Nonlinear Dynamics and Systems Theory, 17 (3) (2017) 239-246

Maximal Regularity of Non-autonomous Forms with Bounded Variation

M. Boukdir*

Département Des mathématiques Faculté des Sciences Agadir Maroc

Received: July 28, 2016; Revised: July 28, 2017

Abstract: We are concerned with the non-autonomous evolutionary problem

$$(P) \begin{cases} \dot{u}(t) + A(t)u(t) = f(t), & t \in [0, \eta], \\ u(0) = u_0. \end{cases}$$

Each operator A(t) is associated with a symmetric sesquilinear form $\mathfrak{a}(t;.,.)$ on a Hilbert separable space $(H, \|\cdot\|)$. We show that the approximation method considered in [13] to redemonstrate the maximal regularity in H, is still valid to prove this property if the sesquilinear form is symmetric and time bounded variation. This result was already established in [5].

Keywords: sesquilinear forms; non-autonomous evolution equations; maximal regularity.

Mathematics Subject Classification (2010): 35K90, 35K50, 35K45, 47D06.

1 Introduction

Let $(H, \|\cdot\|)$ and $(V, \|\cdot\|_V)$ be Hilbert separable spaces such that V is continuously and densely embedded in $H, V \hookrightarrow_d H$. Let V' be the anti-dual of V and denote by (.|.) the scalar product of H and by $\langle .; . \rangle$ the duality pairing $V' \times V$. By the standard identification of H with H' we obtain the continuous and dense embedding

$$V \xrightarrow[d]{} H \simeq H' \xrightarrow[d]{} V'.$$

Moreover, it is shown in [4] that there exists a constant c_H such that

$$\begin{aligned} \|u\| \leqslant c_H \|u\|_V \quad \text{for all } u \in V \\ \text{and} \quad \|f\|_{V'} \leqslant c_H \|f\| \quad \text{for all } f \in H. \end{aligned}$$

^{*} Corresponding author: mailto:mohamedboukdir@yahoo.fr

^{© 2017} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua239