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1 Introduction

The modeling with stochastic differential equations has attracted many authors due to
its various applications in physics, biology, mathematical finance, etc (see [29, 31, 33]
and references therein). The issues related to the existence and uniqueness for such
model are widely studied by many authors and one can see the contribution in [5, 7,
18, 19, 34, 35, 37] and references therein. Recently, Das et al. [15] studied a fractional
stochastic model with deviating argument and successfully applied the Faedo-Galerkin
approximation method to prove the existence results. Benchaabane et al. [7] examined
the Sobolev-type fractional stochastic model and established the existence and uniqueness
of mild solutions via Picard’s iteration technique.

Recently, the modeling with fractional differential equations has gained considerable
importance due to its numerous applications in various fields of science and engineering,
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such as physics, chemistry, mechanics, system identification, etc (see the monographs
[26, 30, 32]). A significant and systematic development on the existence and uniqueness
of solutions for nonlinear type model of fractional differential equations can be seen
in [3, 4, 10, 24, 25] and references therein. The model with impulsive nature is found in
many real world problems which describe the phenomena of evolution of processes that
are subject to sudden changes in their states, for details and update work, we cite the
papers [12–14,17,20,23,28,39,40].

In some phenomena, the rate of change of the system and current status often depends
not only on the current state but also on the history of the system. Such type of problem
models are in the form of functional differential equations and arise in many important
fields such as cell biology, electrodynamics, position control, etc. For more details, we
refer the reader to the monographs [22,27] and the papers [11,35–37].

The nonlocal type initial condition, which is generalization of classical initial condi-
tion, was firstly initiated by Byszewski [8]. Further, Byszewski and Lakshmikantham
in [9], remarked that the nonlocal condition can be more useful than the standard initial
condition to describe some physical phenomena. In [41] Jhou et al. considered more gen-
eral nonlocal condition and established the existence and uniqueness of mild solutions by
using Krasnoselskii’s fixed point theorem and Banach contraction principle.

As far as solution technique is concerned, Feckan et al. [16] established a concept of
solutions for the class of impulsive fractional differential equations which is claimed to
be more suitable than the concept given by Agarwal et al. [2]. Recently, many authors
followed this concept and improved the existing results (see [12, 14, 36]. In this work,
we define the mild solution of the system (1)-(3) using the concept introduced in papers
[16,38]. The mild solution is associated with the solution operator reformed by Mittag–
Leffler function on a Hilbert space.

Motivated by the above mentioned works as well as the papers [11, 16, 35, 36, 39, 41],
we consider the following impulsive fractional functional stochastic differential equation
with nonlocal condition:

CDα
t u(t) = Au(t) + tnf(t, ut) + tng(t, ut)

dw(t)

dt
, t ∈ J, t 6= tk, (1)

u(t) + (h(ut1 , ut2 , . . . , utp))(t) = φ(t), t ∈ [−d, 0], (2)

∆u(tk) = Ik(u(t−k )), k = 1, 2, . . . ,m, (3)

where J = [0, T ], n ∈ Z+, and CDα
t denotes Caputo’s fractional derivative of order

α ∈ (0, 1). A : D(A) ⊂ H → H is a closed linear sectorial operator defined on a
Hilbert space (H, ‖ · ‖) and u(·) takes the values in the real separable Hilbert space H;
f : J × PC0

L → H , g : J × PC0
L → L(K,H), h : PC0

L
p → H and Ik : H → H are

appropriate functions; φ(t) is F0- measurable H-valued random variable independent of
w. The functions uθ are defined as uθ(t) = u(θ + t) for θ ∈ [−d, 0].

In the problem under consideration, the equation (1) is very important due to its
appearance in the mathematical modeling of viscoelasticity. This fact prompts us to
study the existence and uniqueness of solutions of system (1)-(3). To the best of our
knowledge, the study of sufficient conditions for the existence of the problem (1)-(3) in
Hilbert space is an untreated topic yet.

This work has been divided in four sections, the second section provides some basic
definitions and preliminary results. The third section is equipped with main results
for the problem (1)-(3) and in the last section an example is presented to verify the
established results.
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2 Preliminaries

Let H,K be two real separable Hilbert spaces and L(K,H) be the space of bounded
linear operators from K into H. For convenience, we will use the same notation ‖ · ‖ to
denote the norms in H,K and L(K,H), and use (·, ·) to denote the inner product of H
and K without any confusion. Let (Ω,F, {Ft}t≥0,P) be a complete filtered probability
space satisfying the condition that F0 contains all P-null sets of F. An H−valued random
variable is an F- measurable function u(t) : Ω→ H and a collection of random variables
S = {u(t, ω) : Ω → H \ t ∈ J} is called the stochastic process. Usually, we write u(t)
instead of u(t, ω) and u(t) : J → H in the space of S. Let W = (Wt)t≥0 be a Q-Wiener
process defined on (Ω,F, {Ft}t≥0,P) with the covariance operator Q such that TrQ <∞.
We assume that there exist a complete orthonormal system {ek}k≥1 in K, a bounded
sequence of nonnegative real numbers λk such that Qek = λkek, k = 1, 2, . . . , and a
sequence of independent Brownian motions {βk}k≥1 such that

(w(t), e)K =

∞∑
k=1

√
λk(ek, e)Kβk(t), e ∈ K, t ≥ 0.

Let L2
0 = L2(Q 1

2K,H) be the space of all Hilbert-Schmidt operators from Q 1
2K to H with

the inner product < ϕ,ψ >L2
0
= Tr[ϕQψ∗].

The collection of all strongly measurable, square integrable, H-valued random vari-
ables, denoted by L2(Ω,F, {Ft}t≥0,P;H) = L2(Ω;H), is a Banach space equipped with
the norm ‖u(·)‖2L2 = E‖u(·, w)‖2H, where E denotes expectation defined by E(h) =∫

Ω
h(w)dP. An important subspace is given by L2

0(Ω;H) = {f ∈ L2(Ω,H) : f is F0- is
measurable}.

We consider the space

PC0
L = PC([−d, 0],L2(Ω;H))

as a Banach space of all continuous functions u : [−d, 0] → L2(Ω;H), endowed with the
norm

‖u‖2PC0
L

= sup
t∈J

{
E‖u(t)‖2H, u ∈ PC0

L
}
.

To study the impulsive conditions, we consider

PCL = PC([−d, T ],L2(Ω;H))

as a Banach space of all such continuous functions u : [−d, T ] → L2(Ω;H), which are
continuous on [0, T ] except for a finite number of points ti ∈ (0, T ), i = 1, 2, . . . ,m, at
which u(t+i ) and u(t−i ) = u(ti) exist, endowed with the norm

‖u‖2PCL
= sup

t∈J

{
E‖u(t)‖2H, u ∈ PCL

}
.

Remark 2.1 ( [21]) If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for any u ∈ H and t > 0
we have ‖Tα(t)‖ ≤Meωt and ‖Sα(t)‖ ≤ Ceωt(1 + tα−1), ω > ω0. Thus we have

‖Tα(t)‖ ≤ M̃T and ‖Sα(t)‖ ≤ tα−1M̃S ,

where M̃T = sup0≤t≤T ‖Tα(t)‖ and M̃S = sup0≤t≤T Ce
ωt(1 + t1−α).
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Now, we state the definition of mild solution of the system (1)-(3) based on the
concept introduced in [38].

Definition 2.1 A measurable Ft− adapted stochastic process u : [−d, T ] → H
such that u ∈ PCL is called a mild solution of the system (1)-(3) if u(0) = φ(0) −
(h(ut1 , ut2 , . . . , utp))(0) on [−d, 0],∆u|t=tk = Ik(u(t−k )), k = 1, 2, . . . ,m, the restriction
of u(·) to the interval [0, T )\t1, . . . , tm, is continuous and u(t) satisfies the following in-
tegral equation

u(t) =



Sα(t)[φ(0)− (h(ut1 , ut2 , . . . , utp))(0)]

+
∫ t

0
Tα(t− s)snf(s, us)ds

+
∫ t

0
Tα(t− s)sng(s, us)dw(s), t ∈ (0, t1],

Sα(t)[φ(0)− (h(ut1 , ut2 , . . . , utp))(0)]

+Sα(t− t1)I1(u(t−1 )) +
∫ t

0
Tα(t− s)snf(s, us)ds

+
∫ t

0
Tα(t− s)sng(s, us)dw(s), t ∈ (t1, t2],

...
Sα(t)[φ(0)− (h(ut1 , ut2 , . . . , utp))(0)]

+
∑m
i=1 Sα(t− ti)Ii(u(t−i )) +

∫ t
0
Tα(t− s)snf(s, us)ds

+
∫ t

0
Tα(t− s)sng(s, us)dw(s), t ∈ (tm, T ].

To avoid the repetitions of the basic definitions, we cite them from appropriate papers
and books: for Reimann-Liouville integral operator, Mittag–Lefller function and Caputo’s
derivative see [32], for α-resolvent family see [4], for sectorial operator see [21] and for
solution operator see [1].

3 Existence and Uniqueness of Solutions

For the forthcoming analysis, we introduce the following assumption.

(H1) Functions f ; g;h and Ik are continuous and there exist positive constants Lf ;Lg;Lh
and LI such that

E‖f(t, φ)− f(t, ϕ)‖2H ≤ Lf‖φ− ϕ‖2PC0
L
,

E‖g(t, φ)− g(t, ϕ)‖2H ≤ Lg‖φ− ϕ‖2PC0
L
,

E‖(h(ut1 , ut2 , . . . , utp))(t)− (h(vt1 , vt2 , . . . , vtp))(t)‖2H ≤ LhE‖u− v‖2H,
E‖Ik(u)− Ik(v)‖2H ≤ LIE‖u− v‖2H,

for all u, v ∈ H and φ, ϕ ∈ PC0
L.

Our first result is based on the Banach contraction principle.

Theorem 3.1 Let the assumption (H1) hold with the positive constant

Θ =

{
[4M̃2

SLh + 4mM̃2
SLI + 4M̃2

T
T 2α+n

α
Γ(α)Γ(n+1)
Γ(α+n+1) Lf

+4M̃2
TT

2α−1+n Γ(2α−1)Γ(n+1)
Γ(2α+n) Lg]

< 1,

then the system (1)-(3) has a unique mild solution.
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Proof. Define the operator P : PCL → PCL so that

(Pu)(t) =



Sα(t)[φ(0)− (h(ut1 , ut2 , . . . , utp))(0)]

+
∫ t

0
Tα(t− s)snf(s, us)ds

+
∫ t

0
Tα(t− s)sng(s, us)dw(s), t ∈ (0, t1],

Sα(t)[φ(0)− (h(ut1 , ut2 , . . . , utp))(0)]

+Sα(t− t1)I1(u(t−1 )) +
∫ t

0
Tα(t− s)snf(s, us)ds

+
∫ t

0
Tα(t− s)sng(s, us)dw(s), t ∈ (t1, t2],

...
Sα(t)[φ(0)− (h(ut1 , ut2 , . . . , utp))(0)]

+
∑m
i=1 Sα(t− ti)Ii(u(t−i )) +

∫ t
0
Tα(t− s)snf(s, us)ds

+
∫ t

0
Tα(t− s)sng(s, us)dw(s), t ∈ (tm, T ].

Now, we show that P is a contraction map.To this end we take two points u, u∗ ∈ PCL,
then for all t ∈ (0, t1], we have

E‖(Pu)(t)− (Pu∗)(t)‖2H ≤ 3E‖Sα(t)[(h(ut1 , ut2 , . . . , utp))(0)

−(h(u∗t1 , u
∗
t2 , . . . , u

∗
tp))(0)]‖2H

+3E‖
∫ t

0

Tα(t− s)sn[f(s, us)− f(s, u∗s)]ds‖2H

+3E‖
∫ t

0

Tα(t− s)sn[g(s, us)− g(s, u∗s)]dw(s)‖2H,

≤ [3M̃2
SLh + 3M̃2

T

T 2α+n

α

Γ(α)Γ(n+ 1)

Γ(α+ n+ 1)
Lf

+3M̃2
TT

2α−1+nΓ(2α− 1)Γ(n+ 1)

Γ(2α+ n)
Lg]‖u− u∗‖PCL .

For t ∈ (t1, t2], we get the estimate

E‖(Pu)(t)− (Pu∗)(t)‖2H ≤ 4E‖Sα(t)[(h(ut1 , ut2 , . . . , utp))(0)

−(h(u∗t1 , u
∗
t2 , . . . , u

∗
tp))(0)]‖2H

+4E‖Sα(t− t1)[I1(u(t−1 ))− I1(u∗(t−1 ))‖2H

+4E‖
∫ t

0

Tα(t− s)sn[f(s, us)− f(s, u∗s)]ds‖2H

+4E‖
∫ t

0

Tα(t− s)sn[g(s, us)− g(s, u∗s)]dw(s)‖2H,

≤ [4M̃2
SLh + 4M̃2

SLI + 4M̃2
T

T 2α+n

α

Γ(α)Γ(n+ 1)

Γ(α+ n+ 1)
Lf

+4M̃2
TT

2α−1+nΓ(2α− 1)Γ(n+ 1)

Γ(2α+ n)
Lg]‖u− u∗‖2PCL

.
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Similarly, for general t ∈ (ti, ti+1], i = 2, . . . ,m, we obtain

E‖(Pu)(t)− (Pu∗)(t)‖2H ≤ [4M̃2
SLh + 4kM̃2

SLI + 4M̃2
T

T 2α+n

α

Γ(α)Γ(n+ 1)

Γ(α+ n+ 1)
Lf

+4M̃2
TT

2α−1+nΓ(2α− 1)Γ(n+ 1)

Γ(2α+ n)
Lg]‖u− u∗‖2PCL

.

Thus for all t ∈ [0, T ], we have

E‖(Pu)(t)− (Pu∗)(t)‖2PCL
≤ [4M̃2

SLh + 4mM̃2
SLI + 4M̃2

T

T 2α+n

α

Γ(α)Γ(n+ 1)

Γ(α+ n+ 1)
Lf

+4M̃2
TT

2α−1+nΓ(2α− 1)Γ(n+ 1)

Γ(2α+ n)
Lg]‖u− u∗‖2PCL

,

≤ Θ‖u− u∗‖2PCL
.

Since Θ < 1 implies that the map P is a contraction map, it has a unique fixed point
u ∈ PCL which is the unique mild solution of the problem (1)-(3) on J . This completes
the proof of the theorem.

Now, to prove the next result, we use Schaefer’s fixed point theorem [35] and assume
the following conditions:

(H2) Functions f and g are continuous and there exist continuous functions L̃f , L̃g : J →
(0,∞) such that

E‖f(t, ut)‖2H ≤ L̃f (t)ψ(E‖u‖2H),

E‖g(t, ut)‖2L0
2
≤ L̃g(t)ϕ(E‖u‖2H),

for all φ, ϕ ∈ PC0
L.

(H3) Functions h and Ik are continuous and there exist positive constant M1 and ∆ such
that

E‖(h(ut1 , ut2 , . . . , utp))(t)‖2H ≤M1; max
1≤k≤m

{E‖Ik(u)‖2H} = ∆,

for all u, v ∈ H.

Theorem 3.2 Let the assumptions (H2) and (H3) hold with∫ T

0

η(s)ds ≤
∫ ∞
c

ds

ψ(s) + ϕ(s)
, (4)

where

η(t) = max{5M̃2
T

Tα

α
(t)α−1tnL̃f (t), 5M̃2

T (t)2(α−1)tnL̃g(t)},

c = 5M̃2
S [E‖φ(0)‖2H +M1],

then the equation (1)-(3) has at least one mild solution on J.
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Proof. Consider the closed subspace H2 = {u : u ∈ PCL} of all continuous pro-
cesses u, which are Ft-adapted measurable processes such that the F0-adapted processes
u(0) are endowed with a norm defined by

‖u‖H2
= (sup

t∈J
‖u(t)‖2L2)

1
2 .

Now, we define the operator N : H2 → H2 in the same way as in Theorem 3.1. Now,
we have to prove that the operator N has at least one fixed point for general interval
t ∈ (tk, tk+1], k = 0, 1, . . . ,m.

With this in mind, consider a sequence {un}∞n=0 such that un → u in H2. Then for
t ∈ (tk, tk+1], k = 0, 1, . . . ,m, we have

E‖(Nun)(t)− (Nu)(t)‖2H ≤ 4E‖Sα(t)[(h(unt1 , u
n
t2 , . . . , u

n
tp))(0)

−(h(ut1 , ut2 , . . . , utp))(0)]‖2H
+4kE‖Sα(t− tk)[Ik(un(t−k ))− Ik(u(t−k ))‖2H

+4E‖
∫ t

0

Tα(t− s)sn[f(s, uns )− f(s, us)]ds‖2H

+4E‖
∫ t

0

Tα(t− s)sn[g(s, uns )− g(s, us)]dw(s)‖2H,

since the functions f, g, h and Ik, k = 1, 2, . . . ,m, are continuous, we get

lim
n→∞

E‖Nun −Nu‖2H = 0,

which implies that the operator N is continuous on H2.

Now, we show that N maps bounded sets into bounded sets in H2. Consider

Br = {u ∈ H2 : E‖u‖2H ≤ r} for r > 0,∃ ξ > 0, such that E‖(Nu)(t)‖2H ≤ ξ.

It is clear that Br is a closed bounded convex subset of H2. Let u ∈ Br. Then, we have

E‖(Nu)(t)‖2H ≤ 5E‖Sα(t)‖2[‖φ(0)‖2H + ‖(h(ut1 , ut2 , . . . , utp))(0)‖]2H

+5E‖
m∑
i=1

Sα(t− ti)Ii(u(t−i ))‖2H

+5E‖
∫ t

0

Tα(t− s)snf(s, us)ds‖2H

+5E‖
∫ t

0

Tα(t− s)sng(s, us)dw(s)‖2H,

≤ 5M̃2
S [‖φ(0)‖2H +M1] + 5mM̃2

S∆

+5M̃2
T

Tα

α
ψ(r)

∫ t

0

(t− s)α−1snL̃f (s)ds

+5M̃2
Tϕ(r)

∫ t

0

(t− s)2(α−1)snL̃g(s)ds,

= ξ.
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Next, we prove that N maps bounded sets into equicontinuous sets of Br. Let tk < x <
y ≤ tk+1, for each u ∈ Br, we have

E‖(Nu)(x)− (Nu)(y)‖2H ≤ 5‖Sα(x)− Sα(y)‖2[E‖φ(0)‖2H
+E‖(h(ut1 , ut2 , . . . , utp))(0)‖]2H

+5

m∑
i=1

‖Sα(x− ti)− Sα(y − ti)‖2E‖Ii(u(t−i ))‖2H

+5E‖
∫ t

0

[Tα(x− s)− Tα(y − s)]× snf(s, us)ds‖2H

+5E‖
∫ t

0

[Tα(x− s)− Tα(y − s)]sng(s, us)dw(s)‖2H.

Since Tα(t) and Sα(t) are strongly continuous,‖Sα(x)−Sα(y)‖ → 0; |Sα(x− ti)−Sα(y−
ti)‖ → 0 and ‖Tα(x − s) − Tα(y − s)‖ → 0 as x → y. Therefore, from the above
inequality, we get limx→y E‖(Nu)(x) − (Nu)(y)‖2H = 0. Hence, the set {Nu, u ∈ Br}
is equicontinuous. Now by Arzela-Ascoli’s theorem, we conclude that the operator N is
compact.

Finally, we will prove that the set

R = {u ∈ H2 such that u = qNu(t) for some 0 < q < 1}

is bounded. Let u ∈ R, then u(t) = qNu(t) for some 0 < q < 1. Therefore for each t ∈ J ,
we have

u(t) = q(Sα(t)[φ(0)− (h(ut1 , ut2 , . . . , utp))(0)] +

m∑
i=1

Sα(t− ti)Ii(u(t−i ))

+

∫ t

0

Tα(t− s)snf(s, us)ds+

∫ t

0

Tα(t− s)sng(s, us)dw(s)),

which shows that

E‖u(t)‖2H ≤ 5E‖Sα(t)[φ(0) + (h(ut1 , ut2 , . . . , utp))(0)]‖2H

+5E‖
m∑
i=1

Sα(t− ti)Ii(u(t−i ))‖2H

+5E‖
∫ t

0

Tα(t− s)snf(s, us)ds‖2H

+5E‖
∫ t

0

Tα(t− s)sng(s, us)dw(s)‖2H,

≤ 5M̃2
S [E‖φ(0)‖2H +M1] + 5mM̃2

S∆

+5M̃2
T

Tα

α

∫ t

0

(t− s)α−1snL̃f (s)ψ(E‖u(s)‖2H)ds

+5M̃2
T

∫ t

0

(t− s)2(α−1)snL̃g(s)ϕ(E‖u(s)‖2H)ds.
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Let the function λ(t) be defined as

λ(t) = sup{E‖u(s)‖2H, 0 ≤ s ≤ t}, 0 ≤ t ≤ T,
λ(t) ≤ 5M̃2

S [E‖φ(0)‖2H +M1] + 5mM̃2
S∆

+5M̃2
T

Tα

α

∫ t

0

(t− s)α−1snL̃f (s)ψ(λ(s))ds

+5M̃2
T

∫ t

0

(t− s)2(α−1)snL̃g(s)ϕ(λ(s))ds.

The last inequality in the right-hand side is denoted by µ(t), then we have

µ(0) = c = 5M̃2
S [E‖φ(0)‖2H +M1], λ(t) ≤ µ(t).

On the other hand

µ′(t) = 5M̃2
T

Tα

α
(t)α−1tnL̃f (t)ψ(λ(t)) + 5M̃2

T (t)2(α−1)tnL̃g(t)ϕ(λ(t)).

≤ 5M̃2
T

Tα

α
(t)α−1tnL̃f (t)ψ(µ(t)) + 5M̃2

T (t)2(α−1)tnL̃g(t)ϕ(µ(t)),

or by equation (4) we have∫ µ(t)

µ(0)

ds

ψ(s) + ϕ(s)
≤
∫ T

0

η(s)ds <

∫ ∞
c

ds

ψ(s) + ϕ(s)
.

This inequality shows that there is a constant C such that µ(t) ≤ C, t ∈ J , and hence,
λ(t) ≤ C, for every t ∈ J . Further, we get ‖u(t)‖ ≤ λ(t) ≤ µ(t) ≤ C, t ∈ J . As the
consequence of Schaefer’s fixed point theorem, we deduce that N has a fixed point on J
which is a solution to (1)-(3). This completes the proof of the theorem.

4 Application

Consider the following nonlocal impulsive fractional partial differential equation of the
form

∂α

∂tα
u(t, x) =

∂2

∂y2
u(t, x) + t

‖u(s− d, x)‖
36 + ‖u(s− d, x)‖

+ t
‖u(s− d, x)‖

49 + ‖u(s− d, x)‖
dw(t)

dt
,

u(t, 0) = u(t, π) = 0, t ≥ 0, (5)

u(t, x) +

n∑
i=0

∫ π

0

k(x, y)uti(t, y)dy = (φ(t))(x), t ∈ [−d, 0], x ∈ [0, π], (6)

∆u(ti)(x) =

∫ ti

−∞
qi(ti − s)u(s, x)ds, x ∈ [0, π], (7)

where ∂α

∂tα is Caputo’s fractional derivative of order α ∈ (0, 1), 0 < t1 < 1 are prefixed
numbers and φ ∈ PCL2 . Let H = L2[0, π] and define the operator A : D(A) ⊂ H → H
by Aω = ω′′ with the domain D(A) := {ω ∈ X : ω, ω′are absolutely continuous, ω′′ ∈
H, ω(0) = 0 = ω(π)}. Then
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Aω =
∑∞
n=1 n

2(ω, ωn)ωn, ω ∈ D(A), where ωn(x) =
√

2
π sin(nx), n ∈ N is the or-

thogonal set of eigenvectors of A. It is well known that A is the infinitesimal generator
of an analytic semigroup (T (t))t≥0 in H and is given by

T (t)ω =

∞∑
n=1

e−n
2t(ω, ωn)ωn, for all ω ∈ H, and every t > 0.

The subordination principle of solution operator (Theorem 3.1 in [6]) implies that A is
the infinitesimal generator of a solution operator {Sα(t)}t≥0. Since Sα(t) is strongly
continuous on [0,∞), by uniformly bounded theorem, there exists a constant M > 0,
such that ‖Sα(t)‖L(H) ≤M for t ∈ [0, 1].

Furthermore, we can see

E‖f(t, xt)− f(t, yt)‖2H ≤
1

36
E‖x− y‖2H.

Hence the function f satisfies (H1). Similarly, we can show that the functions g, Ik, h
satisfy (H1). Furthermore, we have

Lf =
1

36
, Lg =

1

49
, Lh = LI =

1

25
, M̃S = M̃T = 1, α =

3

4
, n = 1.

It can be calculated that Θ = .37 < 1. Hence the condition of Theorem 3.1 is fulfilled, so
we deduce that the system (5)-(7) has a unique mild solution on [0, 1].

5 Conclusion

Fractional order stochastic differential equation is an equation in which randomness is
included. In this paper, we established the sufficient conditions for the existence results
for a class of impulsive fractional functional stochastic differential equations with nonlocal
initial condition. To prove the stated theorems we utilized the well known fixed point
theorems with suitable setting of abstract spaces. In our subsequent study, we will try to
addressed the existence and uniqueness issue for the class of stochastic fractional neutral
integro-differential equation with non-instantaneous impulsive conditions.
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