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1 Introduction

In recent years, fractional differential equations with almost automorphic solutions have
gained considerable interest. This is due to the fact that fractional differential equations
are powerful tools to describe the hereditary properties and memory of various materi-
als. Fractional differential equations have great applications in nonlinear oscillations of
earthquakes, fractal theory, diffusion in porous media, viscoelastic panel in super sonic
gas flow. For more details, we refer to the papers [2, 3, 8, 9, 18] and references therein.

The concept of almost automorphy was first introduced by Bochner [6]. Afterwards,
being a most attractive topic in qualitative theory of differential equations, the theory
of classical almost automorphy has been studied extensively by numerous authors and
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generalized further in different ways using measure theory and weighted functions, see
[4, 5, 14–16].

More recently, a new concept of the so-called (µ, ν)-pseudo almost automorphy was
introduced by Diagana et. al. [10] and Abdelkarim et. al. [1], which is an interesting
generalization of both µ-pseudo almost automorphy and weighted pseudo almost auto-
morphy. Further, Chang et. al. [8] proposed the concept of Stepanov-like µ-pseudo almost
automorphic mild solutions to semilinear functional differential equations. In this paper,
stimulated by [1, 4, 8, 10], we will introduce the concept of Stepanov-like (µ, ν)-almost
automorphic functions.

In this paper, we investigate the existence of (µ, ν)-pseudo almost automorphic mild
solutions to the following fractional differential equation of order 1 < η < 2,

Dη
t y(t) = Ay(t) +Dη−1

t F
(
t, y(t),

∫ t

−∞
K(t− s)h(s, y(s))ds

)
, t ∈ R, (1)

where A : D(A) ⊆ E → E is a densely defined linear operator of sectorial type ω < 0 on
a complex Banach space E. The functions h, F are Stepanov-like (µ, ν)-pseudo almost
automorphic. Here the derivative is taken in Riemann-Liouville sense and K ∈ L1(R)
with |K(t)| ≤ CKe−bt, b > 0.

The rest of this paper is organized as follows: Section 2 provides some basic definitions,
lemmas and theorems. In Section 3, we obtain main results by using Leray-Schauder
alternate theorem fixed point theorem.

2 Preliminaries

Let (E, ‖ · ‖) be a Banach space and C,R, and N stand for complex number, real number
and natural numbers respectively. C(R, E) andBC(R, E) represent the sets of continuous
functions and bounded continuous functions, respectively. For a linear operator A on E,
let %(A), ρ(A),D(A) and R(A) stand for the spectrum, the resolvent set, the domain and
the range of A, respectively.

Now, we recall some definitions on fraction calculus (for more details, see [18]).

Definition 2.1 The fractional integral of a function φ : R+ → E with the lower limit
zero of order η > 0 is given by

Iηφ(t) =
1

Γ(η)

∫ t

0

(t− τ)η−1φ(τ)dτ,

where Γ(·) denotes the Gamma function.

Definition 2.2 The Riemann-Liouville fractional derivative of a function φ : R+ →
E with the lower limit zero of order η > 0 is given by

Dηφ(t) =
1

Γ(n− η)

dn

dtn

∫ t

0

(t− τ)n−η−1φ(τ)dτ, n− 1 < η < n, n ∈ N.

Definition 2.3 A densely defined closed linear operator A with domain D(A) in a
Banach space E is said to be sectorial of type ω and angle θ if there exists

θ ∈ (0,
π

2
), M > 0, ω ∈ R,
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such that its resolvent exists outside the sector ω+Σθ := {ω+λ : λ ∈ C, |arg(−λ)| < θ},
and

‖(λ−A)−1‖ ≤ M
|λ− ω|

, λ /∈ ω + Σθ.

It is easy to verify that an operator A is sectorial of type ω if and only if ωI − A is
sectorial of type 0. For more details on sectorial operators see [13].

Definition 2.4 Let 1 < η < 2 and A be a closed linear operator defined on the
domain D(A) in a Banach space E. Then we say A is the generator of solution operator
if there exists a ω ∈ R and a strongly continuous function Sη : R+ → L(E) such that
{λη : Reλ > ω} ⊂ %(A) and

λη−1(λη −A)−1y =

∫ ∞
0

e−λtSη(t)ydt, Reλ > ω, y ∈ E.

In this case, Sη(t) is called the solution operator generated by A and one can deduce that
if A is sectorial of type ω with 0 < θ < π(1− η

2 ), then A generates the solution operator
given by

Sη(t)y =
1

2πi

∫
Γ

e−λtλη−1(λη −A)−1ydt, (2)

where Γ is a suitable path lying outside the sector ω + Σθ (see [9]).
Recently, Cuesta in [9] has shown that if A is a sectorial operator of type ω for some
M > 0 and 0 < θ < π(1− η

2 ), then there exists a constant C > 0 depending solely on θ
and η such that

‖Sη(t)‖L(E) ≤
CM

1 + |ω|tη
, t ≥ 0.

In boundary case, when η = 1, this is analogous to the statement that A is the generator
of exponentially stable C0-semigroup. Next, if η > 1, then solution family Sη(t) decays
t−η, in fact, Sη(t) is integrable on (0,∞) i.e.∫ ∞

0

1

1 + |ω|sη
ds =

|ω|−
1
η π

η sin(πη )
, 1 < η < 2. (3)

Definition 2.5 A continuous function f : R → E is almost automorphic (in
Bochner’s sense) if for each sequence of real numbers {τ ′n}, there exist a subsequence
{τn} and a function : R→ E such that

g(t) = lim
n→∞

f(t+ τn), is well defined for each t ∈ R, and f(t) = lim
n→∞

g(t− τn).

The set of all almost automorphic functions is denoted by AA(E) and constitutes a
Banach space endowed with the supnorm.

Definition 2.6 A function f : R × E → E is said to be almost automorphic if
f(·, x) ∈ AA(R, E) for all x ∈ E, and f is uniformly continuous in second variable on
each compact set K of E. The set of all such functions is denoted by AA(R× E,E).

Next we recall some definitons and basic results on Stepanov-like almost automorphic
functions(for more details, see [8, 11,20]).
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Definition 2.7 The Bochner transform f b(t, s), s ∈ [0, 1], t ∈ R, of a function f :
R→ E is defined by f b(t, s) = f(t+ s).

Definition 2.8 The space of all Stepanov-like bounded functions denoted by
BSp(R, E) consists of all measurable functions f : R → E, with exponent p ∈ [1,∞)
such that f b ∈ L∞(R, Lp([0, 1], E)) and constitutes a Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(ξ)‖pdξ
) 1
p

.

Definition 2.9 The space of Stepanov-like almost automorphic functions denoted
by SpAA(R, E) consists of all f ∈ BSp(R, E) such that

f b ∈ AA(R, Lp([0, 1], E)).

In other words, a function f ∈ Lploc(R, E) is a Stepanov-like almost automorphic function
if its Bochner transform f b : R → Lp([0, 1], E) is almost automorphic in the sense
that every sequence {τ ′n} of real numbers contains a subsequence {τn} and a function
g ∈ Lploc([0, 1], E) such that

lim
n→∞

[ ∫ t+1

t

‖f(s+τn)−g(s)‖pds
] 1
p

→ 0, and lim
n→∞

[ ∫ t+1

t

‖g(s−τn)−f(s)‖pds
] 1
p

→ 0,

for all t ∈ R.

Definition 2.10 A function f : R× E → E, with f(·, y) ∈ Lp(R, E) for each y ∈ K
is said to be Stepanov-like almost automorphic function in t ∈ R, uniformly for y ∈ K,
if t→ f(t, y) is Stepanov-like almost automorphic for each y ∈ K.

Remark 2.1 [7] It can be observed that if f is almost automorphic, then f is
Stepanov-like almost automorphic, i.e. AA(R, E) ⊂ SpAA(R, E) [1]. Moreover, let
1 ≤ p ≤ q <∞, if f ∈ SqAA(R, E) implies that f ∈ SpAA(R, E).

Throughout this paper, we denote the Lebesgue σ-field of R by B, and the set of
all positive measures µ on B by M satisfying µ(R) = ∞ and µ([a, b]) < ∞, for all
a, b ∈ R(a ≤ b).

Next, we define new ergodic space and the notion of Stepanov-like (µ, ν)-pseudo
almost automorphic functions with positive measures µ, ν ∈M.

Definition 2.11 [10] Let µ, ν ∈ M and p ∈ [1,∞). A function ψ ∈ BSp(R, E) is
said to be (µ, ν)-ergodic if

lim
γ→∞

1

ν(Qγ)

∫
Qγ

(∫ t+1

t

‖ψ(s)‖pds
) 1
p

dµ(t) = 0,

where Qγ = [−γ, γ] and µ(Qγ) =
∫
Qγ dµ(t). We denote all such functions by

Ep(R, E, µ, ν).

Definition 2.12 Let µ, ν ∈ M. A function f ∈ C(R, E) is said to be (µ, ν)-pseudo
almost automorphic function, if it can be decomposed as f = φ+ψ, where φ ∈ AA(R, E)
and ψ ∈ E1(R, E, µ, ν). The collection of all such functions by PAA(R, E, µ, ν) is a
Banach space equipped with sup norm.
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Definition 2.13 Let µ, ν ∈M. A function f ∈ BSp(R, E) is said to be Stepanov-like
(µ, ν)-pseudo almost automorphic function, if it can be decomposed as f = φ+ψ, where
φ ∈ SpAA(R, E) and ψ ∈ Ep(R, E, µ, ν). We denote the collection of all such functions
by SpPAA(R, E, µ, ν).

Definition 2.14 [10] A continuous function f : R × E → E is said to be (µ, ν)-
ergodic in t ∈ R uniformly with respect to y ∈ E, if the following conditions are true:

(i) f(., y) ∈ Ep(R× E,E, µ, ν), for all y ∈ E,

(ii) The function f(., y) is uniformly continuous with the second variable in a compact
set K in E.

We denote the collection of all such functions by EpU(R× E,E, µ, ν).

Definition 2.15 The function f ∈ BSp(R×E,E) is said to be Stepanov-like (µ, ν)-
pseudo almost automorphic, if it has decomposition of the form f = φ + ψ, where
φ ∈ SpAAU(R × E,E) and ψ ∈ EpU(R × E,E, µ, ν). We denote the set of all such
functions by SpPAAU(R× E,E, µ, ν).

We assume the following:

(M1) Let µ, ν ∈M, then lim
γ→∞

µ(Qγ)

ν(Qγ)
<∞.

(M2) For all s ∈ R and ν ∈ M, there exist a bounded interval I and α > 0 such that
µ({a+ s, a ∈ D}) ≤ αµ(D) if D ∈ B satisfies D ∩ I = ∅.

Theorem 2.1 [10] Assume that µ, ν ∈ M and (M1) − (M2) hold. Then
SpPAA(R, E, µ, ν) is translation invariant and the set (SpPAA(R, E, µ, ν), ‖.‖Sp) is the
Banach space.

Theorem 2.2 Let µ, ν ∈ M, f = φ + ψ ∈ SpPAAU(R × E × E,E, µ, ν) with φ ∈
SpAAU(R×E×E,E), ψ ∈ EpU(R×E×E,E, µ, ν). Suppose that the following conditions
hold:

(i) φ is uniformly continuous on a bounded subset Ω ⊂ E × E for all t ∈ R.

(ii) f is uniformly continuous on a bounded subset Ω ⊂ E × E for all t ∈ R.

(iii) ξ = α + β, χ = u + v ∈ SpPAA(R, E, µ, ν) with α, u ∈ SpAA(R, E) and β, v ∈
Ep(R, E, µ, ν) and {α(t) ∈ R}, {u(t) ∈ R} are compact in E.

Then t 7→ f(t, ξ(t), χ(t)) ∈ SpPAA(R, E, µ, ν).

Proof. The proof is similar to the proof of Theorem 3.2 in [21] and hence the details
are omitted here.

Lemma 2.1 Let y = y1 + y2,∈ SpPAA(R, E, µ, ν) and Ry = {y1(t) : t ∈ R} be
a compact set in E. Suppose that h = φ + ψ,∈ SpPAAU(R × E,E, µ, ν), with φ ∈
SpAAU(R× E,E), ψ ∈ EpU(R× E,E, µ, ν) satisfying

‖h(t, y)− h(t, z)‖ ≤ Lh‖y− z‖ and ‖φ(t, y)− φ(t, z)‖ ≤ Lφ‖y− z‖, y, z ∈ E, t ∈ R,

where Lφ, Lh > 0 are constants. Then

Ψh(t) :=

∫ t

−∞
K(t− s)h(s, y(s))ds ∈ SpPAA(R, E, µ, ν). (4)
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Proof. The proof is similar to the proof of Lemma 3.2 in [19] and hence the details
are omitted here.

Lemma 2.2 Let (M1) and (M2) hold and let f ∈ SpPAA(R, E, µ, ν). Then the
function is defined by

Λf (t) =

∫ t

−∞
Sη(t− s)f(s)ds ∈ PAA(R, E, µ, ν).

Proof. Since f ∈ SpPAA(R, E, µ, ν), there exist φ ∈ SpAA(R, E) and ψ ∈
Ep(R, E, µ, ν), such that f(t) = φ(t) + ψ(t). Now consider

Λf (t) =

∫ t

−∞
Sη(t− s)f(s)ds = Λφ(t) + Λψ(t),

where

Λφ(t) =

∫ t

−∞
Sη(t− s)φ(s)ds and Λψ(t) =

∫ t

−∞
Sη(t− s)ψ(s)ds.

First, we show Λφ ∈ AA(R, E). Define a sequence of integral operators for n = 1, 2, 3, . . . ,

Λnφ(t) =

∫ t−n+1

t−n
Sη(t− s)φ(s)ds.

Using Holder’s inequality, we have ‖Λnφ(t)‖ < ∞. Now by Weierstrass’ theorem, the

series Λφ(t) =

∞∑
n=1

Λnφ =

∫ t

−∞
Sη(t− s)φ(s)ds converges uniformly on R. Moreover,

‖Λφ(t)‖ ≤
∞∑
n=1

‖Λnφ‖ ≤ ‖φn‖SpCM
∞∑
n=1

(
1

1 + |ω|(n− 1)η

)
<∞⇒ Λφ ∈ C(R, E).

Further, for n = 1, 2, 3, ... we show that Λnφ ∈ AA(R, E). Since φ ∈ SpAA(R, E),
this implies that every sequence {τ ′n} of real numbers contains a subsequence {τn} and

a function φ̃ ∈ Lploc([0, 1], E) such that[ ∫ t+1

t

‖φ(s+ τn)− φ̃(s)‖pds
] 1
p

→ 0, and

[ ∫ t+1

t

‖φ̃(s− τn)− φ(s)‖pds
] 1
p

→ 0, (5)

as n→ 0 and t ∈ R. Consider

‖Λnφ(t+ τn)− Λn
φ̃
(t)‖ ≤

∫ n

n−1

‖Sη(s)[φ(t+ τn − s)− φ̃(t− s)]‖ds

≤
(∫ n

n−1

‖Sη(s)‖q
) 1
q
(∫ n

n−1

‖φ(t+ τn − s)− φ̃(t− s)‖p
) 1
p

≤CM
(

1

1 + |ω|(n− 1)η

)(∫ n

n−1

‖φ(t+ τn − s)− φ̃(t− s)‖p
) 1
p

.
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It is obvious from (5), that the last inequality goes to 0 as n → ∞ on R. Similarly one
can show that

‖Λφ̃(s− τn)− Λφ(s)‖ → 0, (6)

as n→∞ on R. Thus we conclude that Λφ ∈ SpAA(R, E).

Next, we show that Λψ ∈ E(R, E, µ, ν). To complete this task we consider the integral
operator for n = 1, 2, 3, . . .

Λnψ(t) =

∫ t−n+1

t−n
Sη(t− s)ψ(s)ds =

∫ n

n−1

Sη(s)ψ(t− s)ds.

Now, we get

‖Λnψ(t)‖ ≤
(∫ n

n−1

‖Sη(s)‖qds
) 1
q
(∫ n

n−1

‖ψ(t− s)‖pds
) 1
p

≤‖ψ‖SpCM
[ ∫ n

n−1

(
1

1 + |ω|(s)η

)q
ds

] 1
q

≤‖ψ‖SpCM
[

1

1 + |ω|(n− 1)η

]
<∞,

where q = p/(p− 1). Further, for γ > 0,

lim
γ→∞

1

ν(Qγ)

∫
Qγ
‖Λnψ(t)‖dµ(t)

≤ CM
1 + |ω|(n− 1)η

lim
γ→∞

1

ν(Qγ)

∫
Qγ

(∫ t−n+1

t−n
‖ψ(s)‖pds

) 1
p

dµ(t).

Since ψ ∈ Ep(R, E, µ, ν), the above estimation leads to Λnψ ∈ Ep(R, E, µ, ν) for n =

1, 2, 3, . . .. The above inequality also implies that the series CM
∞∑
n=1

[
1

1 + |ω|(n− 1)η

]
is

convergent, then we deduce in view of Weierstrass test that the series

∞∑
n=1

Λnψ(t) converges

uniformly on R and

Λψ(t) =

∞∑
n=1

Λnψ(t) =

∫ t

∞
Sη(t− s)ψ(s)ds.

Further, from Λnψ ∈ Ep(R, E, µ, ν) and

1

ν(Qγ)

∫
Qγ
‖Λ(t)‖dµ(t) ≤ CM

1 + |ω|(n− 1)η
1

ν(Qγ)

∫
Qγ

∥∥∥∥Λψ(s)−
N∑
n=1

Λnψ(s)

∥∥∥∥dµ(s)

+

N∑
n=1

CM
1 + |ω|(n− 1)η

1

ν(Qγ)

∫
Qγ
‖Λnψ(s)‖dµ(s),



416 VIKRAM SINGH AND DWIJENDRA N. PANDEY

it follows that uniform limit Λ(t) =

∞∑
n=1

Λnψ(t) ∈ E(R, E, µ, ν).

Now, before moving further we briefly describe compactness criteria and the Leray-
Schauder alternate theorem. Let H : R → R be continuous such that H(t) → ∞ as
|t| → ∞ and H(t) ≥ 1 for all t ∈ R. We define a Banach space

CH(R, E) = {v ∈ C(R, E) : lim
|t|→∞

v(t)/H(t) = 0},

equipped with the norm ‖v‖H = sup
t∈R

(‖v(t)‖/H(t)).

Lemma 2.3 [17] A set K ⊆ CH(R, E) is relative compact in CH(R, E), if the
following conditions hold:

(a1) The set K(t) = {v(t) : v ∈ K, t ∈ R} is relative compact in E.

(a2) The set K is equicontinuous.

(a3) For each ε > 0, there exists a constant L > 0 such that ‖v(t)‖H ≤ εH(t) for all
|t| > L and u ∈ K.

Lemma 2.4 ( [12]Leray-Schauder Alternate Theorem) Let D be a closed convex sub-
set of a Banach space E such that 0 ∈ D. Let f : D → D be a completely continuous
map. Then the set {y ∈ D : y = λf(y), 0 < λ < 1} is unbounded or the map f has a
fixed point in D.

3 Main Results

In this section, we investigate the existence of (µ, ν)-pseudo almost automorphic mild
solutions to (1).

Definition 3.1 [2] A function y ∈ C(R, E) is said to be a mild solution of (1) if the
function s 7→ Sη(s)F(s, y(s),Ψy(s)) is integrable on (−∞, s) for each s ∈ R and

y(t) =

∫ t

−∞
Sη(t− s)F(s, y(s),Ψhy(s))ds,

where Sη(t) is a solution operator and Ψh is defined by Ψhy(t) =∫ t
−∞K(t− s)h(s, y(s))ds.

To establish the existence results, we consider the following assumptions:

(L1) Suppose that F = φ + ψ ∈ SpPAAU(R × E × E,E, µ, ν) with φ ∈ SpAAU(R ×
E ×E,E), ψ ∈ EpU(R×E ×E,E, µ, ν) is uniformly continuous on a bounded set
V ⊂ X ×X for all t ∈ R and {F(t, y, z) : y, z ∈ V } is bounded in SpPAAU(R ×
E × E,E, µ, ν).

(L2) There exist a nondecreasing continuous function W : [0,∞)→ [0,∞) such that

‖F(t, y, z)‖ ≤ W(‖y‖+ ‖z‖), for each t ∈ R, y, z ∈ E.
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Theorem 3.1 Let A be a sectorial operator of type ω < 0 and (M1) and (M2) hold.
Assume that F : R×E×E → E is a function satisfying (L1) and (L2) and the following
additional conditions hold:

(L3) For k, a ≥ 0,

lim
|t|→∞

∫ t

−∞

W((1 + k)aH(s))

1 + |ω|(t− s)η
ds = 0,

where H is defined in Lemma 2.3. We set

β(a) := CM
∥∥∥∥∫ t

−∞

W((1 + k)aH(s))

1 + |ω|(t− s)η
ds

∥∥∥∥.
(L4) For every y, z ∈ CH(R, E) and each ε > 0 there exists a δ > 0 such that ‖y−z‖ ≤ δ

implies that

CM
∫ t

−∞

‖F(s, y(s),Ψhy(s))−F(s, z(s),Ψhz(s))‖
1 + |ω|(t− s)η

ds ≤ ε.

(L5) lim inf
s→∞

s

β(s)
> 1.

(L6) The set {f(s, y(s),Ψhy(s)) : c ≤ s ≤ d, y ∈ CH, ‖y‖H ≤ λ} is relatively compact in
E for c, d ∈ R, c < d and λ > 0.

Then equation (1) admits a (µ, ν)-pseudo almost automorphic mild solution.

Proof. Let us define an operator ΛF : CH(R, E)→ CH(R, E) by

ΛFy(t) =

∫ t

−∞
Sη(t− s)F(s, y(s),Ψhy(s))ds.

Now, we need only to show that ΛF has a fixed point in PAA(R, E, µ, ν). For the
sake of convenience, we provide the proof in several steps.
Step 1 :ΛF is well defined.

For y ∈ CH(R, E) with (L1) we have

‖ΛFy(t)‖ ≤CM
∫ t

−∞

W(‖y(s)‖+ ‖Ψhy(s)‖)
1 + |ω|(t− s)η

ds

≤CM
∫ t

−∞

W[(1 + ‖Ψh‖)‖y‖HH(s)]

1 + |ω|(t− s)η
ds.

Hence by (L3) ΛF is well defined.
Step 2 : The operator ΛF is continuous. In fact, let y, z ∈ CH(R, E). For any ε > 0 we
take δ > 0 such that ‖y − z‖ ≤ δ, then

‖ΛFy(t)− ΛFz(t)‖ ≤ CM
∫ t

−∞

‖F(s, y(s),Ψhy(s))−F(s, z(s),Ψhz(s))‖
1 + |ω|(t− s)η

ds ≤ ε,

which shows the assertion.
Step 3 : Next, we show that ΛF is completely continuous. Let Bλ(E) denote a closed
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ball in a space E with radius λ and center at 0. Let us denote U = ΛF (Bλ(CH(E))) and
w = ΛF (v) for v ∈ Bλ(CH(E)). Now, we show that U is a relative compact subset of E.

The condition (L3) implies that W((1+‖Ψh‖)λH(t−s))
1+|ω|(s)η is integrable on [0,∞). Hence, for

ε > 0, we can chose α ≥ 0 such that CM
∫∞

0
W((1+‖Ψh‖)λH(t−s))

1+|ω|(s)η ds ≤ ε.
Since

w(t) =

∫ α

0

Sη(s)F(t− s, y(t− s),Ψhy(t− s))ds

+

∫ ∞
α

Sη(s)F(t− s, y(t− s),Ψhy(t− s))ds,

and∥∥∥∥ ∫ α

0

Sη(s)F(t− s, y(t− s),Ψhy(t− s))ds
∥∥∥∥ ≤ CM ∫ ∞

α

W((1 + ‖Ψh‖)aH(t− s))
1 + |ω|(s)η

ds ≤ ε,

we deduce that w(t) ∈ αC0(M) + Bε(E), where C0(M) denotes the convex hull of M
and

M = {Sη(s)f(ξ, (ξ)y,Ψh(ξ)y) : 0 ≤ s ≤ α, t− α ≤ ξ ≤ t, ‖y‖H ≤ λ}.

By the strong continuity of Sη and (L6) we deduce that M is relatively compact set and

U ∈ αC0(M) +Bε(E) which establishes the assertion.
Further, we show that U is equicontinuous. In fact, we can decompose

w(t+ h)− w(t) =

∫ h

0

Sη(s)F(t+ h− s, y(t+ h− s),Ψhy(t+ h− s))ds

+

∫ α

0

[Sη(h+ s)− Sη(s)]F(t− s, y(t− s),Ψhy(t− s))ds

+

∫ ∞
α

[Sη(h+ s)− Sη(s)]F(t− s, y(t− s),Ψhy(t− s))ds.

For each ε > 0, we can take α > 0 and δ1 such that∥∥∥∥∫ h

0

Sη(s)F(t+ h− s,y(t+ h− s),Ψhy(t+ h− s))ds

+

∫ ∞
α

[Sη(h+ s)−Sη(s)]F(t− s, y(t− s),Ψhy(t− s))
∥∥∥∥

≤CM
[ ∫ s

0

W((1 + ‖Ψh‖)λH(t+ h− s))
1 + |ω|(s)η

ds

+

∫ ∞
α

W((1 + ‖Ψh‖)λH(t− s))
1 + |ω|(s)η

ds

]
≤ ε

2
,

for h ≤ δ1. Moreover, since Sη is strongly continuous and {F(t− s, y(t− s),Ψhy(t− s)) :
0 ≤ s ≤ α, y ∈ (Bλ(CH(E)))}is relative compact, we can take δ2 > 0 such that

‖[Sη(h+ s)− Sη(s)]F(t− s, y(t− s),Ψhy(t− s))‖ ≤ ε

2α
,

for h ≤ δ2. We have from the above estimation that ‖w(t + h) − w(t)‖ ≤ ε for small ε
and is independent of y ∈ Bλ(CH(E)).
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Finally, from (L3) we deduce

‖w(t)‖
H(t)

≤ CM
H(t)

∫ ∞
0

W((1 + ‖Ψh‖)λH(s))

1 + |ω|(t− s)η
ds→ 0, as |t| → ∞,

uniformly and is independent of y ∈ Bλ(CH(E)). Thus, by Lemma 2.3, U is a relatively
compact set in CH(E).
Step 4 : Let for some 0 < τ < 1, yτ (·) be a solution of the equation y = τΛF (yτ ).

Then, we have the estimate

‖yτ (t)‖ ≤τ
∫ t

−∞
‖Sη(t− s)F(s, yτ (s),Ψhy

τ (s))‖ds

≤CM
∫ t

−∞

W[(1 + ‖Ψh‖)‖yτ‖HH(s)]

1 + |ω|(t− s)η
ds

≤β(‖yτ‖H)H(t).

It leads to

‖yτ (t)‖
β(‖yτ‖H)

< 1.

We deduce from the above relation and (L5) that the set {yτ : yτ = τΛF (yτ ), 0 < τ < 1}
is a bounded set.
Step 5 : We deduce form Remark 2.1, (L1) and Theorem 2.2 that the function
t 7→ F(t, y(t),Ψhy(t)) ∈ SpPAA(R, E, µ, ν), whenever y ∈ PAA(R, E, µ, ν) ⊂
SpPAA(R, E, µ, ν). Further, by Lemma 2.2, we get ΛF (PAA(R, E, µ, ν)) ⊂
PAA(R, E, µ, ν) and notice that PAA(R, E, µ, ν) is a closed subspace of CH(R, E). Now,
using the Steps 1 − 4, we obtain that the map ΛF is completely continuous. Applying
Lemma 2.4, we infer that mapping ΛF has a fixed point in PAA(R, E, µ, ν).
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