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Abstract: We offer necessary and sufficient conditions for a mapping of the form

(Pφ)(t) = p(t)−
∫ t

0

C(t, s)g(s, φ(s))ds

to send sets of bounded continuous functions on [0,∞) into equicontinuous sets. When
that equicontinuity holds then one may study the problem of obtaining a bounded
solution of the integral equation by means of a Schauder-type fixed point theorem.
When the mapped sets are equicontinuous then we use Schaefer’s fixed point theorem
to show that we can obtain a bounded positive solution provided that we know that
the resolvent kernel, R(t, s), of C is non-negative and that

p(t)−
∫ t

0

R(t, s)p(s)ds

is bounded and positive, while g(t, x) does not grow too fast near x = 0. The known
literature shows that there are wide classes of important problems from applied math-
ematics and fractional equations for which these conditions hold. For those classes,
the problem of obtaining a positive solution is largely solved when equicontinuity,
characterized by our theorem, holds.
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