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1 Introduction

Fractional calculus is generalization of ordinary differentiation and integration to arbi-
trary non-integer order. The subject is as old as the differential calculus, starting from
some speculations of G.W. Lebeniz (1967) and L. Euler (1730) and since then, it has
continued to be developed up to nowadays. Integral equations are one of the most use-
ful mathematical tools in both pure and applied analysis. This is particulary true for
problems in mechanical vibrations and the related fields of engineering and mathemati-
cal physics. We can find numerous applications of differential and integral equations of
fractional order in finance, hydrology, biophysics, thermodynamics, control theory, statis-
tical mechanics, astrophysics, cosmology and bioengineering [10,14,19,20,23]. There has
been a significant development in ordinary and partial fractional differential equations
in recent years; see the monographs of Abbas et al. [5, 6], Baleanu et al. [10], Kilbas et
al. [16], Zhou [25], the papers of Abbas et al. [1–3,7], Sowmya and Vatsala [21], Stutson
and Vatsala [22], Vityuk and Golushkov [24], and the references therein.
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There has been a significant development in impulse theory in recent years, especially
in the area of impulsive differential equations with fixed moments. Recently some results
on the Darboux problem for fractional order impulsive hyperbolic differential equations
and inclusions have been obtained by Abbas et al. [3, 5].

The initial value problems of ordinary random differential equations have been studied
in the literature on bounded as well as unbounded internals of the real line for different
aspects of the solution. See, for example, Burton and Furumochi [11] and the references
therein.

In this paper, we discuss the existence of random solutions for the following impulsive
partial fractional random differential equations

cDr
xk
u(x, y, w) = f(x, y, u(x, y, w), w); if (x, y) ∈ Jk, k = 0, . . . ,m,w ∈ Ω,

u(x+
k , y, w) = u(x−k , y, w) + Ik(u(x−k , y, w)); if y ∈ [0, b], k = 1, . . . ,m,w ∈ Ω,

u(x, 0, w) = ϕ(x,w); x ∈ [0, a], w ∈ Ω,

u(0, y, w) = ψ(y, w); y ∈ [0, b], w ∈ Ω,

ϕ(0, w) = ψ(0, w),

(1)

where J0 = [0, x1] × [0, b], Jk := (xk, xk+1] × [0, b]; k = 1, . . . ,m, a, b > 0, θk =
(xk, 0); k = 0, . . . ,m, cDr

xk
is the fractional Caputo derivative of order r = (r1, r2) ∈

(0, 1]× (0, 1], 0 = x0 < x1 < · · · < xm < xm+1 = a, (Ω,A) is a measurable space, f : J ×
E×Ω→ E; Ik : E → E; k = 1, . . . ,m are given continuous functions, ϕ : [0, a]×Ω→ E
and ψ : [0, b] × Ω → E are given absolutely continuous functions. Here u(x+

k , y, w) and
u(x−k , y, w) denote the right and left limits of u(x, y, w) at x = xk, respectively.

This paper initiates the study of random solutions for impulsive partial hyperbolic
fractional differential equations.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. Let E be a Banach space and let J := [0, a] × [0, b]; a, b > 0.
Denote by L1(J) the space of Bochner-integrable functions u : J → E with the norm

‖u‖L1 =

∫ a

0

∫ b

0

‖u(x, y)‖Edydx,

where ‖ · ‖E denotes a suitable complete norm on E.
As usual, by AC(J) we denote the space of absolutely continuous functions from J

into E, and C := C(J) is the Banach space of continuous functions from J into E with
the norm ‖ · ‖∞ defined by

‖u‖∞ = sup
(x,y)∈J

‖u(x, y)‖E .

Consider the space

PC = PC(J × Ω) =
{
u : J × Ω→ E : u(·, ·, w) is continuous on Jk; k = 0, 1, . . . ,m, and

there exist u(x−k , y, w) and u(x+
k , y, w); k = 1, . . . ,m,

with u(x−k , y, w) = u(xk, y, w) for each y ∈ [0, b], w ∈ Ω
}
.
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This set is a Banach space with the norm

‖u‖PC = sup
(x,y)∈J

‖u(x, y, w)‖E .

Let βE be the σ-algebra of Borel subsets of E. A mapping v : Ω → E is said to be
measurable if for any B ∈ βE , one has

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A.

To define integrals of sample paths of random process, it is necessary to define a
jointly measurable map.

Definition 2.1 A mapping T : Ω × E → E is called jointly measurable if for any
B ∈ βE , one has

T−1(B) = {(w, v) ∈ Ω× E : T (w, v) ∈ B} ⊂ A× βE ,

where A×βE is the direct product of the σ-algebras A and βE that are defined in Ω and
E respectively.

Lemma 2.1 Let T : Ω×E → E be a mapping such that T (·, v) is measurable for all
v ∈ E, and T (w, ·) is continuous for all w ∈ Ω. Then the map (w, v) 7→ T (w, v) is jointly
measurable.

Definition 2.2 A function f : J ×E ×Ω→ E is called random Carathéodory if the
following conditions are satisfied:

(i) The map (x, y, w)→ f(x, y, u, w) is jointly measurable for all u ∈ E, and

(ii) The map u→ f(x, y, u, w) is continuous for almost all (x, y) ∈ J and w ∈ Ω.

Let T : Ω × E → E be a mapping. Then T is called a random operator if T (w, u)
is measurable in w for all u ∈ E and it is expressed as T (w)u = T (w, u). In this case
we also say that T (w) is a random operator on E. A random operator T (w) on E is
called continuous (compact, totally bounded and completely continuous) if T (w, u) is
continuous (compact, totally bounded and completely continuous, respectively) in u for
all w ∈ Ω. The details of completely continuous random operators in Banach spaces and
their properties appear in Itoh [15].

Definition 2.3 [13] Let P(Y ) be the family of all nonempty subsets of Y and C
be a mapping from Ω into P(Y ). A mapping T : {(w, y) : w ∈ Ω, y ∈ C(w)} → Y
is called random operator with stochastic domain C if C is measurable (i.e., for all
closed A ⊂ Y, {w ∈ Ω, C(w) ∩ A 6= ∅} is measurable) and for all open D ⊂ Y and all
y ∈ Y, {w ∈ Ω : y ∈ C(w), T (w, y) ∈ D} is measurable. T will be called continuous
if every T (w) is continuous. For a random operator T, a mapping y : Ω → Y is called
random (stochastic) fixed point of T if for P−almost all w ∈ Ω, y(w) ∈ C(w) and
T (w)y(w) = y(w) and for all open D ⊂ Y, {w ∈ Ω : y(w) ∈ D} is measurable.

Let MX denote the class of all bounded subsets of a metric space X.
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Definition 2.4 Let X be a complete metric space. A map α : MX → [0,∞) is
called a measure of noncompactness on X if it satisfies the following properties for all
B,B1, B2 ∈MX :

(MNC.1) α(B) = 0 if and only if B is precompact (regularity),
(MNC.2) α(B) = α(B) (invariance under closure),
(MNC.3) α(B1 ∪B2) = max{α(B1), α(B2)} (semi-additivity).

For more details on measure of noncompactness and its properties, see [8, 9].

Let θ = (0, 0), r1, r2 > 0 and r = (r1, r2). For f ∈ L1(J), the expression

(Irθf)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t)dsdt

is called the left-sided mixed Riemann-Liouville integral of order r, where Γ(·) is the
(Euler’s) gamma function defined by Γ(ξ) =

∫∞
0
tξ−1e−tdt, ξ > 0.

In particular,

(Iθθu)(x, y) = u(x, y), (Iσθ u)(x, y) =

∫ x

0

∫ y

0

u(s, t)dtds; for almost all (x, y) ∈ J,

where σ = (1, 1). For instance, Irθu exists for all r1, r2 ∈ (0,∞), when u ∈ L1(J). Note
also that when u ∈ C(J), then (Irθu) ∈ C(J). Moreover

(Irθu)(x, 0) = (Irθu)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

Example 2.1 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθx
λyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
xλ+r1yω+r2 , for almost all (x, y) ∈ J.

By 1− r we mean (1− r1, 1− r2) ∈ [0, 1)× [0, 1). Denote by D2
xy := ∂2

∂x∂y the mixed
second order partial derivative.

Definition 2.5 [24] Let r ∈ (0, 1]×(0, 1] and u ∈ L1(J). The Caputo fractional-order
derivative of order r of u is defined by the expression

cDr
θu(x, y) = (I1−r

θ D2
xyu)(x, y).

The case σ = (1, 1) is included and we have

(cDσ
θ u)(x, y) = (D2

xyu)(x, y); for almost all (x, y) ∈ J.

Example 2.2 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

cDr
θx
λyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
xλ−r1yω−r2 ; for almost all (x, y) ∈ J.
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Let a1 ∈ [0, a], z+ = (a1, 0) ∈ J, Jz = (a1, a]× [0, b], r1, r2 > 0 and r = (r1, r2). For
u ∈ L1(Jz), the expression

(Irz+u)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

a+1

∫ y

0

(x− s)r1−1(y − t)r2−1u(s, t)dtds

is called the left-sided mixed Riemann-Liouville integral of order r of u.

Definition 2.6 [24]. For u ∈ L1(Jz) where D2
xyu is Lebesque integrable on

[xk, xk+1] × [0, b], k = 0, . . . ,m, the Caputo fractional order derivative of order r of
u is defined by the expression

(cDr
z+f)(x, y) = (I1−r

z+ D2
xyf)(x, y).

Lemma 2.2 [12] If Y is a bounded subset of Banach space X, then for each ε > 0,
there is a sequence {yk}∞k=1 ⊂ Y such that

α(Y ) ≤ 2α({yk}∞k=1) + ε.

Lemma 2.3 [18] If {uk}∞k=1 ⊂ L1(J) is uniformly integrable, then α({uk}∞k=1) is
measurable and for each (x, y) ∈ J,

α

({∫ x

0

∫ y

0

uk(s, t)dtds

}∞
k=1

)
≤ 2

∫ x

0

∫ y

0

α({uk(s, t)}∞k=1)dtds.

Lemma 2.4 [17] Let F be a closed and convex subset of a real Banach space, let
G : F → F be a continuous operator and G(F ) be bounded. If there exists a constant
k ∈ [0, 1) such that for each bounded subset B ⊂ F,

α(G(B)) ≤ kα(B),

then G has a fixed point in F.

3 Existence Results

We need the following auxiliary lemma.

Lemma 3.1 [4] Let 0 < r1, r2 ≤ 1, µ(x, y) = ϕ(x)+ψ(y)−ϕ(0) and let f : J×E →
E be continuous. A function u ∈ PC(J) is a solution of the fractional integral equation

u(x, y) =



µ(x, y) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds;

if (x, y) ∈ [0, x1]× [0, b],

µ(x, y) +
∑k
i=1(Ii(u(x−i , y))− Ii(u(x−i , 0)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y
0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m,

if and only if u is a solution of the problem

cDr
xk
u(x, y) = f(x, y, u(x, y)); if (x, y) ∈ Jk, k = 0, . . . ,m,

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)); if y ∈ [0, b], k = 1, . . . ,m,

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0).
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As a consequence, we have the following lemma.

Lemma 3.2 Let 0 < r1, r2 ≤ 1, µ(x, y, w) = ϕ(x,w) +ψ(y, w)−ϕ(0, w). A function
u ∈ PC is a solution of the random fractional integral equation

u(x, y, w) =



µ(x, y, w) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds;

if (x, y) ∈ [0, x1]× [0, b], w ∈ Ω,

µ(x, y, w) +
∑k
i=1(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y
0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m, w ∈ Ω,

(2)
if and only if u is a solution of the random problem (1).

The following hypotheses will be used in the sequel.

Hypothesis 3.1 The functions w 7→ ϕ(x, 0, w) and w 7→ ψ(0, y, w) are measurable
and bounded for almost each x ∈ [0, a] and y ∈ [0, b] respectively.

Hypothesis 3.2 The function f is random Carathéeodory on J × E × Ω.

Hypothesis 3.3 There exist functions p1, p2, p3 : J × Ω → [0,∞) with pi(·, w) ∈
L∞(J, [0,∞)); i = 1, 2, 3 such that for each w ∈ Ω,

‖f(x, y, u, w)‖E ≤ p1(x, y, w) + p2(x, y, w)‖u‖E ,

and
‖Ik(u)‖E ≤ p3(x, y, w)‖u‖E ,

for all u ∈ E and almost each (x, y) ∈ J.

Hypothesis 3.4 For any bounded B ⊂ E,

α(f(x, y,B,w)) ≤ p2(x, y, w)α(B), for almost each (x, y) ∈ J,

and
α(Ik(B)) ≤ p3(x, y, w)α(B), for almost each (x, y) ∈ J.

Set

µ∗(w) = sup
(x,y)∈J

‖µ(x, y, w)‖E , p∗i (w) = sup ess(x,y)∈Jpi(x, y, w); i = 1, 2, 3.

Remark 3.1 Hypotheses 3.3 and 3.4 are equivalent [8].

Theorem 3.1 Assume that hypotheses 3.1-3.3 hold. If

` := 2mp∗3(w) +
4(m+ 1)p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)
< 1,

then the problem (1) has a random solution defined on J.
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Proof. By Lemma 3.2, the problem (1) is equivalent to the integral equation

u(x, y, w) =



µ(x, y, w) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds;

if (x, y) ∈ [0, x1]× [0, b], w ∈ Ω,

µ(x, y, w) +
∑k
i=1(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y
0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds;

if (x, y) ∈ (xk, xk+1]× [0, b], k = 1, . . . ,m, w ∈ Ω,

for each w ∈ Ω and almost each (x, y) ∈ J.

Define the operator N : PC → PC by

(Nu)(x, y) = µ(x, y, w) +

k∑
i=1

(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds.

Since the functions ϕ,ψ and Ik and f are absolutely continuous, the function µ and
the indefinite integral are absolutely continuous for all w ∈ Ω and almost all (x, y) ∈ J.
Again, as the maps µ and Ik are continuous for all w ∈ Ω and the indefinite integral is
continuous on J, then N(w) defines a mapping N : PC → PC. Hence u is a solution for
the problem (1) if and only if u = Nu. We shall show that the operator N satisfies all
conditions of Lemma 2.4. The proof will be given in several steps.

Step 1: N is a random operator with stochastic domain on PC.
Since f(x, y, u, w) is random Carathéodory, the map w → f(x, y, u, w) is measurable in
view of Definition 2.1. Similarly, the product (x− s)r1−1(y− t)r2−1f(s, t, u(s, t, w), w) of
a continuous and a measurable function is again measurable. Further, the integral is a
limit of a finite sum of measurable functions and Ik is measurable. Therefore, the map

w 7→ µ(x, y, w) +

k∑
i=1

(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t, w), w)dtds

is measurable. As a result, N is a random operator from PC into PC.

Let W : Ω→ P(PC) be defined by

W (w) = {u ∈ PC : ‖u‖PC ≤ R(w)}
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with R(·) being chosen appropriately. For instance, we assume that

R(w) ≥
µ∗ +

(m+1)p∗1(w)ar1br2

Γ(1+r1)Γ(1+r2)

1− 2mp∗3(w)− (m+ 1)p∗2(w) ar1br2
Γ(1+r1)Γ(1+r2)

.

The set W (w) is bounded, closed, convex and solid for all w ∈ Ω. Then W is measurable
(Lemma 17 ( [13]). Let w ∈ Ω be fixed, then from Hypothesis 3.4 for any u ∈ w(w), we
get

‖(Nu)(x, y)‖E

≤ ‖µ(x, y, w)‖E +

k∑
i=1

‖Ii(u(x−i , y, w))‖+ ‖Ii(u(x−i , 0, w))‖

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1‖f(s, t, u(s, t, w), w)‖Edtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, u(s, t, w), w)‖Edtds,

≤ ‖µ(x, y, w)‖E +

k∑
i=1

(p3(x, y, w)‖u‖+ (p3(xi, 0, w))‖u‖)

+
1

Γ(r1)Γ(r2)

k∑
i=1

(∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1p1(s, t, w)dtds

+

∫ xi

xi−1

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(s, t, w)‖Edtds

)

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1p1(s, t, w)dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1p2(s, t, w)‖u(s, t, w)‖Edtds

≤ µ∗(w) + 2mp∗3(w)R(w)

+

k∑
i=1

(
p∗1(w)

Γ(r1)Γ(r2)

∫ xi

xi−1

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ xi

xi−1

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

)

+
p∗1(w)

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

+
p∗2(w)R(w)

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1dtds

≤ µ∗(w) + 2mp∗3(w)R(w) +
(p∗1(w) + p∗2(w)R(w))(m+ 1)ar1br2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).

Therefore, N is a random operator with stochastic domain W and N : W (w)→ W (w).
Furthermore, N maps bounded sets into bounded sets in PC.
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Step 2: N is continuous.
Let {un} be a sequence such that un → u in PC. Then, for each (x, y) ∈ J and w ∈ Ω,
we have

‖(Nun)(x, y)− (N(w)u)(x, y)‖E

≤
k∑
i=1

(‖Ii(un(x−i , y, w))− Ii(u(x−i , y, w))‖+ ‖Ii(un(x−i , 0, w))− Ii(u(x−i , 0, w))‖)

+
1

Γ(r1)Γ(r2)

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1‖f(s, t, un(s, t, w), w)

−f(s, t, u(s, t, w), w)‖Edtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1‖f(s, t, un(s, t, w), w)

−f(s, t, u(s, t, w), w)‖Edtds.

Using the Lebesgue dominated convergence theorem, we get

‖Nun −Nu‖∞ → 0 as n→∞.

As a consequence of Steps 1 and 2, we can conclude that N : W (w) → W (w) is a
continuous random operator with stochastic domain W, and N(W (w)) is bounded.
Step 3: For each bounded subset B of W (w) we have

α(NB) ≤ `α(B).

Let w ∈ Ω be fixed. From Lemmas 2.2 and 2.3, for any B ⊂ W and any ε > 0, there
exists a sequence {un}∞n=0 ⊂ B, such that for all (x, y) ∈ J, we have

α((NB)(x, y))

= α

{
µ(x, y, w) +

k∑
i=1

(Ii(u(x−i , y, w))− Ii(u(x−i , 0, w)))

+

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds

+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, u(s, t, w), w)dtds; u ∈ B

}
≤ α

{
k∑
i=1

(Ii(un(x−i , y, w))− Ii(un(x−i , 0, w)))

+

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s, t, w), w)dtds
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+

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
f(s, t, un(s, t, w), w)dtds

}∞
n=1

+ ε

≤ α

{
k∑
i=1

(Ii(un(x−i , y, w))− Ii(un(x−i , 0, w)))

}∞
n=1

+2

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α{f(s, t, un(s, t, w), w)}∞n=1dtds

+2

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
α{f(s, t, un(s, t, w), w)}∞n=1dtds+ ε

≤ 2mp3(x, y, w)α ({un(s, t, w)}∞n=1)

+4

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α ({un(s, t, w)}∞n=1) dtds

+4

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)α ({un(s, t, w)}∞n=1) dtds+ ε

≤ 2mp3(x, y, w)α ({un}∞n=1)

+

(
4

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)

)
α ({un}∞n=1) dtds

+

(
4

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dsdt

)
α ({un}∞n=1) + ε

≤ 2mp3(x, y, w)α(B)

+

(
4

k∑
i=1

∫ xi

xi−1

∫ y

0

(xi − s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B)

+

(
4

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
p2(s, t, w)dtds

)
α(B) + ε

≤
(

2mp∗3(w) +
4(m+ 1)p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)

)
α(B) + ε

= `α(B) + ε.

Since ε > 0 is arbitrary, we have

α(N(B)) ≤ `α(B).

It follows from Lemma 2.4 that for each w ∈ Ω, N has at least one fixed point in
W. Since

⋂
w∈Ω intW (w) 6= ∅, there exists a measurable selector of intW , thus N has a

stochastic fixed point, i.e., the problem (1) has at least one random solution.

4 An Example

Let E = R, Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of Lebesgue
measurable subsets of (−∞, 0). Given a measurable function u : Ω→ AC([0, 1]× [0, 1]),
consider the following impulsive partial fractional random differential equations of the
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form{
cDr

xk
u(x, y, w) = w2e−x−y−3

1+w2+5|u(x,y,w)| ; if (x, y) ∈ Jk, k = 0, . . . ,m,

u(x+
k , y, w) = u(x−k , y, w) + w2

(1+w2+10|u(x,y,w)|)ex+y+10 ; if y ∈ [0, 1], k = 1, . . . ,m,

(3)
where w ∈ Ω, J = [0, 1]× [0, 1], (r1, r2) ∈ (0, 1]× (0, 1] with the initial conditions{

u(x, 0, w) = x sinw; x ∈ [0, 1],

u(0, y, w) = y2 cosw; y ∈ [0, 1].
w ∈ Ω, (4)

Set

f(x, y, u(x, y, w), w) =
w2

(1 + w2 + 5|u(x, y, w)|)ex+y+10
, (x, y) ∈ [0, 1]× [0, 1], w ∈ Ω,

and

Ik(u(x−k , y, w)) =
w2

(1 + w2 + 10|u(x, y, w)|)ex+y+10
, y ∈ [0, 1], k = 1, . . . ,m, w ∈ Ω.

The functions w 7→ ϕ(x, 0, w) = x sinw and w 7→ ψ(0, y, w) = y2 cosw are measurable
and bounded with

|ϕ(x, 0, w)| ≤ 1, |ψ(0, y, w)| ≤ 1,

hence, Hypothesis 3.1 is satisfied.
Clearly, the map (x, y, w) 7→ f(x, y, u, w) is jointly continuous for all u ∈ R and hence

jointly measurable for all u ∈ R. Also the map u 7→ f(x, y, u, w) is continuous for all
(x, y) ∈ J and w ∈ Ω. So the function f is Carathéodory on [0, 1]× [0, 1]× R× Ω.
For each u ∈ R, (x, y) ∈ [0, 1]× [0, 1] and w ∈ Ω, we have

|f(x, y, u, w)| ≤ 1 +
5

e10
|u|,

and

|Ik(u)| ≤ 10

e10
|u|.

Hence Hypothesis 3.4 is satisfied with

p1(x, y, w) = p∗1(w) = 1, p2(x, y, w) = p∗2(w) =
5

e10
, p3(x, y, w) = p∗3(w) =

10

e10
.

We shall show that condition ` < 1 holds with a = b = 1. Indeed, if we assume, for
instance, that the number of impulses m = 3, then we have

` = 2mp∗3(w) +
4(m+ 1)p∗2(w)ar1br2

Γ(1 + r1)Γ(1 + r2)

=
60

e10
+

80

e10Γ(1 + r1)Γ(1 + r2)

< 1,

which is satisfied for each (r1, r2) ∈ (0, 1]×(0, 1]. Consequently, Theorem 3.1 implies that
the problem (3)-(4) has a random solution defined on [0, 1]× [0, 1].
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