used in applied nonlinear control. The second
Lyapunov method has long played an important role in the history of stability theory,
and it will with no doubt continue to serve as an indispensable tool in future research
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papers (see [14]). V. I. Zubov studied the boundaries of the asymptotic stability domain
in which he proved the theorem of the asymptotic stability domain. This result is now
known as Zubov’s theorem (see [17], [6]). The concepts of stability and boundedness of
solutions have been studied extensively by Taro Yoshizawa (see [18], [19], [7]).

In a recent paper [11], I.A. Rus has formulated ten problems of interest in the theory
of Gronwall lemmas. One of them concerns finding examples of Gronwall-type lemmas in
which the upper bounds are fixed points of the corresponding operator A (Problem 5).
The new inequalities, derived in this paper, are useful in many applications, in particular
to the stability of dynamical systems. We propose new sufficient conditions to ensure the
global uniform asymptotic stability of time-varying systems described by the following
equation:

ẋ = f(t, x) + g(t, x), (1)

where f : R+ × Rn −→ Rn and g : R+ × Rn −→ Rn are piecewise continuous in t and
locally Lipschitz in x on R+ × Rn, and the associated nominal system is given by:

ẋ = f(t, x). (2)

For all x0 ∈ Rn and t0 ∈ R+, we will denote by x(t; t0, x0), or simply by x(t), the
unique solution at time t0 starting from the point x0.

Unless otherwise stated, we assume throughout the paper that the functions encoun-
tered are sufficiently smooth. We often omit arguments of functions to simplify notation,
‖.‖ stands for the Euclidean norm vectors. We recall now some standard concepts from
stability and practical stability theory; any book on Lyapunov stability can be consulted
for these; particularly good references are [4]: K is the class of functions R+ → R+

which are zero at the origin, strictly increasing and continuous. K∞ is the subset of K
functions that are unbounded. L is the set of functions R+ → R+ which are continuous,
decreasing and converging to zero as their argument tends to +∞. KL is the class of
functions R+ × R+ −→ R+ which are class K on the first argument and class L on the
second argument. A positive definite function R+ → R+ is the one that is zero at the

origin and positive otherwise. We define the closed ball Br :=
{
x ∈ Rn : ‖x‖ ≤ r

}
.

2 Abstract Gronwall Lemma

To present our problem we need some standard notations of Nonlinear Analysis. Let X
be a nonempty set and A : X → X be an operator. We denote by FA = {x ∈ X/Ax = x}
the fixed point set of the operator A. The symbol, FA = {x∗A}, has the following meaning:
the operator A has a unique fixed point and we denote this unique fixed point by x∗A. In
general, throughout this paper we follow the notation and terminology from I.A. Rus [15]
and [16].

Definition 2.1 (I.A. Rus [15]). Let (X,→) be an L-space. An operator f : X → X
is, by definition, a Picard operator if:
i) Ff = {x∗}.
ii) (fn(x))n∈N → x∗ as n→∞, for all x ∈ X.

In terms of the Picard operators, a classical result in metric fixed point theory has
the following form ( [13], [9]).
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Proposition 2.1 (Contraction principle). Let (X, d) be a complete metric space and
let f : X → X be an a-contraction, i.e., a ∈]0, 1[ and d(f(x), f(y)) ≤ a.d(x, y), for each
x, y ∈ X. Then f is a Picard operator.

Proposition 2.2 (Abstract Gronwall lemma). Let (X,→,≤) be an ordered L-space
and A : X → X be an operator. We suppose that:
i) A is a Picard operator (FA = {x∗A}).
ii) A is an increasing operator.
Then we have:
a) x ∈ X, x ≤ A(x)⇒ x ≤ x∗A.
b) x ∈ X, x ≥ A(x)⇒ x ≥ x∗A.

3 Main Results

In this section we point out some Gronwall-type inequalities using some results concerning
Picard operator theory.

The following result is well known from the book of A.N. Filatov (see [8]), here we
will give a new proof of it using the theory of operators.

Theorem 3.1 Let x ∈ C([a, b],R+) be such that

x(t) ≤ δ2(t− a) + δ1

∫ t

a

x(s)ds+ δ3, ∀t ∈ [a, b], (3)

where δ1 > 0, δ2 and δ3 are real numbers, then

x(t) ≤
(
δ2
δ1

+ δ3

)
exp δ1(t− a)− δ2

δ1
, ∀t ∈ [a, b]. (4)

Proof. Let (X,→,≤) = (C[a, b], ‖.‖τ−−−→,≤), where ‖.‖τ is the Bielecki norm on C[a, b],
i.e., τ is a positive real number and

‖x‖τ = max
a≤t≤b

(|x(t)| exp(−τ(t− a))) .

We consider on X = C[a, b] the operator A : X → X defined by

A(x)(t) = δ2(t− a) + δ1

∫ t

a

x(s)ds+ δ3, t ∈ [a, b].

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = δ2(t− a) + δ1

∫ t

a

x(s)ds+ δ3, t ∈ [a, b].

By differentiation, we get
x′(t) = δ1x(t) + δ2,

which is an ordinary differential equation ( added to an initial condition, this ODE admits
a unique solution according to the Cauchy-Lipschitz theorem ). Since x(a) = δ3, it comes
out that

x(t) =

(
δ2
δ1

+ δ3

)
exp δ1(t− a)− δ2

δ1
.
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Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we get

x∗A(t) =

(
δ2
δ1

+ δ3

)
exp δ1(t− a)− δ2

δ1
, t ∈ [a, b].

One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). The last point is to show that A is a contraction with respect to ‖.‖τ . We
have

|A(x)(t)−A(y)(t)|e−τ(t−a) ≤ δ1e
−τ(t−a)

∫ t

a

|x(s)− y(s)|ds

≤ ‖x− y‖τδ1e−τ(t−a)
∫ t

a

eτ(s−a)ds

≤ ‖x− y‖τ
δ1
τ

[
1− e−τ(t−a)

]
≤ ‖x− y‖τ

δ1
τ

[
1− e−τ(b−a)

]
.

Then ‖A(x) − A(y)‖τ ≤ ‖x − y‖τ
δ1
τ

[
1− e−τ(b−a)

]
and A is a contraction with τ

suitably chosen. Finally, the proof follows from Proposition 2.2. 2

Remark 3.1 If δ2 ≥ 0, then there is a direct proof for this well known Gronwall-type
lemma.

Theorem 3.2 Let x ∈ C([a, b],R+) be such that

x(t) ≤ δ2(t− a) + δ1

∫ t

a

x(s)ds+ ϕ(t), ∀t ∈ [a, b], (5)

where δ1 > 0, δ2, δ3 are real numbers and ϕ is a continuous function on [a, b], then

x(t) ≤ δ2
δ1

exp δ1(t− a) + δ1

∫ t

a

ϕ(s) exp δ1(t− s)ds+ ϕ(a)− δ2
δ1
, ∀t ∈ [a, b]. (6)

Proof. We use the same notations as in the last proof. Let the operator A be defined
by

A(x)(t) = δ2(t− a) + δ1

∫ t

a

x(s)ds+ ϕ(t), t ∈ [a, b].

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = δ2(t− a) + δ1

∫ t

a

x(s)ds+ ϕ(t), t ∈ [a, b].

By differentiation, we get
x′(t) = δ1x(t) + δ2 + ϕ′(t),

which is an ordinary differential equation. Since x(a) = ϕ(a), it comes out that

x(t) =
δ2
δ1

exp δ1(t− a) + δ1

∫ t

a

ϕ(s) exp δ1(t− s)ds+ ϕ(a)− δ2
δ1
.
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Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we get

x∗A(t) =
δ2
δ1

exp δ1(t− a) + δ1

∫ t

a

ϕ(s) exp δ1(t− s)ds+ ϕ(a)− δ2
δ1
, ∀t ∈ [a, b].

One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). On the other hand, by the same calculation as in the previous theorem,
one can easily check that A is a contraction with respect to ‖.‖τ , with τ suitably chosen.
Finally, the proof follows from Proposition 2.2. 2

Remark 3.2 If the function ϕ is a constant, then we get the particular case of
Theorem 3.1.

Theorem 3.3 Let x ∈ C([a, b],R+) be such that

x(t) ≤ α(t) + β(t)

∫ t

a

x(s)ds, ∀t ∈ [a, b], (7)

where α is continuous and β is a continuous function on [a, b], then

x(t) ≤ α(t) + β(t)

∫ t

a

α(s) exp

(∫ t

s

β(u)du

)
ds, ∀t ∈ [a, b]. (8)

Proof. Using the same notations, let the operator A be defined by

A(x)(t) = α(t) + β(t)

∫ t

a

x(s)ds, t ∈ [a, b].

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = α(t) + β(t)

∫ t

a

x(s)ds, t ∈ [a, b].

By differentiation, we get

β(t)x′(t) =
[
β′(t) + β2(t)

]
x(t) + α′(t)β(t)− β′(t)α(t),

which is an ordinary differential equation. Since x(a) = α(a), it comes out that

x(t) = α(t) + β(t)

∫ t

a

α(s) exp

(∫ t

s

β(u)du

)
ds.

Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we get

x∗A(t) = α(t) + β(t)

∫ t

a

α(s) exp

(∫ t

s

β(u)du

)
ds, ∀t ∈ [a, b].

One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). The last point is to show that A is a contraction with respect to ‖.‖τ . We
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have

|A(x)(t)−A(y)(t)|e−τ(t−a) ≤ β(t)e−τ(t−a)
∫ t

a

|x(s)− y(s)|ds

≤ ‖x− y‖τβ(t)e−τ(t−a)
∫ t

a

eτ(s−a)ds

≤ ‖x− y‖τ
β(t)

τ

[
1− e−τ(t−a)

]
≤ ‖x− y‖τ

‖β‖∞
τ

[
1− e−τ(b−a)

]
.

Then ‖A(x)−A(y)‖τ ≤ ‖x− y‖τ
‖β‖∞
τ

[
1− e−τ(b−a)

]
and A is a contraction with τ

suitably chosen. Finally, the proof follows from Proposition 2.2. 2

Remark 3.3 If α(t) = δ3 and β(t) = δ1, then we get the particular case of Theorem
3.1.

The following result is well known from the book of Filatov and Scharova (1976), here
we will give a new proof of it using the theory of operators.

Theorem 3.4 Let x ∈ C([a, b],R+) be such that

x(t) ≤ α(t) + β(t)

∫ t

a

k(s)x(s)ds, ∀t ∈ [a, b], (9)

where α is continuous, β and k are continuous functions on [a, b], then

x(t) ≤ α(t) + β(t)

∫ t

a

α(s)k(s) exp

(∫ t

s

β(u)k(u)du

)
ds, ∀t ∈ [a, b]. (10)

Proof. Using the same notations, let the operator A be defined by

A(x)(t) = α(t) + β(t)

∫ t

a

k(s)x(s)ds, t ∈ [a, b].

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = α(t) + β(t)

∫ t

a

k(s)x(s)ds, t ∈ [a, b].

By differentiation, we get

x′(t) =

[
β(t)k(t) +

β′(t)

β(t)

]
x(t) + α′(t)− α(t)

β′(t)

β(t)
,

which is an ordinary differential equation. The solutions of the homogenous equation are

x(t) = λβ(t) exp

(∫ t

a

β(s)k(s)ds

)
.
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A particular solution can be obtained using the method of variation of the constant, then
the solutions of our ODE are

x(t) = λβ(t) exp

(∫ t

a

β(s)k(s)ds

)
+ α(t) + β(t)

∫ t

a

α(s)k(s) exp

(∫ t

s

β(u)k(u)du

)
ds.

Since x(a) = α(a), it comes out that

x(t) = α(t) + β(t)

∫ t

a

α(s)k(s) exp

(∫ t

s

β(u)k(u)du

)
ds.

Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we get

x∗A(t) = α(t) + β(t)

∫ t

a

α(s)k(s) exp

(∫ t

s

β(u)k(u)du

)
ds, ∀t ∈ [a, b].

One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). On the other hand, A is a contraction with respect to ‖.‖τ . We have

|A(x)(t)−A(y)(t)|e−τ(t−a) ≤ β(t)e−τ(t−a)
∫ t

a

k(s)|x(s)− y(s)|ds

≤ ‖x− y‖τβ(t)e−τ(t−a)
∫ t

a

k(s)eτ(s−a)ds

≤ ‖x− y‖τ
β(t)

τ
‖k‖∞

[
1− e−τ(t−a)

]
≤ ‖x− y‖τ

‖β‖∞‖k‖∞
τ

[
1− e−τ(b−a)

]
.

Then ‖A(x) − A(y)‖τ ≤ ‖x − y‖τ
‖β‖∞‖k‖∞

τ

[
1− e−τ(b−a)

]
and A is a contraction

with τ suitably chosen. Finally, the proof follows from Proposition 2.2. 2

Theorem 3.5 Let x(t) be continuous and nonnegative on [0, h] and satisfy

x(t) ≤ a(t) +

∫ t

0

(a1(s)x(s) + b(s)) ds, (11)

where a1(t) and b(t) are nonnegative integrable functions. Then, on [0, h]

x(t) ≤ a(t) +

∫ t

0

(a1(s)a(s) + b(s)) exp

(∫ t

s

a1(ξ)dξ

)
ds. (12)

Proof. Using the same notations, let the operator A be defined by

A(x)(t) = a(t) +

∫ t

0

(a1(s)x(s) + b(s)) ds, t ∈ [0, h].

We note that FA = {x∗A}, where

x∗A(t) = a(t) +

∫ t

0

(a1(s)a(s) + b(s)) exp

(∫ t

s

a1(ξ)dξ

)
ds, ∀t ∈ [0, h].
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One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). On the other hand, A is a contraction with respect to ‖.‖τ , with τ suitably
chosen. Finally, the proof follows from Proposition 2.2. 2

For the following results we will use another norm, the rest of data are the same.

Theorem 3.6 Let x(t) be bounded continuous in J = [α,∞), and suppose

x(t) ≤ ae−γ(t−α) +

∫ ∞
α

be−γ|t−s|x(s)ds, t ∈ J, (13)

where a ≥ 0, b ≥ 0, and γ > 0 are constants and b <
γ

2
. Then

x(t) ≤ a

b
(γ − δ)e−δ(t−α), t ∈ J, (14)

where δ =
√
γ2 − 2bγ.

Proof. Let (X,→,≤) = (C(J),
‖.‖−−→,≤), where C(J) is the Banach space of functions

x which are bounded and continuous in J = [α,∞) with norm ‖x‖ = sup
t∈J
|x(t)|. Using

the same notations, let the operator A be defined by

A(x)(t) = ae−γ(t−α) +

∫ ∞
α

be−γ|t−s|x(s)ds, t ∈ J,

Suppose that x is a fixed point of A, then A(x) = x or, equivalently,

x(t) = ae−γ(t−α) +

∫ ∞
α

be−γ|t−s|x(s)ds

= ae−γ(t−α) + be−γt
∫ t

α

eγsx(s)ds+ beγt
∫ ∞
t

e−γsx(s)ds.

By differentiation, we get

x′(t) = −2aγe−γ(t−α) + γx(t)− 2bγe−γt
∫ t

α

eγsx(s)ds,

we derive once again, it comes out that

x′′(t) = (γ2 − 2bγ)x(t),

which is an ordinary differential equation. Using x(α) and x′(α), we get

x(t) =
a

b
(γ − δ)e−δ(t−α).

Conversly, we can easily verify that A(x) = x and using the fact that A admits a unique
fixed point, we arrive at

x∗A(t) =
a

b
(γ − δ)e−δ(t−α), t ∈ J.
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One can easily check that A is an increasing operator: let x, y ∈ C[a, b], if x ≤ y, then
A(x) ≤ A(y). If x, y ∈ C(J) and ‖x− y‖ = L, it is easy to see that

|A(x)(t)−A(y)(t)| ≤
∫ t

α

bLe−γ(t−s)ds+

∫ ∞
t

bLeγ(t−s)ds ≤ 2b

γ
L =

2b

γ
‖x− y‖,

whence we conclude that A(x) ∈ C(J) and A is a contraction. Finally, the proof follows
from Proposition 2.2. 2

Theorem 3.7 Let x(t) be a continuous function for α ≤ t ≤ β, and suppose

x(t) ≤ ae−γ(β−t) +

∫ β

α

be−γ|t−s|x(s)ds, α ≤ t ≤ β, (15)

where a ≥ 0, b ≥ 0, and γ > 0 are constants and b <
γ

2
. Then

x(t) ≤ a

b
(γ − δ)e−δ(β−t), α ≤ t ≤ β, (16)

where δ =
√
γ2 − 2bγ.

Proof. Since the proof of this result follows by the similar arguments as in the last
theorem, we omit the details. 2

Remark 3.4 We use the condition b <
γ

2
to prove that the operator A is a con-

traction but we can omit this condition and use the Gronwall lemma to prove the last
proposition.

4 Application to Stability of Dynamical Systems

We consider the following system:

ẋ = f(t, x), x(t0) = x0, (17)

where t ∈ R+, x ∈ Rn and f : R+ × Rn → Rn is continuous in t and locally Lipschitz
in x. We begin by giving the definition of uniform boundedness and uniform stability
(see [14], [18], [19], [7]).

Definition 4.1 (uniform boundedness) A solution of (17) is said to be globally uni-
formly bounded if for every α > 0 there exists c = c(α) such that, for all t0 ≥ 0,

‖x0‖ ≤ α⇒ ‖x(t)‖ ≤ c(α), ∀ t ≥ t0.

Definition 4.2 (uniform stability)
(i) The origin x = 0 is uniformly stable if for all ε > 0, there exists δ = δ(ε) > 0, such
that for all t0 ≥ 0,

‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ t0.

(ii) The origin x = 0 is globally uniformly stable if it is uniformly stable and the solutions
of system (17) are globally uniformly bounded.
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We recall in the following definition the notion of practical stability ( see [5]).

Definition 4.3 (practical stability) The system (17) is said to be (PS1) uniformly
practically stable if, given (λ,A) with 0 < λ < A, we have

‖x0‖ < λ⇒ ‖x(t)‖ < A, t ≥ t0, ∀t0 ∈ R+.

(PS2) quasi-uniformly asymptotically stable (in the large) if ∀ε > 0, α > 0, t0 ∈ R+,
there exists a positive number T = T (ε, α) such that

‖x0‖ ≤ α⇒ ‖x(t)‖ < ε, t ≥ t0 + T.

(PS3) uniformly practically asymptotically stable if (PS1) and (PS2) hold at the same
time.

As application to stability, let us consider the nonlinear dynamical system:

ẋ = A(t)x+ g(t, x), (18)

where t ≥ 0, x(t) ∈ Rn, the matrix A(.) is continuous and bounded, g : R+×Rn → Rn is
continuous in (t, x), locally Lipschitz in x such that g(t, 0) = 0. We suppose that x = 0
is globally uniformly asymptotically stable equilibrium point for the nominal system
ẋ = A(t)x, this is equivalent to saying that

‖Φ(t, t0)‖ ≤ k exp−γ(t− t0), ∀t ≥ t0, k > 0, γ > 0, (19)

where Φ(t, t0) is the state transition matrix associated to A(t). The solution of this system
with the initial condition (t0, x0) is given by:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, s)g(s, x(s))ds. (20)

We have

‖x(t)‖ ≤ k exp−γ(t− t0)‖x(t0)‖+
∫ t

t0

ke−γ(t−s)‖g(s, x(s))‖ds. (21)

It follows that

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

keγs‖g(s, x(s))‖ds. (22)

We will impose a restriction on g to study the practical stability.
If we suppose that for all (t, x),

‖g(t, x)‖ ≤ ρ(t),

with ρ being a nonnegative continuous function which tends to zero as t→∞, then (22)
becomes

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

keγsρ(s)ds.

The assumption on ρ means that: ∀ε > 0, ∃T > 0/ ∀t ≥ t0 + T, ρ(t) < ε. We
have also ∃β/ ∀t ∈ [t0, t0 + T ], ρ(t) ≤ β.
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Then, ∀t ≥ t0 + T ,

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t0+T

t0

keγsρ(s)ds+

∫ t

t0+T

keγsρ(s)ds

≤ keγt0‖x(t0)‖+kβ
∫ t0+T

t0

eγsds+ kε

∫ t

t0+T

eγsds

≤ keγt0‖x(t0)‖+kβ

γ

[
eγ(t0+T ) − eγt0

]
+
kε

γ

[
eγt − eγ(t0+T )

]
,

or equivalently, ∀t ≥ t0 + T

‖x(t)‖ ≤ ke−γ(t−t0)‖x(t0)‖+kβ

γ
e−γ(t−t0)

[
eγT − 1

]
+
kε

γ
.

We see that the function : t 7→ ke−γ(t−t0)‖x(t0)‖+kβ

γ
e−γ(t−t0)

[
eγT − 1

]
vanishes,

then
‖x(t)‖ ≤Mε, ∀t ≥ t0 + T ′,

for a certain T ′ > T > 0, this shows the practical stability of the system.
Another approach is to study the asymptotic behavior of the system in a small neigh-

borhood of the origin. For the rest of our presentation, we need the following definitions
which are related to stability.

Definition 4.4 (uniform stability of Br)
(i) Br is uniformly stable if for all ε > r, there exists δ = δ(ε) > 0 such that for all t0 ≥ 0,

‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ t0.

(ii) Br is globally uniformly stable if it is uniformly stable and the solutions of system
(4.1) are globally uniformly bounded.

Definition 4.5 (uniform attractivity) The origin x = 0 is globally uniformly attrac-
tive if for all ε > 0 and c > 0, there exists T (ε, c) > 0, such that for all t0 ≥ 0,

‖x(t)‖ < ε, ∀ t ≥ t0 + T (ε, c), ‖x0‖ < c.

Definition 4.6 (Class K function) A continuous function α : [0, a)→ [0,+∞) is said
to belong to class K, if it is strictly increasing and α(0) = 0. It is said to belong to class
K∞ if a = +∞ and α(r)→ +∞ as r → +∞.

Definition 4.7 (Class KL function) A continuous function β : [0, a) × [0,+∞) →
[0,+∞) is said to belong to class KL, if for each fixed point s, the mapping β(r, s) belongs
to class K with respect to r and for each fixed r, the mapping β(r, s) is decreasing with
respect to s and β(r, s)→ 0 as s→ +∞.

The following proposition provides a characterization of global uniform attractivity
and global uniform stability.

Proposition 4.1 If there exists a class KL function β, a class K∞ α, a constant
r > 0 such that, given any initial state x0, the solution satisfies

‖x(t)‖ ≤ β(‖x0‖, t) + r, ∀t ≥ 0,

then Br is globally uniformly attractive and globally uniformly stable.
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Note that, if the class KL-function β in the above relation is of the form β(r, s) =
kre−λt, with λ, k > 0 we say that the ball Br is globally uniformly exponentially stable.
It is also worth noting that if, in the above definitions, we take r = 0, then one deals
with the standard concept of GUAS and GUES of the origin (see [4] for more details).
Moreover, in the rest of this paper, we study the asymptotic behavior of a small ball
centered at the origin for 0 ≤‖ x(t) ‖ −r, so that if r = 0, we find the classical definition
of the uniform asymptotic stability of the origin viewed as an equilibrium point.

Other applications to stability will be done in the following example by considering
the system (18), we keep the same assumptions.

Example 4.1 1) Suppose that condition (22) holds and for all (t, x),

‖g(t, x)‖ ≤ η(t)‖x‖,

with η being an integrable function, then (22) becomes

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

kη(s)eγs‖x(s)‖ds.

Let u(t) = eγt‖x(t)‖, then the last inequality becomes

u(t) ≤ ku(t0) +

∫ t

t0

kη(s)u(s)ds,

using Theorem 3.4 we get

u(t) ≤ ku(t0) +

∫ t

t0

k2u(t0)η(s)

(
exp

∫ t

s

kη(u)du

)
ds,

then
u(t) ≤ kMu(t0), where M = 1 + k‖η‖1ek‖η‖1 .

One can obtain an estimation on the trajectories as follows, for all t ≥ t0,

‖x(t)‖ ≤ kM‖x(t0)‖e−γ(t−t0).

Then the origin is a globally uniformly exponentially stable equilibrium point for the
system.

2) If we suppose that for all (t, x),

‖g(t, x)‖ ≤ η(t)‖x‖+ η′,

with η being an integrable function and η′ > 0, then (22) becomes

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

keγs{η(s)‖x(s)‖+ η′}ds.

Let u(t) = eγt‖x(t)‖, then the last inequality becomes

u(t) ≤ ku(t0) +

∫ t

t0

{kη(s)u(s) + kη′eγs}ds,
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using Theorem 3.5 we get

u(t) ≤ ku(t0) +

∫ t

t0

{k2u(t0)η(s) + kη′eγs}
(

exp

∫ t

s

kη(u)du

)
ds,

then u(t) ≤ kMu(t0) + reγt, where M = 1 + k‖η‖1ek‖η‖1 and r = kη′

γ e
k‖η‖1 .

One can obtain an estimation on the trajectories as follows, for all t ≥ t0,

‖x(t)‖ ≤ kM‖x(t0)‖e−γ(t−t0) + r.

Then Br is globally uniformly exponentially stable.

In the following example g(t, 0) is not necessarily zero, in such a situation x = 0 is no
longer an equilibrium point.

3) We suppose that for all (t, x),

‖g(t, x)‖ ≤ η(t)‖x‖+ η′(t),

with η being integrable and η′ being a piecewise continuous function, then (22) becomes

eγt‖x(t)‖ ≤ keγt0‖x(t0)‖+
∫ t

t0

keγs{η(s)‖x(s)‖+ η′(s)}ds.

Let u(t) = eγt‖x(t)‖, then the last inequality becomes

u(t) ≤ ku(t0) +

∫ t

t0

{kη(s)u(s) + kη′(s)eγs}ds,

using Theorem 3.5 we get

u(t) ≤ ku(t0) +

∫ t

t0

{k2u(t0)η(s) + kη′(s)eγs}
(

exp

∫ t

s

kη(u)du

)
ds,

then u(t) ≤ kMu(t0)+ε(t), where M = 1+k‖η‖1ek‖η‖1 and ε(t) = kek‖η‖1
∫ t
t0
η′(s)eγsds.

Finally, we get for all t ≥ t0,

‖x(t)‖ ≤ kM‖x(t0)‖e−γ(t−t0) + ε(t)e−γt.

If we suppose that the function : t 7→ ε(t)e−γt vanishes, we obtain that the system
(18) is uniformly practically asymptotically stable.

5 Conclusion

In this paper we have reduced the study of various integral inequalities to fixed point
problems. We have also derived some general Gronwall-type results and have given
examples of such results in the particular case of the Banach space C(J) using two
different norms.
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