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Abstract: The great difficulty facing the optimization algorithms is the easiness of
trapping into local optima. Many researchers have benefited from the good character-
istics of chaotic mappings to overcome this difficulty, but for some complex functions
the problem persists. In this paper, we attempt to avoid this problem by proposing
a new chaos optimization technique based on partition of data set in global research
step. The numerical results show that the proposed algorithm provides the best
results as compared to other ones.
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1 Introduction

Chaos theory has been successfully developed since its early years through wide ap-
plications in other sciences such as physics, mechanics, electronics, biology, economy,
astronomy, meteorology, optimization, secure communication, ... etc [1–7]. As far as
optimization problems of some usual functions that are continuously differentiable are
concerned, some traditional optimization algorithms such as the Newton method, the
gradient method and the Hessians method [8, 9] can get their global optimal points
with the advantage of speed convergence and high precision. However, these traditional
optimization algorithms will easily trap into local optimum when solving optimization
problems of some multi-modal functions.
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This is due to the several important dynamical characteristics of chaos, namely: the
sensitive dependence on initial conditions, ergodicity, pseudo-randomness, and strange
attractor with self-similar fractal pattern. Many researchers use the chaotic mappings in
the optimization algorithm in order to avoid falling into local optimum [10,11].

Recently, researchers have focused on developing the hybrid algorithms by combin-
ing heuristic algorithms with chaos searching technique to solve non linear system of
equations and optimization problems such as chaotic Monte Carlo optimization, chaotic
BFGS, chaotic particle swarm optimization, chaotic genetic algorithms, chaotic harmony
search algorithm, chaotic simulated annealing, gradient based methods and so on [12–14].

Among those who tried to find a solution to the problem of trapping in local minima
are L.S. Coelho in [15] and T. Hamaizia et al in [16]. They have resolved this problem for
a large range of objective functions but for some complex functions the problem persists
as we will explain later. In this paper, we recall the algorithm proposed by T. Hamaizia
et al in [16] and we propose some modifications in order to improve it. The chaotic
variables are generated by using the Lozi map [17] defined by the function L as follows:

L

(
x
y

)
=

L1

(
x
y

)
L2

(
x
y

)
 =

(
1− a | x | +by

x

)
. (1)

It is a 2−d invertible iterated map that gives a chaotic attractor called the Lozi attractor
which is obtained for a = 1.4 and b = 0.3 as shown in Figure 1 (a). Numerical computa-
tion of the density ρ(s) of iterated values x(k) is displayed in Figure 1 (b). In this figure,

the iterated values x(k) are normalized in the range [0, 1] i.e.
∫ 1

0
ρ(x) dx = 1 and we no-

tice that the highest value of ρ(x) is approximately 1.8 when x is in the neighbourhood
of 0.6.
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Figure 1: (a) Chaotic attractor of Lozi map (1) and its attractive basin obtained for a = 1.7 and
b = 0.5. (b) Density of x(k) in (1) over the interval [0, 1] splitted into 100 boxes for 10, 000, 000
iterated values.

2 The ICOLM Algorithm

In [16] T. Hamaizia and R. Lozi have used a sampling mechanism to coordinate the
research methods based on chaos theory, and they refined the final solution using a
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second method of local search. The obtained results show that the ICOLM algorithm
is fast and converges to a good optimum compared with the COLM algorithm. But for
some complex functions the problem persists. In order to avoid this problem, we will give
some modifications of this method so that to improve it. We can describe this algorithm
as follows:

Firstly, we choose a map and adopt it to have a chaotic behavior in order to use it to
generate several sequences of points by using different initial conditions.

Secondly, every sequence {y(i), i = 1, 2, ..., n} is normalized in the range [0, 1] as
follows:

z(i) =
y(i)− α
β − α

for all i = 1, 2, ...n, where α = min{(y(i), i ≥ 1}, β = max{(y(i), i ≥ 1}. The rest are:

Algorithm 2.1 Inputs:
Mg: max number of iterations of chaotic global search.
Mgl1: max number of iterations of first chaotic local search in global search.
Mgl2: max number of iterations of second chaotic local search in global search.
Ml: max number of iterations of chaotic local search.
Mt = Mg(Mgl1 + Mgl2) + Ml: stopping criterion of chaotic optimization method in
iterations.
λgl1: step size in first global-local search.
λgl2: step size in second global-local search.
λ: step size in chaotic local search.

Outputs:
x̄: best solution from current run of chaotic search.
f̄ : best objective function (minimization problem).

Step 1: Initialization of the numbers Mg, Mgl1, Mgl2, Ml of steps of chaotic search
and initialization of parameters λgl1, λgl1, λ and initial conditions. Set k = 1, y1(1),
y2(1), a = 1.7 and b = 0.3. Set the initial best objective function f̄ = +∞.

-Step 2: Algorithm of chaotic global search:
while k ≤Mg do
xi(k) = Li + zi(k)(Ui − Li), i = 1, 2, ..., n
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
end if

-Step 2-1: Sub algorithm of first chaotic global-local search:
while j ≤Mgl1 do
for i = 1 to n do
if r ≤ 0.5 then (where r is a uniformly distributed random variable with range
[0, 1])
xi(j) = x̄i + λgl1zi(j)(Ui − x̄i)
else
xi(j) = x̄i − λgl1zi(j)(x̄i − Li)
end if
end for
if f(x(j)) < f̄ , then
x̄ = x(j), f̄ = f(x(j))
end if
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j = j + 1
end while

- Step 2-2: Sub algorithm of second chaotic global-local search:
while s ≤Mgl2 do
for i = 1 to n do
if r ≤ 0.5 then
xi(s) = x̄i + λgl2zi(s)(Ui − x̄i)
else
xi(s) = x̄i − λgl2zi(s)(x̄i − Li)
end if
end for
if f(x(s)) < f̄ , then
x̄ = x(s), f̄ = f(x(s))
end if
s = s+ 1
end while
k = k + 1
end while

- Step 3: Algorithm of chaotic local search:
while k ≤Ml do
for i = 1 to n do
if r ≤ 0.5 then
xi(k) = x̄i + λzi(k)(Ui − x̄i)
else
xi(k) = x̄i − λzi(k)(x̄i − Li)
end if
end for
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
end if
k = k + 1
end while.

Although this method was developed to find a solution to trapping into local opti-
mization when solving optimization problems of some multi-modal functions, the success
was partial because if the objective function is not smooth, this method will easily trap
into local minima as we are going to clarify. If in step k in global search the optimal
solution of our problem is f(x∗), then all the points x(s), s > k in the red part of Figure
2 will be ignored during the search; but it is possible that the global minima will be in
the neighbourhood of one point of the red part. To solve this problem we suggest to
divide the number of iterations in global search into packs and at the beginning of each
pack we set the best objective function f̄ = +∞.

On the other hand, due to the non-repetition of chaos, the chaotic research can carry
out overall searches at higher speed than stochastic ergodic searches that depend on
probabilities. Motivated by this idea, we will replace the step of local search (random
step) by a chaotic local search as we will explain later. This is why we will call this new
method Pure Chaotic Optimization Algorithm (PCOA).
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Figure 2: Example of the trapping into local minima.

3 Pure Chaotic Optimization Algorithm

As mentioned in the previous section, the fundamental changes that will be undertaken
on the ICOLM are:

At first, we divide the data set that will be used in global search into packs and at
the beginning of each pack we set the best objective function f̄ = +∞ in order to go out
of the local minima.

The second change is in the global local search and local search where we use chaotic
search instead of random search. To apply the global local search, we use a linear
transformation to project the points of chaotic sequences in the neighbourhood of the
point of global search and the same idea will be used in the local search. In the following
we give an example to illustrate this idea.

Example 3.1 In order to facilitate the process suppose that the search domain is
[l, u] = [0, 1] and we need to do a local search in the neighbourhood of the point x∗ = 0.5
(i.e. the interval of local search is [x∗ − λ, x∗ + λ], but if x∗ − λ < l (resp x∗ + λ > u),
the interval of local search is [l, x∗ + λ] (resp [x∗ − λ, u])). To project all the points in
the neighbourhood of the point x∗ = 0.5 we use the following linear transformation:

T (x) =
2λ

u− l
x+ (x∗ − λ).

Figure 3 (a) shows the plot of transformation T where we see that all the points of the
interval [l, u] are transformed into the interval [x∗ − λ, x∗ + λ] (λ = 0.01) and Figure 3
(b) shows the probability density function of T (L1).

In the following we are going to describe the pure chaotic optimization algorithm.

Algorithm 3.1 Inputs:
N : max number of iterations of chaotic global search.
Np: max number of packets of global search.
Mg: max number of iterations of chaotic global search for any packets.
Mgl: max number of iterations of chaotic local search in global search.
Ml: max number of iterations of chaotic local search.
Mt = Np(MgMgl +Ml): stopping criterion of chaotic optimization method in iterations.
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Figure 3: (a) Transformation T . (b) Probability density function of T (L1).

λgl: the width of the interval in chaotic local search in global search.
λ: the width of the interval in chaotic local search.

Outputs:
x̄: best solution from current run of chaotic search.
f̄ : best objective function (minimization problem).

Step 1: Initialization of the numbers Mg, Mgl, Ml of steps of chaotic search and
initialization of parameters λgl, λ and initial conditions. The Lozi map (1) is adopted to
have a chaotic behavior in order to use it for generating several sequences of points by
using different initial conditions (the number of sequences is equal to dimension of the
objective function) after every sequence {y(i), i = 1, 2, ...n} is normalized in the range
[0, 1] as follows:

z(i) =
y(i)− α
β − α

for all i = 1, 2, ...n, where α = min{(y(i), i ≥ 1}, β = max{(y(i), i ≥ 1}.
-Step 2-1: Algorithm of chaotic global search:

for t = 1 : Np

Set the initial best objective function ¯f(t) = +∞.
while k ≤Mg do
xi(k) = Li + zi(k)(Ui − Li), i = 1, 2, ..., n
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))

- Step 2-2: Sub algorithm of chaotic global-local search:
Transform the points generated by Lozi map in the neighbourhood of the point x̄ and
we begin the search
while j ≤Mgl do
if f(x(j)) < f̄ , then
x̄ = x(j), f̄ = f(x(j))
end if
j = j + 1
end while
end if
k = k + 1
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end while
end for

- Step 3: Algorithm of chaotic local search:
Transform the points generated by logistic map in the neighbourhood of the point x̄ and
we begin the search
while k ≤Ml do
if f(x(k)) < f̄ , then
x̄ = x(k), f̄ = f(x(k))
end if
k = k + 1
end while.

During the chaotic local search, the step size λ (resp λgl) is an important parame-
ter in convergence behavior of optimization method which adjusts small ergodic ranges
around X*. The step sizes λ and λgl are employed to control the impact of the current
best solution on generating a new trial solution. The small λ and λgl tend to perform
exploitation to refine results by local search, while the large ones tend to facilitate a
global exploration of search space.

4 Numerical Examples and Discussion

In order to test this new method vs the previous one in very tough conditions, the
simulation results are obtained with the following four objective functions.

4.1 Some test functions

1.

f1(x1, x2, ..., xn) =

n∑
i=1

(x4i − 16x2i + 5xi)

2
,

where −5 ≤ xi ≤ 5 for 1 ≤ i ≤ n.

2.

f2(x1, x2) = x41 − 7x21 + x42 − 9x22 − 5x2 + 11x21x
2
2 + 99 sin(71x1)

+ 137 sin(97x1x2) + 131 sin(51x2),

where −10 ≤ x1 ≤ 10 and −10 ≤ x2 ≤ 10.

3.

f3(x1, x2) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]×
[30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)],

where −2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2.

4.

f4(x1, x2) = 100
√
|x2 − 0.01x21|+ 0.01 |x1 + 10| ,

where −15 ≤ x1 ≤ −5 and −3 ≤ x2 ≤ 3.
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Figure 4: (a) Styblinski-Tang’s function f1. (b) Magnification of Styblinski-Tang’s function
f1. (c) Function f2. (d) Magnification of function f2. (e) Goldstein-Price function f3. (f) Bukin
function f4.

Figures 4 (a) and (b) show the 3D plots of the Styblinski-Tang function f1 which is a d-
dimensional function, usually evaluated on the hypercube xi ∈ [−5, 5], for all i = 1, ..., d.
It has a global minimum

−39.16617× d ≤ f4(−2.903534, ...,−2.903534) ≤ −39.16616× d.

Concerning f2 shown in Figures 4 (c) and (d), it possesses hundreds of local minima [16],
but its global minimum is not yet theoretically known.

f3 is the Goldstein-Price function usually evaluated on the rectangle

(x1, x2) ∈ [−2, 2]× [−2, 2],

it has a lot of local minima and one global minimum f3(0,−1) = 3 and the 3D plot of
this function is in Figure 4 (e).

f4 is the Bukin function which is usually evaluated on the rectangle

(x1, x2) ∈ [−15,−5]× [−3, 3],

it has a lot of local minima and one global minimum f4(−10, 1) = 0, see Figure 4 (f).
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4.2 Numerical experiments

In order to enrich our study, we are going to use different values of step sizes and different
values of the number of iterations for both methods that are presented in Tables 1 and 2.
Each optimization method was implemented in Matlab (MathWorks). All the programs
were run on a 2.53 GHz, i3 processor with 4 GB of random access memory. Since the
ICOLM algorithm gives random results, in each case study 50 independent runs are
made involving 50 different initial trial conditions and all the results are summarised
in Table 3; however the pure chaotic optimization algorithm is a deterministic method,
therefore one run is made involving 50 different initial trial conditions and all the results
are summarised in Table 4.

We generally believe that the use of large number of steps will lead us closer to the
global minimum for all test functions. But this is not true as shown in Table 3 because
of the trap of local minima mentioned in Section 2.

Concerning the optimization results by using the PCOA we have:

• For the function f3 the global minimum is easily reached in few steps and little
time compared with the ICOLM algorithm as explained in Tables 3 and 4.

• Concerning f1, the global minimum is obtained by using configurations C3.

• For f2 which possesses hundreds of local minima, the best result is obtained using
configurations C3 and the global minimum is not yet theoretically known.

• Finally, the best result for f4 is obtained using configurations C3.
We note that the PCOA converges faster than the ICOLM as shown in Tables 3
and 4.

λ λgl1 λgl2 Mg Mgl1 Mgl2 Ml

C1 0.01 0.04 0.01 30 5 5 20

C2 0.01 0.04 0.01 100 5 5 50

C3 0.001 0.04 0.01 500 10 10 100

Table 1: The set of parameter values for every run of the ICOLM algorithm.

λ λgl Np Mg Mgl Ml

C1 0.001 0.01 100 10 100 100

C2 0.002 0.05 100 100 200 200

C3 0.005 0.08 1000 100 200 200

Table 2: The set of parameter values for every run of the PCOA algorithm.
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T Fun Case Op So Op Pts Mean val Std.Dev T/s

C1 -103.3610 ( 2.7455, -2.8977,-2.9069) -103.3383 0.0136 6.461655
f1 C2 -117.4956 ( -2.8970,2.9005,-2.8926) -117.4806 0.0114 20.458741

C3 -117.4983 (-2.9046, -2.9000,-2.9038) -117.4867 0.0082 180.311540

C1 -392.9923 (0.2443,2.0614) -383.8462 7.6147 7.619080
f2 C2 -395.8094 (0.2434,2.0632) -389.7800 5.6617 27.695888

C3 -395.7769 (0.2434,2.0640) -387.4540 6.1347 253.251734

C1 3.0669 (0.0108,-1.0068) 3.7525 0.2849 3.561953
f3 C2 3.0004 ( -0.0007, -1.0010) 3.0064 0.0052 11.280039

C3 3.0001 ( 0.0006, -1.0001) 3.0039 0.0026 105.905089

C1 0.1027 ( -9.4415,0.8914) 0.7547 0.4245 3.562340
f4 C2 0.02794 (-9.4132,0.8861) 0.4295 0.1159 12.257843

C3 0.0487 (-9.5870,0.9191) 0.3587 0.2091 109.698371

Table 3: Optimization results over 50 runs for 3 parameter configurations using ICOLM algo-
rithm.

Test Function Cases Optimal solution Optimal point T/s

C1 -117.4772 ( -2.8830, -2.8759, -2.9111) 2.648436
f1 C2 -117.4924 ( -2.8869,-2.8949,-2.9014) 8.289850

C3 -117.4985 ( -2.9034, -2.9026,-2.8952) 47.761714

C1 -390.2672 (0.0622,1.8189) 2.237673
f2 C2 -395.8622 ( 0.2433,2.0638) 5.072239

C3 -395.8742 (0.2432,2.0636) 49.7400

C1 3.0000 ( -0.0001,-0.9999) 1.202800
f3 C2 3.0000 ( -0.0000, -1.0000) 3.343877

C3 3.0000 ( -0.0000, -1.0000) 18.763473

C1 0.0322 ( -10.7807,1.1622) 1.122277
f4 C2 0.0108 ( -9.6809, 0.9372) 2.754711

C3 0.0086 (-10.2723,1.0552) 25.725318

Table 4: Optimization results over one run for 3 parameter configurations using PCOA algo-
rithm.

5 Conclusion

In this paper, we have presented a new technique of chaotic optimization algorithm
inspired by ICOLM methods [16]. In order to test the numerical performance of this new
technique, the four non linear multi modal benchmark functions are employed. More
detailed analysis on this new technique by using other maps and testing them on a large
number of test functions in higher dimension will be provided in near future.
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