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On the Global Asymptotic Stability

of a Class of Nonlinear Switched Systems

A.Yu. Aleksandrov ∗, E.B. Aleksandrova, A.V. Platonov

and M.V. Voloshin

Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
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Abstract: In this paper, a class of nonlinear switched systems with separable nonlin-
earities is studied. With the aid of multiple Lyapunov functions method, conditions
on switching law are derived under which the zero solutions of the considered sys-
tems are globally asymptotically stable. Some examples are presented to illustrate
the obtained results.

Keywords: hybrid systems; switching law; global asymptotic stability; multiple Lya-
punov functions.

Mathematics Subject Classification (2010): 34A38, 34D23.

1 Introduction

Switched systems represent a subclass of hybrid systems and have strong engineering
background in various applications. A significant number of real systems can be modeled
as switched systems such as mechanical systems, chemical processes, vehicle control,
traffic control, automotive industry, etc. [3, 11, 18, 23, 24].

A switched system has two components: a family of subsystems and a switching signal.
Subsystems in the family are described by a set of indexed equations. The switching
signal selects an active subsystem at every instant of time, i.e., the subsystem from the
family that is currently being followed [18]. Switching signals are usually classified as
time-dependent or state-dependent. Note that qualitative behaviour of a switched system
depends not only on the behaviour of individual subsystems in the family, but also on
the switching signal [24].

∗ Corresponding author: mailto:a.u.aleksandrov@spbu.ru

c© 2017 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua107
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In the past decades, different methods of analysis for switched systems were devel-
oped, and many significant results were obtained (see, for instance, [2–7, 9–11, 18, 24]).
In particular, with the aid of the Lyapunov function approach, various conditions of
asymptotic stability were derived. Stability is one of the fundamental concepts, and it
plays the most important role in control systems design.

For the stability problem, the first question is whether a switched system is stable
when there are no restrictions on switching signal (stability analysis under arbitrary
switching). On the other hand, many switched systems may fail to preserve stability
under arbitrary switching, but may be stable under restricted switching signals. In the
second case, it is required to find corresponding restrictions.

Many constructive approaches were developed for the stability analysis of switched
systems, for example, the method of differential inequalities (scalar, vector or matrix) [4,
12, 20], the dwell time approach [6, 10, 11], the method of common or multiple Lyapunov
functions [6, 7, 9–11, 14, 18, 24], etc. These methods are powerful and effective tool for
the finding switching signals providing the required properties.

Stability analysis is complicated if the considered system is essentially nonlinear
or/and contains some uncertainties [1, 2, 7, 8]. Along with the asymptotic stability,
the problems of ultimate boundedness and finite-time stability are considered in many
papers [3–5, 20].

In addition to the solving the problem of stability, it is important to estimate the
attraction domain of a given equilibrium position [16]. It should be noted that the size of
the region of attraction depends, generally, on switchig law [4]. Of a particular interest
is the situation where the equilibrium position is globally asymptotically stable.

In this paper, the problem of global asymptotic stability for a class of nonlinear
switched systems with separable nonlinearities is studied. It is assumed that every sub-
system from the considered family admits globally asymptotically stable zero solution.
We will look for conditions on switching law which guarantee the preservation of global
asymptotic stability for the corresponding switched system. We will employ multiple
Lyapunov functions in our analysis. As an additional result, estimates of the conver-
gence rate of solutions to the origin will be obtained.

2 Statement of the Problem

Consider the system with separable nonlinearities

ẋ = Pσf(x). (1)

Here x = (x1, . . . , xn)
T ; f(x) = (f1(x1), . . . , fn(xn))

T
, scalar functions fi(xi) are defined

and continuous for xi ∈ (−∞,+∞) and satisfy the conditions xifi(xi) > 0 for xi 6= 0,
i = 1, . . . , n; σ = σ(t) is a piecewise constant function defining the switching law, σ(t) :

[0,+∞) → Q = {1, . . . , N}; Ps = {p(s)ij }ni,j=1 are constant matrices, s = 1, . . . , N .
Thus, at each time instant one of the subsystems

ẋ = Psf(x), s = 1, . . . , N, (2)

is active. Subsystems of the form (2) belong to well-known class of the Persidskii type sys-
tems [21]. They are widely used for modeling of various practical systems and processes,
see [2, 3, 13, 15, 17].

Let θi, i = 1, 2, . . ., be the switching times, 0 < θ1 < θ2 < . . ., and θ0 = 0. Assume
that the function σ(t) is right-continuous. Without loss of generality, we suppose that
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the interval (0,+∞) contains the infinite number of switching instants. Hereinafter, we
consider non Zeno sequences [18], i.e., sequences that switch at most a finite number of
times in any finite time interval.

From the properties of functions f1(x1), . . . , fn(xn) it follows that system (1) has the
zero solution. We will look for conditions providing global asymptotic stability of the
solution.

In [7], the problem of the existence of a common Lyapunov function for family (2)
was studied. Several approaches to the construction of such function were proposed.
It is known [18, 24] that the existence of a common Lyapunov function guarantees the
asymptotic stability of the zero solution of (1) for any switching law.

In the present contribution, we will assume that we failed to construct a common
Lyapunov function for subsystems (2). In this case, to prove stability of a switched
system, one should restrict the class of admissible switching signals [10, 11, 18, 24]. The
general approach for finding such restrictions is based on the use of multiple Lyapunov
functions [10, 11].

In what follows we will impose some additional conditions on the right-hand sides of
subsystems (2).

Assumption 2.1 For every s ∈ {1, . . . , N}, there exist positive constants

λ
(s)
1 , . . . , λ

(s)
n such that the matrixPT

s Λs+ΛsPs is negative definite. Here Λs = diag{λ(s)1 ,

. . . , λ
(s)
n }.

Remark 2.1 Conditions of the existence of required values of λ
(s)
1 , . . . , λ

(s)
n were

investigated in [5, 7, 9, 14].

Remark 2.2 If Assumption 2.1 is fulfilled, then for every s ∈ {1, . . . , N} the zero so-
lution of the s-th subsystem from (2) is asymptotically stable for any admissible functions
f1(x1), . . . , fn(xn), and for this subsystem the function

Vs(x) =

n∑

i=1

λ
(s)
i

∫ xi

0

fi(τ) dτ (3)

satisfies the requirements of the Lyapunov asymptotic stability theorem. If it is possible

to choose values of λ
(s)
1 , . . . , λ

(s)
n the same for all s = 1, . . . , N , then a common Lyapunov

function can be constructed for subsystems (2). However, conditions of the existence of
such common Lyapunov function are more conservative than those of the existence of a
partial Lyapunov function of the form (3) for every subsystem.

Assumption 2.2 Let functions fj(xj) be of the form fj(xj) = βjx
µj

j , j = 1, . . . , n,
where βj be positive constants, and µj be positive rationals with odd numerators and
denominators.

Remark 2.3 Without loss of generality, we will assume that βj = 1, j = 1, . . . , n,
and µ1 ≤ . . . ≤ µn.

Thus, under Assumption 2.2, we consider the family of subsystems

ẋi =

n∑

j=1

p
(s)
ij x

µj

j , i = 1, . . . , n, s = 1, . . . , N, (4)
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and the corresponding switched system

ẋi =

n∑

j=1

p
(σ)
ij x

µj

j , i = 1, . . . , n. (5)

Remark 2.4 System (5) can be treated as a system of the first, in the broad
sense [25], approximation for a nonlinear hybrid system.

If Assumption 2.1 is fulfilled, then for subsystems from family (4) there exist Lyapunov
functions of the form

Vs(x) =

n∑

i=1

λ
(s)
i

xµi+1
i

µi + 1
, s = 1, . . . , N, (6)

and the zero solutions of these subsystems are globally asymptotically stable.
Our goal is to find classes of switching signals for which we can guarantee the global

asymptotic stability of the zero solution of system (5).

Remark 2.5 The case where µ1 = . . . = µn was investigated in [4, 6, 11, 18].
Therefore, in the present paper we will assume that µ1 < µn.

3 Preliminary Results

Let
c = max

s,j=1,...,N
max

i=1,...,n
(λ

(s)
i /λ

(j)
i ).

Then c ≥ 1, and
Vs(x) ≤ cVj(x), s, j = 1, . . . , N, (7)

for x ∈ R
n.

Remark 3.1 If c = 1, then V1(x) ≡ . . . ≡ VN (x), i.e., for subsystems (4) a common
Lyapunov function is constructed. In this case the zero solution of (5) is globally asymp-
totically stable for any admissible switching law. Therefore, in what follows we assume
that c > 1.

Denote Ti = θi − θi−1, i = 1, 2, . . . . Construct auxiliary sequences. Let ψ1(b,m) =
χ1(m) = ϕ1(b,m) = 0,

ψk(b,m) =

k−1∑

i=1

Tm+ib
k−i, χk(m) =

1

k

k−1∑

i=1

Tm+i, ϕk(b,m) =

k−1∑

i=1

Tm+ib
−i

for k = 2, 3, . . .. Here b = const > 0; m = 1, 2, . . . .
Consider the conditions

ψk(b,m) → +∞ as k → ∞, (8)

χk(m) → +∞ as k → ∞, (9)

ϕk(b,m) → +∞ as k → ∞. (10)

It is worth mentioning that condition (8) needs to be checked only for 0 < b < 1, and
condition (10) only for b > 1.
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Lemma 3.1 If any of conditions (8)–(10) is fulfilled for m = 1, then it is fulfilled for

all m = 1, 2, . . ..

To prove the lemma, it is sufficient to note that the equalities

ψm+k−1(b, 1) = ψk(b,m) + bk
m∑

j=2

Tj b
m−j,

χm+k−1(1) =
k

m+ k − 1
χk(m) +

1

m+ k − 1

m∑

j=2

Tj ,

ϕm+k−1(b, 1) = b1−mϕk(b,m) +

m∑

j=2

Tj b
1−j

hold for m = 1, 2, . . . and k = 2, 3, . . . .

Lemma 3.2 Let 0 < b < 1. If condition (8) is fulfilled, then condition (9) is also

fulfilled. In addition, if condition (8) is fulfilled uniformly with respect to m = 1, 2, . . .,
then condition (9) is also fulfilled uniformly with respect to m = 1, 2, . . ..

Proof. The equality ψk+1(b,m) = b(ψk(b,m) + Tm+k) holds for k,m = 1, 2, . . ..
Hence,

Tm+k = b−1ψk+1(b,m)− ψk(b,m) = b−1 (ψk+1(b,m)− ψk(b,m)) + (b−1 − 1)ψk(b,m).

We obtain

χk(m) =
1

bk

k−1∑

i=1

(ψi+1(b,m)− ψi(b,m)) +
1− b

bk

k−1∑

i=1

ψi(b,m)

=
ψk(b,m)

bk
+

1− b

bk

k−1∑

i=1

ψi(b,m) ≥ 1− b

b

(
1

k

k∑

i=1

ψi(b,m)

)
.

Let condition (8) be fulfilled. Then, for any M > 0, one can choose N > 0 such that
ψk(b,m) > M for k ≥ N . Hence, χk(m) ≥ (1 − b)M/(2b) for k ≥ 2N , and condition (9)
is fulfilled.

If condition (8) is fulfilled uniformly with respect to m = 1, 2, . . ., then the value of
N can be chosen independent of m. Therefore, condition (9) is also fulfilled uniformly
with respect to m = 1, 2, . . .. This completes the proof.

Assume that the inequalities

V̇s ≤ −βV 1+ρ
s (x), s = 1, . . . , N, (11)

hold in a domain G ⊂ R
n. Here β > 0, ρ > −1, and V̇s is the derivative of the function

Vs(x) with respect to the s-th subsystem from (4), s = 1, . . . , N . Denote b = c−ρ.
Let a switching law σ(t) be given. Construct the multiple Lyapunov function Vσ(t)(x)

corresponding to the switching law. Choose t0 ≥ 0 and x0 ∈ G, and consider a solution
x(t) of system (5) starting at t = t0 from the point x0. Find a positive integer m such
that t0 ∈ [θm−1, θm).



112 A.Yu. ALEKSANDROV, E.B. ALEKSANDROVA, A.V. PLATONOV AND M.V. VOLOSHIN

Assume that a number t̃ satisfies the conditions t̃ > t0 and x(t) ∈ G for t ∈ [t0, t̃].
Integrating differential inequalities (11) and taking into account formulae (7), we arrive
at the following estimates:

(i) if ρ > 0, then

V −ρ
σ(θm−1)

(x(t̃)) ≥ V −ρ
σ(θm−1)

(x0) + βρ
(
t̃− t0

)
for t̃ ∈ [t0, θm),

V −ρ
σ(θm+k−1)

(x(t̃)) ≥ bkV −ρ
σ(θm−1)

(x0) + βρ

((
t̃− θm+k−1

)

+ψk(b,m) + bk (θm − t0)

)
for t̃ ∈ [θm+k−1, θm+k), k ≥ 1;

(12)

(ii) if ρ = 0, then

Vσ(θm−1)(x(t̃)) ≤ Vσ(θm−1)(x0)e
−β(t̃−t0) for t̃ ∈ [t0, θm),

Vσ(θm+k−1)(x(t̃)) ≤ Vσ(θm−1)(x0)e
k ln c−β(t̃−t0) for t̃ ∈ [θm+k−1, θm+k), k ≥ 1;

(13)

(iii) if −1 < ρ < 0 and 0 6∈ G, then

V −ρ
σ(θm−1)

(x(t̃)) ≤ V −ρ
σ(θm−1)

(x0) + βρ
(
t̃− t0

)
for t̃ ∈ [t0, θm),

V −ρ
σ(θm+k−1)

(x(t̃)) ≤ bk
(
V −ρ
σ(θm−1)

(x0) + βρ
(
b−k

(
t̃− θm+k−1

)

+ϕk(b,m) + (θm − t0)
))

for t̃ ∈ [θm+k−1, θm+k), k ≥ 1.

(14)

4 Conditions of the Global Asymptotic Stability

Let Assumption 2.1 be fulfilled. Consider the partial Lyapunov functions (6) constructed
for subsystems (4). It is easy to show that, for any positive numbers H̄ and Ĥ, one can

find constants β̄ > 0 and β̂ > 0 such that

V̇s ≤ −β̄V 1+ρn

s (x), s = 1, . . . , N, (15)

for ‖x‖ < H̄ , and

V̇s ≤ −β̂V 1+ρ1

s (x), s = 1, . . . , N, (16)

for ‖x‖ > Ĥ . Here ρn = (µn − 1)/(µn + 1), ρ1 = (µ1 − 1)/(µ1 + 1), and ‖ · ‖ is the
Euclidean norm of a vector.

Denote b̄ = c−ρn , b̂ = c−ρ1 .

Theorem 4.1 Let 1 ≤ µ1 < µn. If

ψk(b̄, m) → +∞ as k → ∞ (17)

uniformly with respect to m = 1, 2, . . ., then the zero solution of system (5) is globally

asymptotically stable.

Proof. Choose a positive number ε, and find β̄ > 0 such that estimates (15) hold in
the domain G1 = {x ∈ R

n : ‖x‖ < ε}.
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The inequalities

ā1‖x‖µn+1 ≤ Vs(x) ≤ ā2‖x‖µ1+1, s = 1, . . . , N, (18)

are valid for x ∈ G1. Here ā1 and ā2 are positive constants.

Using estimates (12) with G = G1, β = β̄, ρ = ρn, b = b̄ and taking into account
inequalities (18), it is easy to prove (see [6]) that under the assumptions of Theorem 4.1
one can choose δ > 0 such that if t0 ≥ 0 and ‖x0‖ < δ, then for a solution x(t) of
(5) starting at t = t0 from the point x0 the condition ‖x(t)‖ < ε hold for t ≥ t0, and
‖x(t)‖ → 0 as t− t0 → +∞ uniformly with respect to t0 ≥ 0 and ‖x0‖ < δ. Hence, the
zero solution of system (5) is uniformly asymptotically stable.

Let us show that the attraction domain of the zero solution coincides with the
space R

n.

Choose an arbitrary number ε > 0, and find the corresponding value of δ > 0 accord-
ing to the definition of uniform asymptotic stability. Let Ĥ ∈ (0, δ). Then there exists

β̂ > 0 such that estimates (16) are fulfilled in the domain G2 = {x ∈ R
n : ‖x‖ > Ĥ}.

The inequalities

â1‖x‖µ1+1 ≤ Vs(x) ≤ â2‖x‖µn+1, s = 1, . . . , N, (19)

hold for x ∈ G2, where â1 and â2 are positive constants.

Consider a solution x(t) of system (5) starting at t = t0 ≥ 0 from a point x0 ∈ G2.
There exists a positive integer m such that t0 ∈ [θm−1, θm).

First, assume that µ1 > 1. Then b̂ > b̄, and ψk(b̂, m) > ψk(b̄, m) for all k,m = 1, 2, . . ..

Therefore, ψk(b̂, m) → +∞ as k → ∞ uniformly with respect to m = 1, 2, . . ..

Using estimates (12) with G = G2, β = β̂, ρ = ρ1, b = b̂ and taking into account
inequalities (19), one can find T̂ ≥ 0 such that ‖x(t0 + T̂ )‖ < δ. Hence, ‖x(t)‖ → 0 as
t→ +∞.

Next, consider the case where µ1 = 1. Applying Lemma 3.2, we obtain that χk(m) →
+∞ as k → ∞ uniformly with respect to m = 1, 2, . . .. Note that t− t0 = (t−θm+k−1)+
kχk(m) + (θm − t0)) for t ∈ [θm+k−1, θm+k), k ≥ 1.

Using estimates (13) with G = G2, β = β̂ and taking into account inequalities (19),
it is easy to show the existence of a number T̂ ≥ 0 such that ‖x(t0 + T̂ )‖ < δ. Hence,
‖x(t)‖ → 0 as t→ +∞. This completes the proof.

Remark 4.1 If 1 < µ1 < µn, then the value of T̂ in the proof of Theorem 4.1
is independent of t0 and x0. Therefore, under the assumptions of Theorem 4.1, for
any given neighborhood of the origin, one can find an estimate of the transient time
of all solutions into the neighborhood, and this estimate will be independent of initial
conditions of solutions. In the case where 1 = µ1 < µn, the value of T̂ is independent of
t0, but it depends on x0.

Corollary 4.1 Let 1 ≤ µ1 < µn. If Ti → +∞ as i → ∞, then the zero solution of

system (5) is globally asymptotically stable.

Remark 4.2 In the case where 1 ≤ µ1 < µn and condition (17) is fulfilled nonuni-
formly with respect to m = 1, 2, . . ., we can guarantee only local and nonuniform asymp-
totic stability of the zero solution of system (5).
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Theorem 4.2 Let 0 < µ1 < 1 < µn. If condition (17) is fulfilled uniformly with

respect to m = 1, 2, . . ., and

ϕk(b̂, 1) → +∞ as k → ∞, (20)

then the zero solution of system (5) is globally asymptotically stable.

Proof. In a similar way as in the proof of Theorem 4.1, we obtain that the zero
solution of system (5) is uniformly asymptotically stable.

For an arbitrary chosen ε > 0, find constant δ > 0 according to the definition of
uniform asymptotic stability. Let Ĥ ∈ (0, δ). Then there exists a constant β̂ > 0 such
that estimates (16) hold in the domain G = {x ∈ R

n : ‖x‖ > Ĥ}.
Consider a solution x(t) of system (5) starting at t = t0 ≥ 0 from a point x0 ∈ G.

Find positive integer m such that t0 ∈ [θm−1, θm).
Assume that x(t) ∈ G for all t ≥ t0. Then, for any t̃ > t0, estimates (14) are valid

with the following specialization of parameters: β = β̂, ρ = ρ1, b = b̂.
According to Lemma 3.1, condition (20) implies that ϕk(b̂, m) → +∞ as k → ∞

for any m = 1, 2, . . .. Hence, from (14) it follows that if t̃ is sufficiently large, then
V −ρ1

σ(θm+k−1)
(x(t̃)) < 0. Thus, we arrive at the contradiction.

Therefore, there exists T̂ ≥ 0 such that ‖x(t0 + T̂ )‖ < δ, and ‖x(t)‖ → 0 as t→ +∞.
This completes the proof.

Remark 4.3 The value of T̂ in the proof of Theorem 4.2 depends on x0, and if
ϕk(b̂, m) → +∞ as k → ∞ nonuniformly with respect to m = 1, 2, . . ., then it depends
on t0 as well. Thus, the proof of Theorem 4.2 permits us to obtain an estimate of
transient time of all solutions into a given neighborhood of the origin. However, this
estimate depends on initial conditions of solutions.

Remark 4.4 If 0 < µ1 < 1 < µn, then 0 < b̄ < 1 and b̂ > 1. In this case the ful-
fillment of condition (17), generally, does not guarantee the fulfillment of condition (20).

Really, let Tj = b̂j/2, j = 1, 2, . . .. Then, for any 0 < b̄ < 1, condition (17) is fulfilled
uniformly with respect to m = 1, 2, . . ., whereas condition (20) is not fulfilled. Thus,
condition (20) of Theorem 4.2 is not excessive one, and it can not be dropped.

Remark 4.5 In the case where µ1 = . . . = µn = 1, one can find a constant L > 0
such that if Ti ≥ L, i = 1, 2, . . ., then the zero solution of the corresponding switched
system is globally asymptotically stable [11, 18]. Theorems 4.1 and 4.2 do not permit us
to obtain a similar result for µn > 1. For instance, if Ti = L = const > 0, i = 1, 2, . . .,
then the conditions of Theorems 4.1 and 4.2 are not fulfilled for any value of L.

Theorem 4.3 Let 0 < µ1 < µn = 1. If condition (20) is fulfilled, and condition (9)
is fulfilled uniformly with respect to m = 1, 2, . . ., then the zero solution of system (5) is

globally asymptotically stable.

The proof of Theorem 4.3 is similar to those of Theorems 4.1 and 4.2.

Theorem 4.4 Let 0 < µ1 < µn < 1. Then the zero solution of system (5) is

asymptotically stable for any admissible switching law. Furthermore, if condition (20)
is fulfilled, and there exist a constant ϕ∗ > 0 and a positive integer k̄ > 0 such that

ϕk(b̄, m) ≥ ϕ∗ for k ≥ k̄, m = 1, 2, . . ., then the zero solution of system (5) is globally

asymptotically stable.
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Proof. Let an admissible switching law and a positive number ε be given. Find
β̄ > 0 such that inequalities (15) hold in the domain G = {x ∈ R

n : 0 < ‖x‖ < ε}.
Using estimates (14) with the following specialization of parameters: β = β̄, ρ = ρn,

b = b̄, it is easy to prove that, for any t0 ≥ 0, one can choose numbers δ > 0 and T̃ > 0
such that if 0 < ‖x0‖ < δ, then ‖x(t)‖ = 0 for t ≥ t0 + T̃ . Here x(t) is a solution
of (5) starting at t = t0 from the point x0. Hence, the zero solution of system (5) is
asymptotically stable.

Next, assume that condition (20) is fulfilled, and there exist a constant ϕ∗ > 0 and
a positive integer k̄ > 0 such that ϕk(b̄, m) ≥ ϕ∗ for k ≥ k̄, m = 1, 2, . . .. In this case,
δ and T̃ can be chosen independent of t0. Thus, the zero solution of (5) is uniformly
asymptotically stable. The subsequent proof is similar to those of Theorems 4.1–4.3.

Corollary 4.2 Let 0 < µ1 < µn < 1. If ϕk(b̂, m) → +∞ as k → ∞ uniformly with

respect to m = 1, 2, . . ., then the zero solution of system (5) is globally asymptotically

stable.

To prove the corollary, it is sufficient to note that if 0 < µ1 < µn < 1, then ϕk(b̄, m) ≥
ϕk(b̂, m) for k,m = 1, 2, . . . .

Remark 4.6 Theorem 4.4 does not guarantee the existence of a constant L > 0 such
that if Ti ≥ L, i = 1, 2, . . ., then the zero solution of system (5) is globally asymptotically
stable. However, for an arbitrary given bounded subset of Rn, an appropriate choice of
L permits us to guarantee that the subset is contained in the attraction domain of the
zero solution.

Corollary 4.3 Let 0 < µ1 < µn < 1. For any ∆ > 0, one can find a constant L > 0
such that if Ti ≥ L, i = 1, 2, . . ., then the set {x0 ∈ R

n : ‖x0‖ < ∆} is contained in the

attraction domain of the zero solution of system (5) for all t0 ≥ 0.

Example 4.1 Consider the switched indirect control system

ẏ1 = a
(σ)
1 y1 + b

(σ)
1 η3,

ẏ2 = a
(σ)
2 y2 + b

(σ)
2 η3,

η̇ = d
(σ)
1 y1 + d

(σ)
2 y2 + b

(σ)
3 η3

(21)

and the corresponding family of subsystems

ẏ1 = a
(s)
1 y1 + b

(s)
1 η3,

ẏ2 = a
(σ)
2 y2 + b

(s)
2 η3,

η̇ = d
(s)
1 y1 + d

(s)
2 y2 + b

(s)
3 η3,

s = 1, 2. (22)

Thus, σ(t) : [0,+∞) → Q = {1, 2}. Let a
(1)
1 = −7, a

(1)
2 = −3, b

(1)
1 = 1, b

(1)
2 = 2,

b
(1)
3 = −4, d

(1)
1 = 4, d

(1)
2 = 5, a

(2)
2 = −6, a

(2)
2 = −3, b

(2)
1 = 6, b

(2)
2 = 1, b

(2)
3 = −5,

d
(2)
1 = 2, d

(2)
2 = 7.
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System (21) is a special case of system (1). Here n = 3, N = 2, x1 = y1, x2 = y2,
x3 = η, f1(x1) = x1, f2(x2) = x2, f3(x3) = x33, µ1 = µ2 = 1, µ3 = 3,

P1 =




−7 0 1
0 −3 2
4 5 −4



 , P2 =




−6 0 6
0 −3 1
2 7 −5



 .

Let

Λ1 =




3 0 0
0 2 0
0 0 1



 , Λ2 =




1 0 0
0 6 0
0 0 2



 .

Then the matrices PT
s Λs+ΛsPs, s = 1, 2, are negative definite. Hence, partial Lyapunov

functions for subsystems (22) can be chosen in the form

V1 =
3y21
2

+ y22 +
η4

4
, V2 =

y21
2

+ 3y22 +
η4

2
. (23)

At the same time, there is no a positive definite diagonal matrix Λ = diag{λ1, λ2, λ3}
for which matrices

PT
s Λ + ΛPs, s = 1, 2, (24)

are negative definite.
Really, without loss of generality, we may assume that λ3 = 1. Then for the negative

definiteness of matrices (24), it is necessary and sufficient the fulfilment of the conditions

48

λ1
+ 3λ1 +

175

λ2
+ 28λ2 < 172,

2

λ1
+ 18λ1 +

49

λ2
+ λ2 < 34.

Adding corresponding sides of these inequalities, we arrive at

50

λ1
+ 21λ1 +

224

λ2
+ 29λ2 < 206.

However,
50

λ1
+ 21λ1 ≥ 10

√
42,

224

λ2
+ 29λ2 ≥ 8

√
406

for all λ1 > 0, λ2 > 0.
Thus, we can not construct a common Lyapunov function for family (22) in the form

V = λ1y
2
1 + λ2y

2
2 + λ3

η4

2
.

For Lyapunov functions (23), the estimates Vi ≤ 3Vj , i, j = 1, 2, holds for y1, y2, η ∈
(−∞,+∞). Hence, in this case, c = 3, b̄ = 1/

√
3. Applying Theorem 4.1, we obtain that

if
k−1∑

i=1

3(i−k)/2Tm+i → +∞ as k → ∞

uniformly with respect to m = 1, 2, . . ., then the zero solution of system (21) is globally
asymptotically stable.
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Figure 1: The state response of system (21).

The results of a computer simulation are presented in Figure 1. It is assumed that
Ti = i for i = 1, 3, 5, . . ., and Ti = 1 for i = 2, 4, 6, . . .. In this case,

k−1∑

i=1

3(i−k)/2Tm+i > (Tm+k−2 + Tm+k−1)/3 ≥ (k − 1)/3 → +∞ as k → ∞

uniformly with respect to m = 1, 2, . . . .
We consider the solution of (21) starting at t = 0 from the point (y1, y2, η)

T =
(0.1, 0.7, 0.8)T . In Fig. 1, the dependence of components of the solution on time is
presented.

Finally in this section, consider the case where Assumption 2.2 is replaced by the
following one.

Assumption 4.1 Functions fj(xj) in system (1) can be represented in the form
fj(xj) = βjx

µj

j + hj(xj), where βj are positive constants, µj are positive rationals with
odd numerators and denominators, functions hj(xj) are continuous for xj ∈ (−∞,+∞)
and satisfy the condition hj(xj)/x

µj

j → 0 as xj → 0, j = 1, . . . , n.

Remark 4.7 As well as for Assumption 2.2, we will suppose that βj = 1, j =
1, . . . , n, and µ1 ≤ . . . ≤ µn.

Theorem 4.5 Let Assumptions 1.1 and 4.1 be fulfilled. Then under the conditions

of any of Theorems 4.1–4.4 the zero solution of system (1) is asymptotically stable.

Remark 4.8 Theorem 4.5 guarantees only local asymptotic stability. However, if the
estimates |hj(xj)| ≤ ηj |xj |µj hold for xj ∈ (−∞,+∞), where ηj are positive constants,
j = 1, . . . , n, then, for sufficiently small values of ηj , the fulfilment of conditions of any of
Theorems 4.1–4.4 provides global asymptotic stability of the zero solution of system (1).
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5 An Optimization of the Choice of Lyapunov Functions

Conditions of the global asymptotic stability obtained in the previous section depend on
the value of constant c in inequalities (7). The smaller the value of c, the less conservative
are restrictions on switching law determined in Theorems 4.1–4.4. Therefore, the problem
of finding Lyapunov functions for which value of c is smallest is actual.

Let Lyapunov functions V1(x), . . ., VN (x) of the form (6) be constructed for subsys-
tems (4). Then the estimates

Vs(x) ≤ csjVj(x), s, j = 1, . . . , N,

hold for x ∈ R
n, where csj = max

i=1,...,n
(λ

(s)
i /λ

(j)
i ). Hence, the value of constant c in

inequalities (7) is defined by the formula c = max
s,j=1,...,N

csj .

It should be noted that, for arbitrary positive constants b1, . . . , bN , functions Ṽs(x) =
bsVs(x), s = 1, . . . , N , are also Lyapunov functions for the considered subsystems. For
these functions estimates (7) take the form

Ṽs(x) ≤ c̃ Ṽj(x), s, j = 1, . . . , N,

where c̃ = max
s,j=1,...,N

(csjbs)/bj. As a result, we arrive at the optimization problem: it is

required to choose positive constants b1, . . . , bN for which value of c̃ is minimal. This
problem can be reduced to the following nonlinear programming problem [19]:

Minimize : c̃,

subject to :
csjbs
bj

≤ c̃, s, j = 1, . . . , N. (25)

Conditions of the existence of positive constants b1, . . . , bN satisfying inequalities of
the form (25) were investigated in [22]. According to the results of this paper, system (25)
admits a positive solution if and only if, for any set of indices i1, . . . , ik (im ∈ {1, . . . , N},
im 6= il for m 6= l; m, l = 1, . . . , k, 1 ≤ k ≤ N), the condition ci1i2ci2i3 . . . ciki1 ≤ c̃k is
fulfilled. Hence, min c̃ = max(ci1i2ci2i3 . . . ciki1 )

1/k, where the maximum is calculated on
all pointed out sets of indices i1, . . . , ik.

It is worth mentioning that in [22] a constructive procedure for finding required
constants b1, . . . , bN was proposed.

Example 5.1 Let family (4) consist of three subsystems of the second order. Hence,
N = 3 and n = 2. Assume that the following Lyapunov functions

V1(x) =
xµ1+1
1

µ1 + 1
+
xµ2+1
2

µ2 + 1
, V2(x) =

xµ1+1
1

µ1 + 1
+2

xµ2+1
2

µ2 + 1
, V3(x) =

xµ1+1
1

µ1 + 1
+3

xµ2+1
2

µ2 + 1
(26)

are constructed for these subsystems.
The estimates

V1(x) ≤ V2(x), V1(x) ≤ V3(x),

V2(x) ≤ 2V1(x), V2(x) ≤ V3(x),

V3(x) ≤ 3V1(x), V3(x) ≤
3

2
V2(x)
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are valid for x ∈ R
2. Therefore, c = 3.

Applying the proposed approach, we obtain

min c̃ = max

{
√
2;

√
3;

√
3

2
;

3
√
3

}
=

√
3.

In this case inequalities (25) take the form

b1
b2

≤
√
3,

b1
b3

≤
√
3,

2b2
b1

≤
√
3,

b2
b3

≤
√
3,

3b3
b1

≤
√
3,

(3/2)b3
b2

≤
√
3.

Choose, for instance, b1 =
√
3, b2 = b3 = 1. As a result, we find the Lyapunov

functions

Ṽ1(x) =
√
3V1(x), Ṽ2(x) = V2(x), Ṽ3(x) = V3(x).

With the aid of these functions, one can derive less conservative stability conditions than
those which can be obtained with the use of functions (26).

6 Conclusion

In this paper, the problem of global asymptotic stability for a class of nonlinear switched
systems with separable nonlinearities was investigated. Sufficient conditions on the
switching law which garantee the required property for the given equilibrium position
are obtained.

It is worth mentioning that the approaches proposed in the paper can be used as well
for the analysis of hybrid models of population dynamics and neutral networks. This will
be our future work.
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Abstract: We discuss global existence of weak solutions to a one dimensional pe-
riodical fractional Landau-Lifshitz-Gilbert equation. A Faedo-Galerkin/penalization
method is employed to get approximate solutions and a fractional calculus inequality
is used to deal with the convergence of nonlinear terms. We also study the asymptotic
behavior of the obtained solutions when the vertical spin stiffness parameter tends to
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1 Introduction

In the last decades the study of magnetization processes in magnetic materials has been
the focus of considerable research for its application to magnetic recording technology.
In fact, the design of currently widespread magnetic storage devices, such as the hard-
disks, requires the knowledge of the microscopic phenomena occurring within magnetic
media. In this respect, it is known that ferromagnetic materials present spontaneous
magnetization which is the result of spontaneous alignment of the elementary magnetic
moments that constitute the medium. The magnetic recording technology exploits the
magnetization of ferromagnetic media to store information. The first example of mag-
netic storage device was the magnetic core memory prototype, realized by IBM in 1952.
After magnetic core memories, magnetic tapes have been used, but the most widespread
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magnetic storage device is certainly the hard-disk. The progress made by research activ-
ity performed worldwide in this subject has led to exponential decay of magnetic device
dimensions. For more details, we refer for example to [10, 13].

The Landau-Lifshitz (LL) equation [14] and its modification, the Landau-Lifshitz-
Gilbert (LLG) equation [8], are the basic equations for studying the magnetization dy-
namics in ferromagnetic materials. Though these equations are equivalent from the
mathematical point of view [7] (specifically, the LL equation reduces to the LLG one
by a simple rescaling of the gyromagnetic ratio and damping parameter), the latter is
more preferable from the physical point of view and widely used for studying the non-
linear effects in the magnetization dynamics, regimes of forced precession, magnetization
switching, etc.

In this paper, we study the following one-dimensional fractional Landau-Lifshitz-
Gilbert equation

∂tm = γm× ∂tm+ (1 + γ2)m×Heff(m). (1)

The unknown m, the magnetization vector, is an application of Q = (0, T )× Ω (T > 0
and Ω is a bounded set of R) into S2 (the unit sphere of R3), ∂tm denotes its derivative
with respect to time, Heff(m) is the effective field,“×” is the three dimensional cross
product and the magnitude of magnetization (which is constant in space and time) has
been scaled to one

|m(t, x)| = 1. (2)

In (1), the positive constant γ is the damping coefficient, and

Heff(m) = −
∂E

∂m
(3)

is the opposite of the functional derivative of the free energy E . Typical expressions for E
that are usually used in practice take into account several different physical phenomena,
and can be found in [10] for instance. In this work, we will focus on the case where
Heff(m) is given by

Heff(m) = aΛ2αm+ bm× Λ2αm, (4)

when α ∈ (12 , 1) and a, b > 0. The operator Λ = (−∆)
1

2 denotes the square root of
the Laplacian and called also Zygmund operator which can be defined for example via
Fourier transformation [21].

Equation (1) has broad connections with other well-known equations appearing in
mathematics and physics. When α = 1 and b = 0, equation (1) becomes a standard
LLG equation and global existence of weak solutions and nonuniqueness is proved in [1].
When α ∈ (12 , 1) and b = 0, the existence of weak solutions for (1) is obtained using
Faedo-Galerkin/penalization (FGP) method and fractional calculus for the convergence
of nonlinear terms, see [18]. When α = 1 and b > 0, Eq. (1) becomes a standard LLG
equation with vertical spin stiffness and global existence of weak solutions is proved in [3].

The equation (1) is subject to the periodic boundary and initial conditions

m(0, .) =m0, |m0| = 1 in Ω. (5)

A simplified model can be obtained by assuming that Ω is a subset of R. Specifically, we
consider one dimensional domain Ω = (−π, π) and assume periodic boundary conditions.
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Throughout this paper, for k ∈ N∗, Lk(Ω) = (Lk(Ω))3 and Hk(Ω) = (Hk(Ω))3 are
the usual Hilbert-type Lebesgue and Sobolev spaces, respectively. Ḣα(Ω) denotes the
homogenous Sobolev-Slobodetskii space and H

α(Ω) denotes the inhomogeneous one.

Lemma 1.1 If m is a regular solution of the problem (1)-(5) then we have for all
t ∈ (0, T ) the following energy estimate

γ

∫ t

0

∫

Ω

|∂tm|2 dxdt+
β + γλ

2

∫

Ω

|Λαm(t)|2 dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx,

where β = a(1 + γ2) at λ = b(1 + γ2).

Proof. Using the saturation constraint |m| = 1, the LLG equation (1) can be written
in the following form

γ∂tm+m× ∂tm+ βΛ2αm+ λm× Λ2αm− β(m · Λ2αm)m = 0. (6)

Taking the inner product of (6) by ∂tm and Λ2αm respectively, we get

γ

∫

Ω

|∂tm|2 dx+
β

2

d

dt

∫

Ω

|Λαm|2 dx+ λ

∫

Ω

m× Λ2αm · ∂tm dx = 0 (7)

and
γ

2

d

dt

∫

Ω

|Λαm|2 dx+

∫

Ω

m× ∂tm · Λ2αm dx+ β

∫

Ω

|Λ2αm|2 dx

−β

∫

Ω

(m · Λ2αm)2 dx = 0.
(8)

Adding (7) and (8) multiplied by λ, we obtain

γ

∫

Ω

|∂tm|2 dx+
β + γλ

2

d

dt

∫

Ω

|Λαm|2 dx+ λβ

∫

Ω

|Λ2αm|2 dx

= λβ

∫

Ω

(m · Λ2αm)2 dx.

Since
∫

Ω

(m · Λ2αm)2 dx ≤

∫

Ω

|Λ2αm|2 dx,

and integrating from 0 to t, we obtain

γ

∫ t

0

∫

Ω

|∂tm|2 dxdt+
β + γλ

2

∫

Ω

|Λαm(t)|2 dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx

for all t ∈ (0, T ). ✷

In this work, we are mainly interested in studying the global existence of weak solu-
tions for (1)-(5). To this end, we first give the definition of weak solutions.

Definition 1.1 Letm0 ∈ Hα(Ω) with |m0| = 1 a.e., we say that a three dimensional
vector m is a weak solution of the problem (1)-(5) if

• for all T > 0, m ∈ L∞(0, T,Hα(Ω)) and ∂tm ∈ L2(Q) with |m| = 1 a.e.;
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• For all φ ∈ C∞(Q), such that φ(0, .) = φ(T, .)

∫

Q

∂tm · φ dxdt− γ

∫

Q

m× ∂tm · φ dxdt

= −β

∫

Q

Λαm · Λα(m× φ) dxdt− λ

∫

Q

(m× Λ2αm) · (m× φ) dxdt.
(9)

• m(0, x) =m0(x) in the trace sense.

• For all t ∈ (0, T )

γ

∫ t

0

∫

Ω

|∂tm|2 dxdt+
β + γλ

2

∫

Ω

|Λαm(t)|2 dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx. (10)

Remark 1.1 We will show in subsect.2.2 thatm×Λ2αm makes sense in L2(Q), and
for this reason, it will be clear that (9) makes sense.

The rest of the paper is organized as follows. In the next section, we prove a global
existence of weak solutions result by using Faedo-Galerkin/penalization method. Section
3 is devoted to revealing the relationships between the fractional LLG equation we have
studied in this paper, and the classical fractional LLG equation (i.e., in the case b = 0).
The last section concludes the paper and provides future directions for this work.

2 Global Existence of Weak Solutions

The purpose of the present section is to prove the following result

Theorem 2.1 Letm0 ∈ Hα(Ω) with |m0| = 1 a.e., then there exists a weak solution
of the problem (1)-(5) in the sense of Definition 1.1.

To prove Theorem 2.1, we proceed as in [1, 5, 18, 23].

2.1 The penalty problem

Let ε > 0. We introduce the following penalty problem. For an initial datum m0 ∈
Hα(Ω), and for each positive number T , find a vector field mε such as to satisfy the
equation

γ∂tm
ε +mε × ∂tm

ε + βΛ2αmε + λmε × Λ2αmε +
1

ε
(|mε|2 − 1)mε = 0. (11)

subject to the periodic boundary and initial conditions

mε(0, .) =m0, |m0| = 1 in Ω. (12)

The last term of equation (11) was introduced at the end to represent the constraint
|m| = 1.

We have the following result.
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Proposition 2.1 For each fixed positive ε, there is a weak solution mε of problem
(11)-(12) such that

γ

∫

Q

∂tm
ε · ϕ dxdt+

∫

Q

(mε × ∂tm
ε) · ϕ dxdt+ β

∫

Q

Λαmε · Λαϕ dxdt

−λ

∫

Q

Λαmε · Λα(mε ×ϕ) dxdt+
1

ε

∫

Q

(

|mε|2 − 1
)

mε ·ϕ dxdt = 0

for any ϕ in L2(0, T,Hα(Ω)). Moreover, the following energy estimate holds

γ

∫ t

0

∫

Ω

|∂tm
ε|2 dxdt+

β + γλ

2

∫

Ω

|Λαmε(t)|2 dxdt

+
1

4ε
(1 +

γλ

β
)

∫

Ω

(|mε|2 − 1)2(t) dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx

for all t ∈ (0, T ).

Proof. We show the existence of solutions for the penalty problem by using Faedo-
Galerkin method. Let {χi}i∈N be a complete orthonormal basis of L2(Ω) consisting of
eigenfunctions of Λ2α

Λ2αχi = λiχi, i = 1, 2, . . . (13)

under periodic boundary conditions. The existence of such a basis can be proved as in
Temam [22]. For fixed ε > 0, we seek approximate solutions mε,N for equation (11) of
the form

mε,N (t, x) =

N
∑

i=1

ai(t)χi(x),

where ai(t) are R3-valued vectors. We obtain the following approached problem

γ∂tm
ε,N +mε,N × ∂tm

ε,N + βΛ2αmε,N + λmε,N × Λ2αmε,N

+
1

ε

(

|mε,N |2 − 1
)

mε,N = 0
(14)

with the following initial conditions

mε,N (0, .) =mN (0, .) in Ω

and
∫

Ω

mN (0, .)χi dx =

∫

Ω

m0(0, .)χi dx.

Multiplying the equation (14) by χi and integrating over Ω, we get an ordinary
differential system.

Note that

γ∂tm
ε,N +mε,N × ∂tm

ε,N = A(mε,N )∂tm
ε,N ,

where

A(mε,N ) =





γ −mε,N
3 m

ε,N
2

m
ε,N
3 γ −mε,N

1

−mε,N
2 m

ε,N
1 γ



 .
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We can write equation (14) in the form

A(mε,N )∂tm
ε,N = −βΛ2αmε,N − λmε,N × Λ2αmε,N −

1

ε

(

|mε,N |2 − 1
)

mε,N .

Since A(mε,N ) is invertible, then the resulting system is locally Lipschitz. There
exists a unique local solution for the approximate problem that can extend on [0, T ]
using a priori estimate. To get bounds on the solutions, we multiply equation (14) by
∂tm

ε,N and Λ2αmε,N respectively and integrate over Ω. We obtain

γ

∫

Ω

|∂tm
ε,N |2 dx+

β

2

d

dt

∫

Ω

|Λαmε,N |2 dx

+λ

∫

Ω

mε,N × Λ2αmε,N · ∂tm
ε,N dx+

1

4ε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx = 0,
(15)

and
∫

Ω

mε,N × ∂tm
ε,N · Λ2αmε,N dx+ β

∫

Ω

|Λ2αmε,N |2 dx

+
γ

2

d

dt

∫

Ω

|Λαmε,N |2 dx+
1

ε

∫

Ω

(|mε,N |2 − 1) · Λ2αmε,N dx = 0.

(16)

Multiplying (16) by λ and make the sum with (15), we obtain

γ

∫

Ω

|∂tm
ε,N |2 dx+

β

2

d

dt

∫

Ω

|Λαmε,N |2 dx+
1

4ε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx

+λβ

∫

Ω

|Λ2αmε,N |2 dx+
λγ

2

d

dt

∫

Ω

|Λαmε,N |2 dx

= −
λ

ε

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx.

(17)

On the other hand, Young’s inequality gives

−
λ

ε

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx

≤
λ

2dε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx+
λd

2

∫

Ω

|Λ2αmε,N |2 dx

(18)

for any constant d > 0.
We multiply equation (14) by (|mε,N |2 − 1)mε,N and integrate over Ω, we obtain

β

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx+
γ

4

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx

+
1

ε

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx = 0.

Hence

−
λ

ε

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx

=
γλ

4βε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx+
λ

βε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx.
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Therefore

γλ

4βε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx+
λ

βε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx

≤
λ

2dε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx+
λd

2

∫

Ω

|Λ2αmε,N |2 dx.

That is

γλ

4βε

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx+
λ

ε2
(
1

β
−

1

2d
)

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx

≤
λd

2

∫

Ω

|Λ2αmε,N |2 dx.

So for d > β
2

λ

2dβε2

∫

Ω

(|mε,N |2 − 1)2|mε,N |2 dx

≤
λd

2(2d− β)

∫

Ω

|Λ2αmε,N |2 dx−
γλ

4βε(2d− β)

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx.

Therefore from (18)

−
λ

ε

∫

Ω

(|mε,N |2 − 1)mε,N · Λ2αmε,N dx

≤
λd

2
(1 +

β

2d− β
)

∫

Ω

|Λ2αmε,N |2 dx−
γλ

4ε(2d− β)

d

dt

∫

Ω

(|mε,N |2 − 1)2 dx.

Then from (17)

γ

∫

Ω

|∂tm
ε,N |2 dx+

β + γλ

2

d

dt

∫

Ω

|Λαmε,N |2 dx

+λ(β −
d2

2d− β
)

∫

Ω

|Λ2αmε,N |2 dx+
1

4ε
(1 +

γλ

2d− β
)
d

dt

∫

Ω

(|mε,N |2 − 1)2 dx ≤ 0.

Choose d = β, we get β − d2

2d−β
= 0 and therefore

γ

∫

Ω

|∂tm
ε,N |2 dx+

β + γλ

2

d

dt

∫

Ω

|Λαmε,N |2 dx

+
1

4ε
(1 +

γλ

β
)
d

dt

∫

Ω

(|mε,N |2 − 1)2 dx ≤ 0.

We integrate from 0 to t and we get

γ

∫ t

0

∫

Ω

|∂tm
ε,N |2 dxdt +

β + γλ

2

∫

Ω

|Λαmε,N (t)|2 dx

+
1

4ε
(1 +

γλ

β
)

∫

Ω

(|mε,N |2 − 1)2(t) dx ≤
β + γλ

2

∫

Ω

|ΛαmN |2(0) dx

+
1

4ε
(1 +

γλ

β
)

∫

Ω

(|mN |2 − 1)2(0) dx.

(19)
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The right-hand side is uniformly bounded. Indeed Hα(Ω) →֒ L4(Ω) with continuous
embedding, therefore

∫

Ω

(|mε,N |2 − 1)2(0) dx =

∫

Ω

|mN (0)|4 dx− 2

∫

Ω

|mN (0)|2 dx+meas(Ω)

≤ ‖mN (0)‖4
L4(Ω) +meas(Ω)

≤ C1‖m
N (0)‖4

Hα(Ω) + C2,

where C1 and C2 are two constants independent of ε and N . Furthermore, note that
mε,N (0) =mN (0), and sincemN (0) has the same components asm0 in the basis {χi}i∈N

and m0 ∈ Hα(Ω), we have ‖m0‖Hα(Ω) ≤ C3 with C3 being a constant independent of ε
and N . Hence

‖mN (0)‖Hα(Ω) ≤ C3.

Therefore,
‖ΛαmN (0)‖L2(Ω) ≤ C3.

Thus for ε fixed, we have

(|mε,N |2 − 1)N is bounded in L∞(0, T,L2(Ω)),

(Λαmε,N )N is bounded in L∞(0, T,L2(Ω)).

By Young’s inequality

∫

Ω

|mε,N |2 dx ≤ C +

∫

Ω

(|mε,N |2 − 1)2 dx,

with C being a constant which does not depend on N . Therefore,

(mε,N )N is bounded in L∞(0, T,Hα(Ω)),

(∂tm
ε,N )N is bounded in L2(0, T,L2(Ω)) := L

2(Q),

and we will need a compactness lemma due to Simon [20].

Lemma 2.1 Assume B0, B,B1 are three Banach spaces and satisfy B0 ⊂ B ⊂ B1

with compact embedding B0 →֒ B. LetW be bounded in L∞(0, T ;B0) and Wt := {wt;w ∈
W} be bounded in Lq(0, T ;B1) where q > 1. Then W is relatively compact in C([0, T ];B).

The proof can be found in Simon [20]. Then we have the following convergences to a
subsequence further notes that mε,N for any (1 < p <∞)

mε,N ⇀mε weakly in Lp(0, T,Hα(Ω)), (20)

mε,N →mε strongly in C([0, T ],Hδ(Ω)) and a.e for 0 ≤ δ < α, (21)

∂tm
ε,N ⇀ ∂tm

ε weakly in L
2(Q), (22)

|mε,N |2 − 1⇀ ζ weakly in Lp(0, T,L2(Ω)). (23)

The convergence (21) is a consequence of (20) and by compactness embedding of
L2(0, T,Hα(Ω)) in L2(0, T,L2(Ω)). On the other hand ζ = |mε|2 − 1. This is provided
by the following lemma.
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Lemma 2.2 Let Θ be a bounded open subset of Rd
x × Rt, hn and h are functions of

Lq(Θ) with 1 < q <∞ such as ‖hn‖Lq(Θ) ≤ C, hn → h a.e in Θ then hn ⇀ h weakly in
Lq(Θ).

The proof of Lemma 2.2 can be found in [15]. In our case Θ = Q, hN = |mε,N |2 − 1,
h = |mε|2 − 1 and q = 2 and from (21) |mε,N |2 − 1 −→ |mε|2 − 1 a.e, and we have in
particular |mε,N |2 − 1 ∈ L2(Θ), |mε|2 − 1 ∈ L2(Θ) and

∥

∥|mε|2 − 1
∥

∥

L2(Θ)
≤ C.

Now, we pass to the limit as N → ∞. Multiplying the equation (14) by ϕ ∈ C∞(Q)
and integrating on Q yield

γ

∫

Q

∂tm
ε,N · ϕ dxdt+

∫

Q

mε,N × ∂tm
ε,N ·ϕdxdt+ β

∫

Q

Λαmε,N · Λαϕ dxdt

−λ

∫

Q

Λαmε,N · Λα(mε,N ×ϕ) dxdt+
1

ε

∫

Q

(

|mε,N |2 − 1
)

mε,N ·ϕ dxdt = 0.
(24)

We have
mε,N →mε strongly in L

2(Q).

Furthermore
∂tm

ε,N ⇀ ∂tm
ε weakly in L

2(Q).

Thus
∫

Q

(mε,N × ∂tm
ε,N ) · ϕ dxdt →

∫

Q

(mε × ∂tm
ε) ·ϕ dxdt.

On the other hand
Λαmε,N ⇀ Λαmε weakly in L

2(Q).

Therefore
∫

Q

Λαmε,N · Λαϕ dxdt →

∫

Q

Λαmε · Λαϕ dxdt,

and
∫

Q

∂tm
ε,N ·ϕ dxdt →

∫

Q

∂tm
ε · ϕ dxdt.

Taking into account (23), we obtain
∫

Q

(

|mε,N |2 − 1
)

mε,N · ϕ dxdt →

∫

Q

(

|mε|2 − 1
)

mε ·ϕ dxdt.

For the third term of (24) we set

DN =

∫

Q

(mε,N × Λ2αmε,N ) · ϕ dxdt and D =

∫

Q

(mε × Λ2αmε) ·ϕ dxdt.

We have

DN = −

∫

Q

Λ2αmε,N · (mε,N ×ϕ) dxdt = −

∫

Q

Λαmε,N · Λα(mε,N ×ϕ) dxdt.

Then we define the commutator

[Λα,ϕ]m := Λα(ϕ×m)−ϕ× Λαm.

Since Λα is a nonlocal operator, the following fractional calculus inequality will play a
critical role in the convergence of approximate solutions, see [6] for the proof.
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Lemma 2.3 Suppose that s > 0 and p ∈ (1,+∞). Then

‖Λs(fg)− fΛsg‖Lp ≤ C(‖∇f‖Lp1‖g‖Ḣs−1,p2
+ ‖f‖Ḣs,p3

‖g‖Lp4 )

and

‖Λs(fg)‖Lp ≤ C(‖f‖Lp1‖g‖Ḣs,p2 + ‖f‖Ḣs,p3‖g‖Lp4 )

with p2, p3 ∈ (1,+∞) such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
,

and f, g are such that the right-hand side terms make sense.

We have

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Ω)

≤ C

(

‖∇ϕ‖Lp1(Ω)‖m
ε,N −mε‖Ẇα−1,p2 (Ω) + ‖ϕ‖Ẇα,p3(Ω)‖m

ε,N −mε‖Lp4(Ω)

)

.

We choose p1 = 1
1−α

, p2 = 2
2α−1 and p3, p4 ∈ (2,+∞). This is justified by the fact that

Ẇ k,p →֒ Lq for 0 ≤ k < n
p
and 1

q
= 1

p
− k

n
, in our case n = 1 and k = 1 − α and we

want Ẇ k,p →֒ L2. Therefore it is sufficient that 1
2 = 1

p
− (1− α) that is 1

p
= 3

2 − α = 1
p∗

2

where 1
p2

+ 1
p∗

2

= 1 and therefore Ẇ
s,p∗

2

0 →֒ L2 = (L2)
′

→֒ (Ẇ k,p
0 )

′

→֒ Ẇ−k,p2 . Thus for

δ = 1
2 − 1

p4

< 1
2 < α

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Ω)

≤ C

(

‖∇ϕ‖Lp1(Ω)‖m
ε,N −mε‖L2(Ω) + ‖ϕ‖Ẇα,p3(Ω)‖m

ε,N −mε‖Hδ(Ω)

)

≤ C

(

‖∇ϕ‖2
Lp1(Ω)‖m

ε,N −mε‖2
L2(Ω) + ‖ϕ‖2

Ẇα,p3(Ω)
‖mε,N −mε‖2

Hδ(Ω)

)

.

Therefore,

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Q)

≤ C

(

‖∇ϕ‖2
L∞(0,T,Lp1(Ω))‖m

ε,N −mε‖2
L2(Q)

+‖ϕ‖2
L∞(0,T,Ẇα,p3(Ω))

‖mε,N −mε‖2L2(0,T,Hδ(Ω))

)

.

The right-hand side of the last inequality tends to 0 due to strong convergence ofmε,N →
mε in L2(Q) and in L2(0, T,Hδ(Ω)). Moreover by the preceding lemma [Λα,ϕ]mε ∈
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L2(Q). Thus

|DN −D| =

∣

∣

∣

∣

∫

Q

Λαmε,N · [Λα,ϕ]mε,N dxdt−

∫

Q

Λαmε · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Q

Λαmε,N · [Λα,ϕ](mε,N −mε) dxdt+

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Q

Λαmε,N · [Λα,ϕ](mε,N −mε) dxdt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

≤ ‖Λαmε,N‖L2(Q)

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Q)

+

∣

∣

∣

∣

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

≤ ‖mε,N‖L2(0,T,Hα(Ω))

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Q)

+

∣

∣

∣

∣

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

.

Since ‖mε,N‖L2(0,T,Hα(Ω)) ≤ C and

∥

∥

∥

∥

[Λα,ϕ](mε,N −mε)

∥

∥

∥

∥

L2(Q)

→ 0,
∣

∣

∣

∣

∫

Q

Λα(mε,N −mε) · [Λα,ϕ]mε dxdt

∣

∣

∣

∣

→ 0,

this implies that
DN → D. (25)

Using the previous convergences and passing to the limit (N → ∞) in (24), we get

γ

∫

Q

∂tm
ε ·ϕ dxdt+

∫

Q

mε × ∂tm
ε · ϕ dxdt + β

∫

Q

Λαmε · Λαϕ dxdt

−λ

∫

Q

Λαmε · Λα(mε ×ϕ) dxdt+
1

ε

∫

Q

(

|mε|2 − 1
)

mε ·ϕ dxdt = 0
(26)

for all ϕ in L2(0, T,Hα(Ω)) by density of C∞(Q) in L2(0, T,Hα(Ω)).
Now back to (19) and taking into account the previous convergences in N and using

Fatou lemma, we get

γ

∫ t

0

∫

Ω

|∂tm
ε|2 dxdt+

β + γλ

2

∫

Ω

|Λαmε(t)|2 dxdt

+
1

4ε
(1 +

γλ

β
)

∫

Ω

(|mε|2 − 1)2(t) dx ≤
β + γλ

2

∫

Ω

|Λαm0|
2 dx

(27)

for all t ∈ (0, T ).✷
We are now in a position to prove Theorem 2.1.

2.2 Convergence of the approximate solutions

To pass to the limit in ε (ε→ 0), we need estimate (19) and the following result
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Lemma 2.4 If mε satisfies (26) then |mε| ≤ 1 a.e. on Q.

Proof. We choose ϕ = ψBm
ε with B = {|mε| > 1} and ψB is the indicator function

of the set B. We have ϕ in L2(0, T,Hα(Ω)), and replacing ϕ by ψBm
ε in (26), we obtain

γ

∫ t

0

∫

B

∂tm
ε ·mε dxdt+ β

∫ t

0

∫

B

|Λαmε|2 dxdt+
1

ε

∫ t

0

∫

B

(

|mε|2 − 1
)

|mε|2 dxdt = 0.

Then
γ

2

∫ t

0

d

dt

∫

B

(

|mε|2 − 1
)

dxdt+ β

∫ t

0

∫

B

|Λαmε|2 dxdt

+
1

ε

∫ t

0

∫

B

(

|mε|2 − 1
)

|mε|2 dxdt = 0.

Hence
γ

2

∫ t

0

d

dt

∫

B

(

|mε|2 − 1
)

dxdt ≤ 0.

We integrate from 0 to t, we get

∫

B

(

|mε(t)|2 − 1
)

dx ≤

∫

B

(

|mε(0)|2 − 1
)

dx = 0.

Hence |mε| ≤ 1 a.e. on Q. ✷

Now we will look for an estimate of the term mε × Λ2αmε. Multiplying equation
(11) by mε × ∂tm

ε and integrating over Ω we obtain

∫

Ω

|mε × ∂tm
ε |2 dx+ β

∫

Ω

Λ2αmε ·mε × ∂tm
ε dx

+λ

∫

Ω

mε × Λ2αmε ·mε × ∂tm
ε dx = 0.

(28)

Multiply this time equation (11) by mε × Λ2αmε and integrating over Ω, we get

γ

∫

Ω

mε × Λ2αmε · ∂tm
ε dx+

∫

Ω

mε × Λ2αmε ·mε × ∂tm
ε dx

+λ

∫

Ω

|mε × Λ2αmε |2 dx = 0.

(29)

Multiplying equation (29) by λ and making the sum with (28), we get

∫

Ω

|mε × ∂tm
ε |2 dx+ (β + γλ)

∫

Ω

Λ2αmε ·mε × ∂tm
ε dx

−λ2
∫

Ω

|mε × Λ2αmε |2 dx = 0.

Then

λ2
∫

Ω

|mε × Λ2αmε |2 dx =

∫

Ω

|mε × ∂tm
ε |2 dx

+(β + γλ)

∫

Ω

Λ2αmε ·mε × ∂tm
ε dx.

(30)
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Multiplying (11) by ∂tm
ε, integrating over Ω, replacing

∫

Ω

Λ2αmε ·mε × ∂tm
ε dx by

its value in (30) and using Lemma 2.4, we obtain

λ2
∫

Ω

|mε × Λ2αmε|2 dx =

∫

Ω

|mε × ∂tm
ε|2 dx+

γ(β + γλ)

λ

∫

Ω

|∂tm
ε|2 dx

+
β(β + γλ)

2λ

d

dt

∫

Ω

|Λαmε|2 dx+
(β + γλ)

4ελ

d

dt

∫

Ω

(|mε|2 − 1)2 dx

≤

∫

Ω

|mε|2|∂tm
ε|2 dx+

γ(β + γλ)

λ

∫

Ω

|∂tm
ε|2 dx+

β(β + γλ)

2λ

d

dt

∫

Ω

|Λαmε|2 dx

+
(β + γλ)

4ελ

d

dt

∫

Ω

(|mε|2 − 1)2 dx

≤ (1 +
γ(β + γλ)

λ
)

∫

Ω

|∂tm
ε|2 dx+

β(β + γλ)

2λ

d

dt

∫

Ω

|Λαmε|2 dx

+
(β + γλ)

4ελ

d

dt

∫

Ω

(|mε|2 − 1)2 dx.

We integrate from 0 to t, and using the previous lemma, we get

λ2
∫ t

0

∫

Ω

|mε × Λ2αmε |2 dxdt ≤ C, (31)

where C is a constant independent of ε. Hence

(mε × Λ2αmε)ε is bounded in L
2(Q). (32)

Consequently,
mε × Λ2αmε ⇀ Φ weakly in L

2(Q). (33)

By (27), we have
(∂tm

ε)ε is bounded in L
2(Q),

(|mε |2 −1)ε is bounded in L∞(0, T ;L2(Ω)),

(mε)ε is bounded in L∞(0, T ;Hα(Ω)).

Then we have the following convergences to a subsequence further notes that (mε)ε for
(1 < p <∞):

mε ⇀m weakly in Lp(0, T ;Hα(Ω)),

∂tm
ε ⇀ ∂tm weakly in L

2(Q),

|mε |2 −1 → 0 strongly in L2(0, T ;L2(Ω)) and |m |= 1 a.e.

By compactness embedding of Hα(Q) into L4(Q), we have

mε →m strongly in L
4(Q). (34)

In the following, we show that

m× Λ2αm = Φ ∈ L
2(Q). (35)

Let ϕ ∈ Hα(Ω). We have
∫

Q

mε × Λ2αmε · ϕ dxdt = −

∫

Q

Λαmε · Λα(mε ×ϕ) dxdt.



134 C. AYOUCH, E. H. ESSOUFI AND M. TILIOUA

On the other hand, using commutator estimate together with the same reasonings that
lead to (25), we have

∫

Q

Λαmε · Λα(mε ×ϕ) dxdt →

∫

Q

Λαm · Λα(m×ϕ) dxdt

= −

∫

Q

(m× Λ2αm) ·ϕ dxdt,

and therefore (35) is proved. In particular, we have

mε × Λ2αmε ⇀m× Λ2αm weakly in L
2(Q).

Now back to (26) and taking ϕ =mε × φ with φ ∈ C∞(Q), we have

γ

∫

Q

∂tm
ε ·mε × φ dxdt+

∫

Q

mε × ∂tm
ε ·mε × φ dxdt

+β

∫

Q

Λαmε · Λα(mε × φ) dxdt+ λ

∫

Q

mε × Λ2αmε ·mε × φ dxdt = 0.
(36)

For the first term of (36), we set Θε =

∫

Q

mε × ∂tm
ε ·mε × φ dxdt.

We have

Θε =

∫

Q

|mε |2 ∂tm
ε · φ dxdt−

∫

Q

(mε · φ)mε · ∂tm
ε dxdt.

On the one hand
∫

Q

|mε|2∂tm
ε · φ dxdt =

∫

Q

(|mε|2 − 1)∂tm
ε · φ dxdt+

∫

Q

∂tm
ε · φ dxdt

→

∫

Q

∂tm · φ dxdt.

On the other hand
∫

Q

(mε · φ)mε · ∂tm
ε dxdt =

1

2

∫

Q

∂t(|m
ε |2 −1)mε · φ dxdt

=
1

2

[ ∫

Ω

(|mε |2 −1)mε · φ dx

]T

0

−
1

2

∫

Q

(|mε |2 −1)∂t(m
ε · φ) dxdt.

Now choose φ so that φ = 0 in t = 0 and t = T . Then
[ ∫

Ω

(|mε |2 −1)mε · φ dx

]T

0

= 0.

Therefore,
∫

Q

(mε · φ)mε · ∂tm
ε dxdt = −

1

2

∫

Q

(|mε |2 −1)∂t(m
ε · φ) dxdt

= −
1

2

∫

Q

(|mε |2 −1)∂tm
ε · φ dxdt

−
1

2

∫

Q

(|mε |2 −1)mε · ∂tφ dxdt→ 0.
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Hence

Θε →

∫

Q

∂tm · φ dxdt.

For the second term of (36)

β

∫

Q

Λαmε · Λα(mε × φ) dxdt → β

∫

Q

Λαm · Λα(m× φ) dxdt.

For the third term of (36)

λ

∫

Q

mε × Λ2αmε ·mε × φ dxdt → λ

∫

Q

m× Λ2αm ·m× φ dxdt.

For the last term of (36)

γ

∫

Q

∂tm
ε ·mε × φ dxdt → γ

∫

Q

∂tm ·m× φ dxdt.

Let ε tends to 0 in (36), we obtain

∫

Q

∂tm · φ dxdt− γ

∫

Q

m× ∂tm · φ dxdt

+β

∫

Q

Λαm · Λα(m× φ) dxdt + λ

∫

Q

m× Λ2αm ·m× φ dxdt = 0

for all φ ∈ C∞(Q). Furthermore, the inequality (10) follows from (27) and we finish the
proof of Theorem 2.1.

3 The Limit as b→ 0

The main purpose of this section is to reveal to relationships between the fractional LLG
equation we have studied in this paper, and the classical fractional LLG equation (i.e.,
in the case b = 0). We will prove the following result.

Proposition 3.1 Let b → 0. The weak solution mb obtained in section 2 weakly
converges, up to a subsequence, to a solution of the classical fractional LLG equation in
the following sense.

For all φ ∈ C∞(Q) with φ(0, .) = φ(T, .) = 0,

∫

Q

∂tm · φ dxdt− γ

∫

Q

m× ∂tm · φ dxdt = −β

∫

Q

Λαm · Λα(m× φ) dxdt.

Proof. Using the fact that |mb| = 1 a.e in Q and estimate (10), we deduce that

(mb)b is bounded in L∞(0, T,Hα(Ω)),

and

(∂tm
b)b is bounded in L

2(Q).
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Hence, up to a subsequence, we have

mb ⇀m weakly in Lp(0, T,Hα(Ω)) for 1 < p <∞,

mb →m strongly in C([0, T ],Hδ(Ω)) and a.e for 0 ≤ δ < α,

∂tm
b ⇀ ∂tm weakly in L2(Q).

Then |m| = 1 a.e in Q. On the other hand, we have

γ∂tm
b +mb × ∂tm

b + βΛ2αmb + λmb × Λ2αmb − β(Λ2αmb ·mb)mb = 0 a.e. in Q.

Multiplying this equation by ∂tm
b and mb × Λ2αmb respectively and integrating over

Ω, we get

γ

∫

Ω

| ∂tm
b |2 dx+

β

2

d

dt

∫

Ω

| Λαmb |2 dx+ λ

∫

Ω

mb × Λ2αmb · ∂tm
b dx = 0 (37)

and

λ

∫

Ω

|mb × Λ2αmb|2 dx+
1

2

d

dt

∫

Ω

|Λαmb|2 dx = −γ

∫

Ω

mb × Λ2αmb · ∂tm
b dx. (38)

The equalities (37), (38) allow to get

λ2
∫

Ω

|mb × Λ2αmb|2 dx = γ2
∫

Ω

|∂tm
b|2 dx+

(γβ − λ

2

) d

dt

∫

Ω

|Λαmb|2 dx.

We integrate from 0 to t to get

λ2
∫ t

0

∫

Ω

|mb × Λ2αmb|2 dxdt+
(γβ − λ

2

)

∫

Ω

|Λαm0|
2 dx

= γ2
∫ t

0

∫

Ω

|∂tm
b|2 dxdt+

(γβ − λ

2

)

∫

Ω

|Λαmb|2 dx

(39)

for all t ∈ (0, T ).
Recall that

β = a(1 + γ2) and λ = b(1 + γ2).

Since b is small enough, we assume that b < aγ i.e., λ < γβ. Using estimate (10), we
have

∫

Ω

|Λαmb|2 dx ≤

∫

Ω

|Λαm0|
2 dx

and

γ2
∫ t

0

∫

Ω

|∂tm
b|2 dxdt ≤

γβ(1 + γ2)

2

∫

Ω

|Λαm0|
2 dx.

Then, (39) implies that

b2
∫ t

0

∫

Ω

|mb × Λ2αmb|2 dxdt ≤
γa

2

∫

Ω

|Λαm0|
2 dx.

Hence
(bmb × Λ2αmb)b is bounded in L

2(Q).
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Therefore,

bmb × Λ2αmb ⇀ ξ weakly in L
2(Q).

Let ψ ∈ Hα(Q). We have

∫

Q

bmb × Λ2αmb · ψ dxdt = −b

∫

Q

Λαmb · Λα(mb × φ) dxdt,

which tends to zero as b goes to zero. We conclude that ξ = 0.

Now, we can pass to the limit as b→ 0 in the weak formulation

∫

Q

∂tm
b · φ dxdt− γ

∫

Q

mb × ∂tm
b · φ dxdt

= −β

∫

Q

Λαmb · Λα(mb × φ) dxdt− (1 + α2)

∫

Q

bmb × Λ2αmb ·mb × φ dxdt.

We obtain

∫

Q

∂tm · φ dxdt− α

∫

Q

m× ∂tm · φ dxdt = −β

∫

Q

Λαm · Λα(m× φ) dxdt.

Then Proposition 3.1 is proved. ✷

4 Concluding Remarks

In this paper, global existence of weak solutions to a modified fractional LLG equation
is proved. The modification lies in the presence in the effective field of the term b m×
Λ2αm describing fractional vertical spin stiffness. Due to nonlocal nonlinearities in the
model, special structures of the equation, the commutator estimate and some calculus
inequalities of fractional order are exploited to get the convergence of the approximating
solutions. The relationship between the model and the classical fractional LLG equation
is also revealed by discussing the limit of the obtained solutions when the vertical spin
stiffness parameter b tends to zero.

Let us mention that important progress has been made in the design of schemes con-
structing weak solutions to classical LLG equation. Several schemes were proposed, and
their convergence to weak solutions was proved (see for examples [2, 4]). An interesting
direction of future research is to propose numerical scheme for the fractional LLG equa-
tion. This will be helpful to give a strategy for efficient computer implementation which
may reflect the true nature of the augmentation of the LLG model considered in this
paper.
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Dunod & Gauthier-Villars, Paris, 1969.

[16] Podio-Guidugli, P. On dissipation mechanisms in micromagnetics. The European Physical

Journal B 19 (2001) 417–424.

[17] Podio-Guidugli, P. and Valente, V. Existence of global-in-time weak solutions to a modified
Gilbert equation. Nonlinear Analysis: Theory, Methods and Applications 47 (2001) 147–
158.

[18] Pu, X., Guo, B. and Zhang, J. Global weak solutions to the 1-D Fractional Landau-Lifshitz
Equation. Discrete Contin. Dyn. Syst. Ser. B 14(1) (2010) 199–207.

[19] Shen, K., Tatara, G. and Wu, M. W. Existence of vertical spin stiffness in Landau-Lifshitz-
Gilbert equation in ferromagnetic semiconductors. Phys. Rev. B 83 (2011) 085203.

[20] Simon, J. Compact sets in the space Lp(0, T ;B). Ann. Math. Pura. Appl. 146 (1987) 65–96.

[21] Stein, E.M. Singular Integrals and Differentiability Properties of Functions. Princeton Uni-
versity Press, Princeton, N.J., 1970.

[22] Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-
Verlag, New York, 1997.

[23] Visintin, A. On Landau-Lifshitz equations for ferromagnetism. Japan J. Appl. Math. 2
(1985) 69–84.



Nonlinear Dynamics and Systems Theory, 17 (2) (2017) 139–149

Exponential Domination and Bondage Numbers in

Some Graceful Cyclic Structure
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Abstract: The domination number is an important vulnerability parameter that
it has become one of the most widely studied topics in graph theory, and also the
bondage number which is related by domination number the most often studied prop-
erty of vulnerability of communication networks. Recently, Dankelmann et al. defined
the exponential domination number denoted by γe(G) in [17]. In 2016, the exponen-
tial bondage number, denoted by bexp(G), is defined by bexp(G) = min{|Be| : Be ⊆
E(G), γe(G − Be) > γe(G)}, where γe(G) is the exponential domination number of
G [24]. In this paper, the above mentioned parameters is has been examined. Then
exact formulas are obtained for the families of cyclic structures tend to have grace-
ful subfamilies such as helm graph, windmill graph, circular necklace and friendship
graph.

Keywords: graph vulnerability; connectivity; domination number; bondage number;
exponential domination number; exponential bondage number.

Mathematics Subject Classification (2010): 05C40, 05C69, 68M10, 68R10.

1 Introduction

Graph theory plays vital role in various fields. One of the important areas in graph
theory is graph labeling. Interest in graph labeling began in mid-1960s with a conjecture
by Kotzig-Ringel and a paper by Rosa [5]. In 1967, Rosa published a pioneering paper
on graph labeling problems. Graph labeling is powerful tool that makes things ease in
various fields of networking. Graph labeling is very important major areas of computer
science like data mining image processing, cryptography, software testing, information
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security, communication network etc. Also, there are many applications of graph labelling
in the literature such as coding theory, radar, astronomy, circuit design, missile guidance,
communication network addressing, xray crystallography, data base management [5,13].

We begin by recalling some standard definitions that we need throughout this paper.
Let G = (V,E) be a simple undirected graph of order n. For any vertex v ∈ V , the
open neighborhood of v is NG(v) = {u ∈ V |uv ∈ E} and closed neighborhood of v is
NG[v] = NG(v) ∪ {v}. The degree of v in G denoted by deg(v), is the size of its open
neighborhood. A vertex v is said to be pendant vertex if deg(v) = 1 [7, 18]. A vertex
u is called support vertex if u is adjacent to a pendant vertex. The graph G is called
r-regular graph if deg(v) = r for every vertex v ∈ V . The distance d(u, v) between two
vertices u and v in G is the length of a shortest path between them [7, 18].

Given a graph G = (V,E), the set N of non-negative integers and a commutative
binary operation ∗ : N × N → N , every vertex f : V → N induces an edge function
f∗ : E → Nsuch that f ∗ (uv) = |f(u) − f(v)|, for all uv ∈ E. A function f is called
graceful labeling of a graph G if f : V → 0, 1, 2, ..., q is injective and the induced function
f∗ : E → 1, 2, ..., q is bijective. A graph which admits graceful labeling is called graceful
graph.

A set S ⊆ V is a dominating set if every vertex in V (G) − S is adjacent to at least
one vertex in S. The minimum cardinality taken over all dominating sets of G is called
the domination number of G is denoted by γ(G) [7, 18]. There are different application
of domination problems. For instance, dominating sets in graphs are natural models for
facility location problems in operations research [18] or domination number is the one
of the most important vulnerability parameter for networks [18,23]. When investigating
the domination number of a given graph G, one may want to learn the answer of the
following question: How does the domination number increases in a graph G? or How
many edges need to be added to decrease the domination number of the original graph?
One of the vulnerability parameters known as bondage number in a graph G answers the
former question. The bondage number b(G) was introduced by Fink et al. [12] and is
defined as follows:

b(G) = min{|B| : B ⊆ E, γ(G−B) > γ(G)}.

We call such an edge set B that γ(G−B) > γ(G) the bondage set and the minimum
one the minimum bondage set. If b(G) does not exist, for example empty graphs, then
b(G) = ∞ is defined.

In 2009, Dankelmann introduced the concept of exponential domination [17]. This
new parameter is closely in relation with distance of each pair of vertices. The exponential
domination number is the theoretical vulnerability parameters for a network that is
represented by a graph [1, 17]. An exponential dominating set of graph G is a kind

of distance domination subset S ⊆ V (G) such that
∑

v∈S(1/2)
d(u,v)−1 ≥ 1, ∀v ∈ V ,

where d(u, v) is the length of a shortest path in 〈V − (S − {u})〉 if such a path exist,
and ∞ otherwise. The minimum exponential domination number, γe(G) is the smallest
cardinality of an exponential dominating set. We call such an edge set is a minimum
exponential set which is denoted by γe-set.

Aytac et al. has defined exponential bondage number [24]. It is defined as follows:

bexp(G) = min{|Be| : Be ⊆ E, γe(G−Be) > γe(G)},

where γe(G) is the exponential domination number of the graph G. We call such an edge
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set Be that γe(G − Be) > γe(G) the exponential bondage set and the minimum one the
minimum exponential bondage set.

There are many advantages of creating a communications network that is analogous
a graceful graph. One advantage is that if a link goes out, a simple algorithm could
detect which two centers are no longer linked, since each connection is labeled with
the difference between the two communication centers. Another advantage is that this
network also would have all the same properties as a graceful graph; such as having
cyclic decompositions [5,13]. Many structures that have been studied in recent years are
structures that involve cycles. One reason for this is that Rosa proved that all cycles
that are of lengths n ≡ 0, 3(mod4) are graceful. Hence, many families of cyclic structures
tend to have graceful subfamilies. We will now investigate some of these structures such
as: helm graph, windmill graph, circular necklace and friendship graph.

Calculation of exponential domination and bondage numbers for simple cyclic graph
types is important because if one can break a more complex network into smaller net-
works, then under some conditions the solutions for the optimization problem on the
smaller networks can be combined to a solution for the optimization problem on the
larger network.

In Section 2, some well-known basic results are given for exponential domination and
bondage numbers. In Section 3, examples of the exponential dominating and the expo-
nential bondage sets of a graph are are given. In Section 4, the exponential domination
numbers have been computed for helm graph, windmill graph, circular necklace and
friendship graph. In Section 5, the exponential bondage numbers have been calculated
for same structures.

2 Basic Results

In this section some well-known basic results are given with regard to exponential dom-
ination number and bondage number.

Theorem 2.1 [17] The exponential domination number of

a) the path graph Pn of order n ≥ 2 is γe(Pn) = ⌈n+1
4 ⌉.

b) the cycle graph Cn of order n ≥ 4 is γe(Cn) =

{

2 , if n = 4;
⌈n
4 ⌉ , if n 6= 4.

}

Theorem 2.2 [17] For every graph G, γe(G) ≤ γ(G), and also γe(G) = 1 if and
only if γ(G) = 1.

Theorem 2.3 Let G be any connected graph with n vertices and ∃v ∈ V (G) such
that deg(v) = n− 1. Then γe(G) = 1.

Theorem 2.4 [12] If G is a connected graph of order n ≥ 2, then b(G) ≤ n−γ(G)+1.

Theorem 2.5 [12] The bondage number of

a) the path graph Pn of order n ≥ 2 is b(Pn) =

{

2, if n ≡ 1(mod 3);
1, otherwise.

b) the cycle graph Cn of order n ≥ 3 is b(Cn) =

{

3, if n ≡ 1(mod 3);
2, otherwise.
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c) the complete graph Kn of order n ≥ 2 is b(Kn) = ⌈n
2 ⌉.

d) the star graph Sn of order n ≥ 3 is b(Sn) = 1.

Theorem 2.6 [22] If G is a nonempty graph with a unique minimum dominating
set, then b(G) = 1.

Theorem 2.7 [24] Let G be a connected graph of order n. If G includes only one
pendant vertex, then bexp(G) = 1.

3 Example

a) Let’s find the exponential dominating sets of the given graph in Figure 1.

Figure 1: Graph G.

• For the set S1 = {v1, v3, v7, v5} ⊆ V (G), Table 1 is obtained.

Table 1: The weight values of S1 at v.
v v1 v2 v3 v4 v5 v6 v7 v8
wS1

(v) 2 3 2 2 2 3 2 2

From Table 1, it is easy to see that wS1
(v) ≥ 1. Hence, the set S1 ⊆ V (G) is an

exponential dominating set of the graph G.

• For the set S2 = {v2, v6, v8} ⊆ V (G), Table 2 is obtained.

Table 2: The weight values of S2 at v.
v v1 v2 v3 v4 v5 v6 v7 v8
wS2

(v) 2 2 2 1 5/4 2 3 2

From Table 2, it is easy to see that wS2
(v) ≥ 1. Hence, the set S2 ⊆ V (G) is an

exponential dominating set of the graph G.

• For the set S3 = {v1, v5} ⊆ V (G), Table 3 is obtained.

From Table 3, it is easy to see that wS3
(v) ≥ 1. Hence, the set S3 ⊆ V (G) is an

exponential dominating set of the graph G.
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Table 3: The weight values of S3 at v.
v v1 v2 v3 v4 v5 v6 v7 v8
wS3

(v) 2 5/4 1 5/4 2 5/4 1 5/4

Among some of the exponential dominating sets discussed above, the set having min-
imum element is the set S3. There is not a set that is exponential dominating and
|S| < |S3| of the graph G. Namely ∃S ⊆ V (G) can not be found. In this case,
exponential domination number of the graph G is γe (G) = |S3| = 2.

b) Let’s find the exponential bondage sets of the given graph in Figure 1.

• Let’s consider the set B1
e = {e1} ⊆ E (G) . In this case, we examine exponential

domination number of the E (G) − B1
e graph. Here, it is easy to see that S =

{v1, v8} ⊆ E (G)−B1
e is a member of any minimum exponential dominating set.

B1
e is not an exponential bondage set because γe

(

E (G)−B1
e

)

= γe (G) = 2.

• Let’s consider the set B2
e = {e3, e6} ⊆ E (G) . In this way, we examine exponen-

tial domination number of the E (G)−B2
e graph. Here, it can be easily seen that

the set S = {v1, v3, v5} ⊆ E (G)−B2
e is a minimum exponential dominating set.

B2
e is an exponential bondage set because γe

(

E (G)−B2
e

)

= 3 > γe (G) = 2.

• Let’s consider the set B3
e = {e2, e6} ⊆ E (G) . The E (G)−B3

e graph consists of
two components. In this case, we examine exponential domination number of the
E (G)−B3

e graph. Here, it can be easily seen that the set S = {v1, v3, v5, v7} ⊆
E (G)− B3

e is a member of any minimum exponential dominating set. B3
e is an

exponential bondage set because γe
(

E (G)−B3
e

)

= 4 > γe (G) = 2.

• Let’s consider the set B4
e = {e3, e5, e10} ⊆ E (G) . The E (G)−B4

e graph consists
of two components. In this case, we examine exponential domination number of
the E (G)−B4

e graph. Here, it can be easily seen that the set S = {v1, v7, v4} ⊆
E (G)− B4

e is a member of any minimum exponential dominating set. B4
e is an

exponential bondage set because γe
(

E (G)−B4
e

)

= 3 > γe (G) = 2.

Among some of the exponential bondage sets discussed above, the set having minimum
element is the set B2

e . There is not a set that is exponential bondage and |Be| <
∣

∣B2
e

∣

∣

of the graph G. Namely ∃Be ⊆ E (G) can not be found. In this case, exponential
bondage number of the graph G is bexp (G) =

∣

∣B2
e

∣

∣ = 2.

4 The Exponential Domination Number of Some Graceful Cyclic Structure

In this section, we give definition of well-known graceful cyclic structure. Then we
calculate the exponential domination number of them.

Definition 4.1 [15] A helm graph is denoted byHn is a graph obtained by attaching
a single edge and vertex of the outer circuit of a wheel graph Wn. The number of vertices
of Hn is 2n+ 1 and the number of edges is 3n. We display the graph H4 in Figure 2.

Theorem 4.1 If Hn is a helm graph, then γe(Hn) = 4.
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Figure 2: The Helm Graph H4.

Proof. The Helm Hn consist of the vertex set V (Hn) = {vi|0 ≤ i ≤ n− 1}∪ {ai|0 ≤
i ≤ n−1}∪{c}. Let c be the central vertex of Hn. The degree of central vertex is n. The
vertices of Hn \ {c} are two kinds: vertices of degree four and one, respectively. Clearly,
deg(vi) = 4 and deg(ai) = 1.

Let S be γe-set of Hn. If S consists of only one central vertex c, then this vertex is
exponentially dominated all vertices except that the pendant vertices ai. Therefore, the
vertices vi must be added to S.

If c ∈ S and vi is not adjacent ai, then d(vi, ai) ≥ 2. If c /∈ S and vi is not adjacent
ai, then d(vi, ai) = 2 or d(vi, ai) = 3.

Due to distance between ai and vi and because S is γe-set, S must not contain
the central vertex c. In this case, the set S must consist only of the vertices vi. The
geodesic(shortest) distances from the vertices vi to the other vertices ofHn are as follows:
d(vi, ai) ≤ 3, d(vi, vi) ≤ 3 and d(vi, c) = 1.

Accordingly, any vertex x ∈ V (Hn) is at most 3 distance away from the vertex vi ∈ S.
Initially, let’s assume that S is only one vertex vi. Let x be the vertex in V (Hn) \ S

such that d(vi, x) = 3. To dominate the exponentially the vertex x by set S, the number
of vertices that must be in S is

ws(x) =
∑

vi∈S

1

2d(vi,x)
≥ 1,

m

22
≥ 1 ⇒ m ≥ 4,

where m = |S|.

Thus, there must be at least 4 for vertices vi in the set S. Consequently, the expo-
nential domination of Hn is γe(Hn) = 4. The proof is completed. ✷

Definition 4.2 [11] The windmill graph Wd(k, n) can be constructed by joining n
copies of the complete graph Kk with a common vertex. It has (k− 1)n+1 vertices and
nk(k − 1)/2 edges. We display the graph Wd(5, 4) in Figure 3.

Theorem 4.2 If Wd(k, n) is a windmill graph, then γe(Wd(k, n)) = 1.

Proof. By the Theorem 2.3, the proof is clear. ✷
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Figure 3: The Windmill graph Wd(5, 4).

Definition 4.3 [11] Let Km and Kti be complete graphs on m(say v1, v2, ..., vm)
and ti vertices, respectively. Let ti = 2ri , 1 ≤ i ≤ m, and r1 = r2, ri+1 = ri + 1 for all
2 ≤ i ≤ m − 1 such that Km ⊎ Kti has just vi as a cut vertex, where ri is an integer
and 1 ≤ i ≤ m. The resultant graph Km ⊎ (∪m

i=1Kti) is a circular necklace denoted by
CN(Km;Kt1 ,Kt2 , ...,Ktm). We display the graph CN(Km;Kt1 ,Kt2 , ...,Ktm) in Figure
4.

Figure 4: The Circular Necklace CN(Km;Kt1 ,Kt2 , ..., Ktm).

Theorem 4.3 If G is a circular necklace graph, then γe(G) = 2.

Proof. By the definition of circular necklace graph, both Km and Kti are complete
graphs. Any vertex exponentially dominates all the remaining vertices in complete graph.
Let v1, v2,..., vm be vertices of Km. Let S be γe- set of the graph G. If S consists of
exactly one vertex vx of Km, where 1 ≤ x ≤ m. Then all vertices of Km and Ktx in G are
exponentially dominated. For the all remaining vertices u ∈ V (G − V (Km) − V (Ktx)),
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we get d(vx, u) = 2. Thus, the vertex vx contributes 1/2 to ws(u). To exponentially
dominate all the remaining vertices u, only one vertex vi of Km, also must be added to
S. Hence, we get γe(G) = 2. The proof is completed.✷

Definition 4.4 [15] The friendship graph Fn can be constructed by joining n copies
of the cycle graph C3 with a common vertex. We display the graph F4 in Figure 5.

Figure 5: The Friendship graph F4.

Theorem 4.4 If Fn is a friendship graph, then γe(Fn) = 1.

Proof. By the Theorem 2.3, the proof is clear.✷

5 The Exponential Bondage Number of Some Graceful Cyclic Structure

In this section, we calculate the exponential bondage number of well-known graceful
cyclic structure.

Theorem 5.1 If Hn is a helm graph, then bexp(Hn) = 1.

Proof. The proof is easy to see by the Theorem 2.7. ✷

Theorem 5.2 If Wd(k, n) is a windmill graph, then bexp(Wd(k, n)) = 1.

Proof. Let c be the central vertex of Wd(k, n). Clearly, deg(c) = n(k − 1). The
removal of an edge e which is incident to c leaves a graph H . The graph H is connected
graph with (k − 1)n + 1- vertices. It is easy to see that |V (Wd(k, n))| = |V (H)| and
deg(c) = n(k − 1) − 1 in the graph H . Now, we determine the exponential domination
number of H . Let D be a γe- set of the graph H . If D = {c}, then D exponentially dom-
inates (k− 1)n vertices. Thus, there remains only one vertex v exponentially dominated
by D. The vertex v is the end vertex of removed edge. The vertex c contributes 1/2 to
wD(v). Therefore, the vertex v or any vertex at 1/2 distance to the vertex v must be in
D. Then we get γe(H) = 2.

Since γe(H) > γe(Wd(k, n)), the exponential bondage number of the windmill graph
is bexp(Wd(k, n)) = 1. The proof is completed.✷

Theorem 5.3 If G is a circular necklace graph, then

bexp(G) =

{

2r1 − 1, if m > 2r1;
m− 1, otherwise.
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Proof. By the definition of a circular necklace graph, Km and Kti are complete
graphs and r1 = r2, where 1 ≤ i ≤ m. It is the graph Kt1 or Kt2 which has the
least vertices on the graph G. Let r1 = r2 be an integer value of r. Thus, |V (Kt1)| =
|V (Kt2)| = 2r and |V (Km)| = m. Let v1, v2,..., vm and vi = ui1, ui2, ..., ui2r be vertices
of graphs Km and Kti , where 1 ≤ i ≤ m, respectively. For every v ∈ V (Km), we
have deg(v) = m − 1 in the graph Km. Similarly, for every u1j ∈ V (Kt1), we have
deg(u1j) = 2r − 1 in the graph Kt1 , where 1 ≤ j ≤ 2r. There are two cases depending
on the degrees of the vertices of v and u1j.

Case 1. degKm
(v) > degKti

(u1j) ⇒ m > 2r.
The removal of all edge incident to the vertex u1j inG leaves a graphH consisting
of two components. One of these is an isolated vertex and the other is connected
graph CN(Km;Kt1−1,Kt2 , ...,Km). Thus by the Theorem 4.3 we get

γe(H) = γe(CN(Km;Kt1−1,Kt2 , ...,Km) + 1 = 2 + 1 > γe(G).

Since γe(H) > γe(G) is obtained, we have bexp(G) = 2r − 1.

Case 2. degKm
(v) < degKti

(u1j) ⇒ m < 2r.
The removal of all edge incident to vertex v in G leaves a graph H consisting of
Kt1 and CN(Km−1;Kt1 ,Kt2 , ...,Ktm). Thus by the Theorem 4.3 and 2.3 we get

γe(H) = γe(CN(Km−1;Kt1 ,Kt2 , ...,Ktm) + γe(Kt1) = 2 + 1 > γe(G).

Since γe(H) > γe(G) is obtained, we have bexp(G) = m− 1.

By combining these two cases, the exponential domination number of the circular
necklace graph is

bexp(G) =

{

2r1 − 1, if m > 2r1 ;
m− 1, otherwise.

The proof is completed. ✷

Theorem 5.4 If Fn is a friendship graph, then bexp(Fn) = 1.

Proof. The vertices of Fn are two kinds. Let u and vi be vertices of Fn, where
i ∈ {1, ..., 2n}. Since deg(u) = 2n in Fn, the vertex u is the central vertex of Fn.
Furthermore, deg(vi) = 2 for every vi ∈ V (Fn). If we remove the only one edge euvi
incident with the vertex u, then remaining graph is H .

Now we determine the exponential domination number of H . In the graph H ,
degH(u) = 2n − 1. Let D be a γe- set of the graph H . If D = {u}, then the set D
exponentially dominates (2n− 1)- vertices. Thus, the remains only one vertex exponen-
tially dominated by D. The vertex vi is the end vertex of removed edge euvi . The vertex
u contributes 1/2 to wD(vi). Therefore, the vertex vi or the vertex in N(vi)− {u} must
be in D. Then we get γe(H) = 2.

Since γe(H) > γe(Fn) is obtained, the exponential bondage number of the friendship
graph is bexp(Fn) = 1. The proof is completed.✷
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6 Conclusion

In this paper we determine the exact values of exponential domination and bondage
numbers of a wheel helm graph, windmill graph, circular necklace and friendship graph.
The problem of finding the exponential domination and bondage numbers of architecture
such as Pyramid networks, Circulant networks are under investigation.
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Abstract: In this paper, we obtain two new results on the Hyers-Ulam stability of
the linear partial differential equation of second order with constant coefficients

Azxx + (A+B)zxy +Bzyy + Azx +Bzy = 0

and the partial Euler differential equation of the form

x
2
zxx + 2xyzxy + y

2
zyy +mxzx +myzy −mz = 0.

Our findings make a contribution to the topic and complete those in the relevant
literature.
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1 Introduction

The stability theory is an important research area in the qualitative analysis of differential
equations and partial differential equations. It follows from the relevant literature that
the investigation of the Hyers-Ulam and Hyers-Ulam-Rassias stability of equations with
partial derivatives started recently. We should mention the earliest results on the topic
or some results obtained for the linear partial differential equations of first or second
order by Alsina and Ger [1], Cimpean and Popa [2], Gordji et al. [3], Hyers [4], Jung ([5],
[6], [7], [8]), Li and Huang [9], Liu and Zhao [10], Lungu and Popa ([11], [12]), Rassias
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[13], Tunç and Biçer [14], Ulam [15] and the references therein. We shall now give the
details of some works done on the topic. In 2009, Jung [8] investigated the Hyers-Ulam
stability of linear partial differential equations of first order

aux(x, y) + buy(x, y) + g(y)u(x, y) + h(y) = 0

and

aux(x, y) + buy(x, y) + g(x)u(x, y) + h(x) = 0,

in the cases of a ≤ 0, b > 0 and a > 0 ,b ≤ 0, (a, b ∈ ℜ), respectively.
Later, in 2011, Gordji et al. [3] proved the Hyers-Ulam-Rassias stability of the fol-

lowing nonlinear partial differential equations

γx(x, t) = f(x, t, γ(x, t)),

aγx(x, t) + bγt(x, t) = f(x, t, γ(x, t)),

p(x, t)γxx(x, t) + q(x, t)γx(x, t) = f(x, t, γ(x, t))

and

p(x, t)γxt(x, t) + q(x, t)γt(x, t) + pt(x, t)γx(x, t) − px(x, t)γt(x, t) = f(x, t, γ(x, t)),

respectively, by using Banach’s contraction mapping principle.
After that, in 2012, Lungu and Popa [11] discussed the Hyers-Ulam stability of first

order partial differential equation of the form

p(x, y)
∂u

∂x
+ q(x, y)

∂u

∂y
= p(x, y)r(x)u + f(x, y).

Finally, in 2014, Li and Huang [9] proved the Hyers-Ulam stability of the first order
linear partial differential equations in n-dimensional space of the form

n
∑

i=1

aixxi
(x1, x2, ..., xn) + g(xj)u(x1, x2, ..., xn) + h(xj) = 0,

where ai ∈ ℜ are arbitrarily given constants.
In this paper, we investigate the Hyers-Ulam stability of the partial differential equa-

tion of second order with constant coefficients

Azxx + (A+ B)zxy +Bzyy +Azx +Bzy = 0 (1)

and the partial Euler differential equation

x2zxx + 2xyzxy + y2zyy +mxzx +myzy −mz = 0, (2)

where z = z(x, y) (x, y) ∈ D, D = [a, b) × ℜ, D is a subset of ℜ2 and A,B,m are
real constants with m > 0 and A > 0. Let ε > 0 be a given number. Equation (1) is
said to be stable in Hyers-Ulam sense if there exists K > 0 such that for every function
z : [a, b]×ℜ → C satisfying

|Azxx + (A+B)zxy +Bzyy +Azx +Bzy| < ε
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for all (x, y) ∈ D there exists a solution z0 : [a, b]×ℜ → C of Eq. (1) with the property

|z(x, y)− z0(x, y)| ≤ Kε.

This work has been inspired basically by the papers of Gordji et al. [3], Jung [8], Li and
Huang [9], Lungu and Popa [11], Vlasov [16], Vasundhara Devi [1] and those listed above.
The results obtained here are different from those in the literature, new and original, and
they have simple forms. They can be easily checked and applicable, and complete the
previous ones in the literature. Hence the novelty and originality of the present paper.

2 Hyers-Ulam Stability

In this section, we give two theorems and two examples to show the Hyers-Ulam stability
of equation (1) and equation (2).Our first Hyers-Ulam stability result is the following
theorem.

Theorem 1. Let ε be a positive constant. If the function z satisfies the differential
inequality

|Azxx + (A+B)zxy +Bzyy +Azx +Bzy| < ε (3)

for all (x, y) ∈ D, then there exists a solution z0 : D → ℜ of equation (1) such that

|z(x, y)− z0(x, y)| ≤ Kε,K > 0,K ∈ ℜ.

Proof. Let u(x, y) = Azx +Bzy for any (x, y) ∈ D. Then, it follows that

|ux + uy + u| = |Azxx + (A+B)zxy +Bzyy +Azx +Bzy|

so that
|ux + uy + u| ≤ ε.

Consider the change of coordinates

ζ = x,

η = y − x.

Then, we have
|ux + uy + u| = |uζ + u| < ε. (4)

It is clear from (4) that
−ε ≤ uζ + u ≤ ε.

Multiplying the above estimate by the function exp(ζ − a), we have

−εeζ−a ≤ uζe
ζ−a + ueζ−a ≤ εeζ−a.

Let c ∈ [a, b]. For any ζ ∈ [a, b] integrating the above inequality from c to ζ, we obtain

∫ ζ

c

−εes−ads ≤

∫ ζ

c

∂

∂s
[u(s, η)es−a]ds ≤

∫ ζ

c

εes−ads.

Then
−εeζ−a ≤ u(ζ, η)eζ−a − (u(c, η) + ε)ec−a + f(η) ≤ εeζ−a.
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Hence, it is clear that

−ε ≤ u(ζ, η)− (u(c, η) + ε)ec−ζ + f(η)e−(ζ−a) ≤ ε.

Let

v(ζ, η) = (u(c, η) + ε)ec−ζ − f(η)e−(ζ−a).

Then v(ζ, η) satisfies vζ + v = 0 and |u(ζ, η)− v(ζ, η)| ≤ ε, respectively.
Taking into account the change of coordinates, we can write

|u(x, y)− v(x, y)| ≤ ε.

Since u(x, y) = Azx +Bzy, we have

−ε ≤ Azx +Bzy − v(x, y) ≤ ε.

Consider the change of coordinates

r = x,

s = Ay −Bx.

Hence

Azx +Bzy − v(x, y) = Azr − v(r, s).

From this, it follows that

−ε ≤ Azr − v(r, s) ≤ ε.

Multiplying the above estimate by 1
A
, (A 6= 0), we obtain

−
ε

A
≤ zr −

v(r, s)

A
≤

ε

A
.

Select k ∈ [a, b]. For any r ∈ [k, b] with r > 2k, integrating the above inequality from k

to r, we have

−
ε

A
(r − k) ≤ z(r, s)− z(k, s)−

∫ r

k

v(u, s)

A
du ≤

ε

A
(r − k).

Then, it follows that

−
ε

A
r ≤ z(r, s)− z(k, s)−

∫ r

k

v(u, s)

A
du−

εk

A
≤

ε

A
(r − 2k)

so that

−
ε

A
r ≤ z(r, s)− z(k, s)−

∫ r

k

v(u, s)

A
du−

εk

A
≤

ε

A
r.

Let

z0(r, s) = z(k, s) +

∫ r

k

v(u, s)

A
du+

εk

A
.

Then v(ζ, η) satisfies

A(z0)r − v(r, s) = 0.
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Hence, we can conclude that

|z(r, s)− z0(r, s)| ≤
εr

A
,K =

r

A
,A 6= 0.

This result completes the proof of Theorem 1.
Our second and last Hyers-Ulam stability result is the following theorem.

Theorem 2. Let ε be a positive constant. If the function z satisfies the differential
inequality

|x2zxx + 2xyzxy + y2zyy +mxzx +myzy −mz(x, y)| ≤ ε (5)

for all (x, y) ∈ D, then there exists a solution z0 : D → ℜ of equation (2) such that

|z(x, y)− z0(x, y)| ≤
ε

m
M, (m > 0,M > 0).

Proof. For any (x, y) ∈ D let

g(x, y) = xzx + yzy +mz.

Then

xgx(x, y) + ygy(x, y)− g(x, y) = x2zxx + 2xyzxy + y2zyy +mxzx +myzy −mz.

Therefore, inequality (5) implies

|xgx(x, y) + ygy(x, y)− g(x, y)| ≤ ε.

Consider the change of coordinates

ζ = x,

η =
y

x
, x 6= 0.

Then we have
|ζgζ − g| ≤ ε.

Assume that ζ > 0. Making use of the former inequality, we arrive at

−ε ≤ ζgζ − g ≤ ε.

Multiplying the above estimate by a
ζ2 , we have

−
εa

ζ2
≤

a

ζ
gζ −

a

ζ2
g ≤

εa

ζ2
.

Select c1 ∈ [a, b]. For any ζ ∈ [c1, b], c1 > 0, integrating the above inequality from c1 to
ζ, we can write

∫ ζ

c1

−
εa

s2
ds ≤

∫ ζ

c1

∂

∂s
[
a

s
g(s, η)]ds ≤

∫ ζ

c1

εa

s2
ds.

Hence
ε

ζ
−

ε

c1
≤

1

ζ
g(ζ, η)−

1

c1
g(c1, η) + f(η) ≤ −

ε

ζ
+

ε

c1
.
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From this, it is clear that

−ε

c1
≤

1

ζ
g(ζ, η)−

1

c1
g(c1, η) + f(η)−

ε

ζ
≤

ε

c1
.

Since ζ > 0, if we multiply the above inequality by ζ, we get

−
ε

c1
ζ ≤ g(ζ, η)−

ζ

c1
g(c1, η) + ζf(η)− ε ≤

ε

c1
ζ.

Let

v(ζ, η) =
ζ

c1
g(c1, η)− ζf(n) + ε.

Thus v(ζ, η) satisfies the following equation

ζvζ − v = 0

and the inequality

|g(ζ, η)− v(ζ, η)| ≤ Mε,

where M = ζ
c1
. In view of the fact that

g(x, y) = xzx + yzy +mzy,

it is clear that

−εM ≤ xzx + yzy +mz(x, y)− v(x, y) ≤ Mε.

Consider the change of coordinates

r = x,

n =
y

x
, x 6= 0.

Then, from the previous inequality, we have

−εM ≤ rzr +mz − v ≤ Mε.

Multiplying the above estimate by the function rm−1

am , (r > 0, ( r
a
)m > 0), we get

−εM
rm−1

am
≤

rm

am
zr +m

rm−1

am
z −

rm−1

am
v ≤ εM

rm−1

am
.

Select k ∈ [a, b]. For any r ∈ [k, b] with km

mam > 0, integrating above inequality from k to
r, we obtain

−ε(
rm

mam
−

km

mam
)M ≤

rm

am
z(r, n)−

km

am
z(k, n)−

∫ r

k

sm−1

am
v(s, n)ds ≤ ε(

rm

mam
−

km

mam
)M.

From the last inequality, it may be seen that

−εM
rm

mam
≤

rm

am
z(r, n)−

km

am
z(k, n)−

∫ r

k

sm−1

am
v(s, n)ds− ε

km

mam
≤ εM

rm

mam
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so that

−
ε

m
M ≤ z(r, n)−

km

rm
z(k, n)− r−m

∫ r

k

sm−1v(s, n)ds− ε
km

mrm
≤

ε

m
M.

Let

z0(r, η) =
km

rm
z(k, n) + r−m

∫ r

k

sm−1v(s, n)ds+ ε
km

mrm
.

Then
|z(r, s)− z0(r, s)| ≤

ε

m
M.

This completes the proof of Theorem 2.

Example 1. We consider the following linear partial differential equation of second
order with constant coefficients

zxx + 2zxy + zyy + zx + zy = 0.

Let s = y− x and f(s) > 0. It can be seen that z(x, y) = (e−x − 1)f(y− x) is a solution
of this equation and

|zxx + 2zxy + zyy + zx + zy| ≤ ε.

Let [a, b] = [0,∞) and k = 0, c = 2, r = 5
2 . Then, from Theorem 1, we have

|z − z0| ≤
5

2
ε

and

z0(r, s) = z(k, s) +

∫ r

k

v(u, s)

A
du+

εk

A
.

Thus, we can write

z0(r, s) =

∫ r

0

v(u, s)du =

∫ r

0

[(u(c, s) + ε)ec−m − f(s)e−(m−a)]dm

= −(u(c, s) + ε)ec−r + (u(c, s) + ε)ec + f(s)(e−r − 1).

At the end, we can conclude that |z − z0| ≤ εr. This inequality shows that the result of
Theorem 1 is true.

Example 2. Consider the partial Euler differential equation of the form

x2zxx + 2xyzxy + y2zyy + xzx + yzy − z = 0.

Then, it may be followed that

z(x, y) = xf

(

y

2x

)

+
x

2
g

(

y

x

)

is a solution of the former equation, and we can find

|x2zxx + 2xyzxy + y2zyy + xzx + yzy − z| ≤ ε.

For k = 0, from Theorem 2, we have

z0 =
1

r

∫ r

0

(
s

c1
g(c1, n)− sf(n) + ε)ds =

r

2c1
g(c1, n)−

r

2
f(n) +

ε

m

and
|z − z0| ≤

ε

m
.

Hence, we can conclude that the result of Theorem 2 is correct.
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3 Conclusion

We consider a linear partial differential equation of second order with constant coefficients
and a partial Euler differential equation of second order. We study the Hyers-Ulam
stability of these equations. We give two examples to verify the obtained results and for
illustrations. Our results are contributions to the topic and the related literature.
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1 Introduction

Consider the following Hamiltonian system with unbounded nonlinearities

{

ü(t) +Au(t)−∇F (t, u(t)) = e(t), a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

(HS)

where A is a (N×N)-symmetric matrix, e ∈ L1(0, T ;RN), T > 0, and F : R×R
N −→ R

is a continuous function, T -periodic in the first variable and differentiable with respect
to the second variable with continuous derivative ∇F (t, x) = ∂F

∂x
(t, x).

The study of the existence and multiplicity of periodic solutions of Hamiltonian sys-
tems plays a very important role to solve many problems of natural sciences such as
chemistry, biology and physics. For physics problem, we can cite planetry systems and
fluid dynamic problem.
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When A = 0 and e(t) = 0 for all t ∈ R, problem (HS) is just the following second
order Hamiltonian system

{

ü(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],
u(0)− u(T ) = u̇(0)− u̇(T ) = 0.

(1)

During the last decades, many authors studied the existence and multiplicity of periodic
solutions for system (1) via critical point theory and variational methods, we refer the
readers to [1]- [21] and references therein. Many solvability conditions are given such
as the coercive condition (see [2]), the periodicity condition (see [18]), the convexity
condition (see [4]) and the subadditive condition (see [13]).

For the case A 6= 0 and e 6= 0, Mawhin and Willem [5] proved that problem (HS)
has at least one solution by using the saddle point theorem under the following bounded
conditions: There exists g ∈ L1(0, T ;R+) such that

|F (t, u)| ≤ g(t), |∇F (t, u)| ≤ g(t), ∀u ∈ R
N , a.e. t ∈ [0, T ]. (2)

Precisely they obtained the following result.

Theorem 1.1 ( [5], Theorem 4.9) Suppose F satisfies (2) and the following as-
sumptions:
(C1) dimN(A) = m ≥ 1 and A has no eigenvalue of the form k2w2 (k ∈ N

∗), where
w = 2π

T
,

(C2)

∫ T

0

(e(t), αj)dt = 0 (1 ≤ j ≤ m) where (α1, α2, ......, αm) is a basis of N(A).

(F̃0) There exists Tj > 0 such that F (t, u + Tjαj) = F (t, u) (1 ≤ j ≤ m), ∀u ∈
R

N , a.e. t ∈ [0, T ].
Then problem (HS) has at least one solution.

In 2006, Feng and Han [6] generalized Mawhin and Willem’s result as follows:

Theorem 1.2 ( [6], Theorem 2.1) Suppose F satisfies (C1), (C2), (F̃0) and the
following conditions: There exist a, b ∈ L1(0, T ;R+), 0 ≤ α < 1 such that

|∇F (t, x)| ≤ a(t)|x|α + b(t), ∀x ∈ R
N , a.e. t ∈ [0, T ]. (3)

Then problem (HS) has at least one solution.

Theorem 1.3 ( [6], Theorem 2.2) Suppose F satisfies (C1), (C2), (3) and

|u|−2α

∫ T

0

F (t, u)dt→ +∞ as |u| → ∞, u ∈ N(A), (4)

or

|u|−2α

∫ T

0

F (t, u)dt→ −∞ as |u| → ∞, u ∈ N(A). (5)

Then problem (HS) has at least one solution.

Theorem 1.4 ( [6], Theorem 2.3) Suppose F satisfies (C1), (C2), (3)
(F0) and

|u|−2α

∫ T

0

F (t, u)dt → +∞ as |u| → ∞, u ∈ N(A)⊖ span(α1, ...., αr), (6)
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or

|u|−2α

∫ T

0

F (t, u)dt → −∞ as |u| → ∞, u ∈ N(A)⊖ span(α1, ...., αr). (7)

Then problem (HS) has at least r + 1 solutions in H1
T .

In 2012, Li Xiao [8] generalized Theorem 1.3. Precisely he proved that problem (HS)
possesses at least one solution when the nonlinearity ∇F (t, u) may grow slightly slower
than a control function h(|u|) instead of |u|α.

A natural question is whether there exists a result which contains the corresponding
results in [5], [6], [8] as a special case.

Motivated by [6] and [8], we give this question a positive answer by the minimax
methods in critical point theory and we obtain some results ( Theorems 1.5 and 1.6),
unify and generalize Theorems 1.2, 1.3 and 1.4 in [6], and Theorems 1.4 and 1.5 in [8].

Our basic hypotheses on A and F are the following:
(C1) dimN(A) = m ≥ 1 and A has no eigenvalue of the form k2w2 (k ∈ N

∗), where
w = 2π

T
,

(C2)

∫ T

0

(e(t), αj)dt = 0 (1 ≤ j ≤ m) where (α1, α2, ..., αm) is a basis of N(A).

(F0) There exists 0 ≤ r ≤ m, Tj > 0 such that F (t, u + Tjαj) = F (t, u)
(1 ≤ j ≤ r) ∀u ∈ R

N , a.e. t ∈ [0, T ].
(F1) There exist constants C0 ≥ 0, K1 > 0, K2 > 0, α ∈ [0, 1[, a ∈ L1(0, T ;R+), b ∈
L1(0, T ;R+) and a function h ∈ C(R+,R+) with the properties:
(i) h(s) ≤ h(t) ∀s ≤ t, s, t ∈ R

+,
(ii) h(s+ t) ≤ C0(h(t) + h(s)) ∀s, t ∈ R

+,
(iii) 0 ≤ h(t) ≤ K1t

α + k2 ∀t ∈ R
+,

(iv) h(t) → +∞ as t→ +∞,
such that

|∇F (t, x)| ≤ a(t)h(|x|) + b(t)

for all x ∈ R
N and a.e. t ∈ [0, T ],

(F ′
1) There exist constants C∗

0 ≥ 0, C∗ > 0 and a function h∗ ∈ C(R+,R+) with the
properties:
(i) h∗(s) ≤ h∗(t) + C∗

0 ∀s ≤ t, s, t ∈ R
+,

(ii) h∗(s+ t) ≤ C∗(h∗(t) + h∗(s)) ∀s, t ∈ R
+,

(iii) th∗(t) − 2H∗(t) → −∞ as t→ +∞,

(iv) H∗(t)
t2

→ 0 as t→ +∞,

where H∗(t) =

∫ t

0

h∗(s)ds. Moreover, there exist f ∈ L1(0, T ;R+) and g ∈ L1(0, T ;R+)

such that

|∇F (t, x)| ≤ f(t)h∗(|x|) + g(t)

for all x ∈ R
N and a.e. t ∈ [0, T ].

Now we state our main results.
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Theorem 1.5 Suppose that conditions (C1), (C2), (F0), (F1) and the following as-
sumption hold
(F2)

(i) lim
|x|→+∞

1

h2(|x|)

∫ T

0

F (t, x)dt = −∞, x ∈ N(A)⊖ span(α1, ...., αr),

or

(ii) lim
|x|→+∞

1

h2(|x|)

∫ T

0

F (t, x)dt = +∞, x ∈ N(A)⊖ span(α1, ...., αr),

then problem (HS) has at least r + 1 T-periodic solutions in H1
T .

Theorem 1.6 Suppose that conditions (C1), (C2), (F0), (F
′
1) and the following as-

sumption hold
(F ′

2)

(i) lim
|x|→+∞

1

H∗(|x|)

∫ T

0

F (t, x)dt = −∞, x ∈ N(A)⊖ span(α1, ...., αr),

or

(ii) lim
|x|→+∞

1

H∗(|x|)

∫ T

0

F (t, x)dt = +∞, x ∈ N(A)⊖ span(α1, ...., αr),

then problem (HS) has at least r + 1 T-periodic solutions in H1
T .

Example 1.1 Let

A =





1 0 0
0 0 0
0 0 0



 .

Then dimN(A) = 2 and N(A)=span{α1, α2}, where α1 = (0, 1, 0), α2 = (0, 0, 1). So
(C1) holds.

Let

F (t, x) = (0.4T − t) ln
3
2 [98 + x21 + sin2(x2) + cos2(x3)]

+ d(t) ln[100 + x21 + sin2(x2) + cos2(x3)] (8)

for all x = (x1, x2, x3) ∈ R
3, t ∈ [0, T ], where d ∈ C([0, T ];R+). We have

F (t, x+ παj) = F (t, x), j = 1, 2.

Let e satisfy

∫ T

0

e(t)dt = 0, then

∫ T

0

(e(t), αj)dt = 0, j = 1, 2 and

|∇F (t, x)| ≤ 3|0.4T − t| ln
1
2 (100 + |x|2) + d(t).

Let h(t) = ln
1
2 (100 + |t|2). Similar to the argument in [17], we know that (F1) holds.

Moreover,

lim
|x|→+∞

1

h2(|x|)

∫ T

0

F (t, x)dt = −∞.
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Hence, (F2)i) holds and then by Theorem 1.5 , problem (HS) has at least three solutions.
On the other hand, for any α ∈ (0, 1),

lim
|x|→+∞

1

|x|
2α

∫ T

0

F (t, x)dt = 0,

so (8) does not satisfy Theorem 1.3 in [6].

Example 1.2 Consider the function
F (t, x) = (23T − t) ln(100 + |x|2) + l(t)

√

100 + |x|2, where l ∈ C([0, T ],R+).

It is easy to see that |∇F (t, x)| ≤ 2
∣

∣

2
3T − t

∣

∣

|x|

100+|x|2
+l(t) for all x ∈ R

3 and t ∈ [0, T ]. Let

h∗(t) = t
100+t2

, H∗(t) =
∫ t

0
s

100+s2
ds, C∗

0 = 2, C∗ = 1, f(t) = 2
∣

∣

2
3T − t

∣

∣ and g(t) = l(t),
we infer
(i) h∗(s) ≤ h∗(t) + 2 ∀s ≤ t, s, t ∈ R

+,
(ii) h∗(s+ t) = s+t

100+(s+t)2 ≤ (h∗(t) + h∗(s)) ∀s, t ∈ R
+,

(iii) th∗(t) − 2H∗(t) = t2

100+t2
− 2

[

1
2 ln(100 + t2)− 1

2 ln(100)
]

→ −∞ as t→ +∞,

(iv) H∗(t)
t2

=

∫
t

0

s

100+s2
ds

t2
→ 0 as t→ +∞.

Let e satisfy

∫ T

0

e(t)dt = 0, then

∫ T

0

(e(t), αj)dt = 0, j = 1, 2, we have

lim
|x|→+∞

1

H∗(|x|)

∫ T

0

F (t, x)dt → +∞. So, by Theorem 1.6, problem (HS) has at least

one solution in H1
T .

Remark 1.1 Unlike the control functions in (F1), where h(t) is nondecreasing, here
control function h∗(t) = t

100+t2
is bounded but not increasing.

Remark 1.2 (i) Theorem 1.5. is a generalization of the main results in [ [15],
Theorems 2 and 3] and in [ [6], Theorems 2.1, 2.2, 2.3]. Obviously , our theorems, as
r = m, contain Theorems 1.4 and 1.5 in [8].
(ii) If we let h(t) = tα, it is easy to see that (F1) generalizes (3).

2 Preliminaries.

Let
H1

T =
{

u : R → R
N/ u is absolutely continuous, u(t) = u(t+ T ), u̇ ∈ L2(0, T ;RN)

}

.
Then H1

T is a Hilbert space with the inner product

< u, v >=

∫ T

0

[(u(t), v(t)) + (u̇(t), v̇(t))] dt

and the associated norm

‖u‖ =

(

∫ T

0

[

|u(t)|2 + |u̇(t)|2
]

dt

)
1
2

for each u, v ∈ H1
T . Let

ū =
1

T

∫ T

0

u(t)dt, ũ(t) = u(t)− ū.
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Then one has
∫ T

0

|ũ(t)|2dt ≤
T 2

4π2

∫ T

0

|u̇(t)|2dt , (Wirtinger′s inequality)

and

‖ũ‖
2
∞ ≤

T

12

∫ T

0

|u̇(t)|2dt , (Sobolev′s inequality).

(see Proposition 1.3 in [5]) which implies that

‖u‖∞ ≤ C ‖u‖ (9)

for some C > 0 and all u ∈ H1
T , where ‖u‖∞ = max

t∈[0,T ]
|u(t)|. It is well known that the

functional ϕ defined on H1
T by

ϕ(u) =
1

2

∫ T

0

|u̇|
2
dt−

1

2

∫ T

0

(A(t)u(t), u(t))dt +

∫ T

0

F (t, u(t))dt+

∫ T

0

(e(t), u(t))dt

is continuously differentiable and its critical points are the solutions of problem (HS).
Moreover, one has

< ϕ′(u), v >=

∫ T

0

[(u̇(t), v̇(t))− (A(t)u(t), v(t)) + (∇F (t, u(t)), v(t)) + (e(t), v(t)]dt

for u, v ∈ H1
T . Let

q(u) =
1

2

∫ T

0

(

|u̇|
2
− (A(t)u(t), u(t))

)

dt.

It is easy to see that

q(u) =
1

2
‖u‖2 −

1

2

∫ T

0

((A(t) + I)u(t), u(t))dt =
1

2
< (I −K)u, u >,

where K : H1
T → H1

T is the self-adjoint operator defined, using Riesz representation
theorem, by

∫ T

0

((A(t) + I)u(t), v(t))dt =< (Ku, v) >, ∀u, v ∈ H1
T .

The compact embedding of H1
T into C(0, T ;RN) implies that K is compact. By classical

spectral theory, we can decompose H1
T into the orthogonal sum of invariant subspaces

for I −K
H1

T = H− ⊕H0 ⊕H+,

where H0 = Ker(I −K) and H−, H+ are such that, for some δ > 0,

q(u) ≤ −
δ

2
‖u‖2 if u ∈ H−, (10)

q(u) ≥
δ

2
‖u‖

2
if u ∈ H+. (11)

Moreover, by (C1), it is well known that H0 = Ker(I −K) = N(A) (see [5]).
In the proofs, we mainly use the following generalized saddle point theorem from [9].
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Theorem 2.1 Let X be a Banach space and have a decomposition: X = W + Z
where W and Z are two subspaces of X with dimZ < +∞. Let V be a finite-dimensional,
compact C2-manifold without boundary. Let f : X×V → R be a C1-function and satisfy
the (PS) condition. Suppose that f satisfies
inf

u∈W×X
f(u) ≥ α, sup

u∈S×X

f(u) ≤ β < α, where S = ∂D,D = {u ∈ Z / ‖u‖ ≤ R} and

R, α, β are constants. Then the function f has at least cuplength(V )+1 critical points.

Let PH0 = span(α1, ...., αr), QH
0 = N(A) ⊖ PH0 = span(αr+1, ...., αm). Then

u = u−+u++Pu0+Qu0, where Pu0 =

r
∑

j=1

cjαj . Let G = {

r
∑

j=1

kjTjαj/ kj ∈ N}. Use the

canonical mapping π : H1
T → H1

T /G. Let H
1
T /G = X×V = (W⊕Z)×V ,W = H+, Z =

H− ⊕QH0, V = PH0/G. It is easy to see that dimZ < +∞, dimV < +∞, and V is a
compact C2-manifold without boundary as it is diffeomorphic to the r-torus T r. Element

in V can be represented as P û0 =
r
∑

j=1

ĉjαj , where ĉj = cj − kjTj (0 ≤ ĉj < Tj).

Let u = u−+u++P û0+Qu0. Define the functional ψ on H1
T /G by ψ(π(u)) = ϕ(u).

As F (t, u + Tjαj) = F (t, u) (1 ≤ j ≤ r), we can see that ψ is well-defined, and ψ is
continuously differentiable on H1

T /G.

3 Proof of the Main Results.

Proof of Theorem 1.5.

For the sake of convenience, we will denote various positive constants as Ci, i = 1, 2, ...
We only prove the case where (F2)(i) holds. The other case can be similarly given.

Lemma 3.1 [Lemma 3.1, [8]] Assume that (F1) holds. Then for any (PS) sequence
(un) ⊂ H1

T of the functional ϕ, we have

‖ũn‖
2
≤ C1h

2(
∣

∣u0n
∣

∣) + C1, (12)

where un = u+n + u−n + u0n and ũn = u+n + u−n .

Lemma 3.2 Suppose that (F1) and (F2)(i) hold, Then every (PS) sequence (un) ⊂
H1

T such that (Pu0n) is bounded contains a convergent subsequence.

Proof. By (12), we have

‖ũn‖
2

≤ C1h
2(
∣

∣u0n
∣

∣) + C1.

As (Pu0n) is bounded, we have the inequality

‖ũn‖
2
≤ C2h

2(
∣

∣Qu0n
∣

∣) + C2. (13)

It follows from (9), (F1), (13), the mean value theorem and Young’s inequality that
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∣

∣

∣

∣

∣

∫ T

0

(

F (t, un(t))− F (t, Qu0n)
)

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(

∇F (t, Qu0n + s(ũn(t) + Pu0n), ũn(t) + Pu0n
)

dsdt

∣

∣

∣

∣

∣

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, Qu0n + s(ũn(t) + Pu0n)
∣

∣

∣

∣ũn(t) + Pu0n
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

a(t)h(
∣

∣Qu0n + s(ũn(t) + Pu0n)
∣

∣) + b(t)
) ∣

∣ũn(t) + Pu0n
∣

∣ dsdt

≤

∫ T

0

[

C0(C0 + 1)a(t)
(

h(|Qu0n|) + h(‖ũn‖∞) + h(|Pu0n|)
)] (

‖ũn‖∞ + |Pu0n|
)

dt

+

∫ T

0

b(t)
(

‖ũn‖∞ + |Pu0n|
)

dt

≤ C3‖ũn‖∞h(‖ũn‖∞) + C3‖ũn‖∞h(|Qu
0
n|) + C4‖ũn‖∞ + C5h(|Qu

0
n|)

+ C5h(‖ũn‖∞) + C6

≤ C3 ‖ũn‖∞ (K1 ‖ũn‖
α

∞ +K2) + C3 ‖ũn‖∞ h(
∣

∣Qu0n
∣

∣) + C4‖ũn‖∞

+ C5h(|Qu
0
n|) + C5 (K1 ‖ũn‖

α

∞ +K2) + C6

≤ C7 ‖ũn‖
α+1 + C8 ‖ũn‖

α + C9 ‖ũn‖

+ C10 ‖ũn‖h(|Qu
0
n|) + C5h(|Qu

0
n|) + C11

≤ C12 ‖ũn‖
2
+ C13h

2(
∣

∣Qu0n
∣

∣) + C14

≤ C15h
2(
∣

∣Qu0n
∣

∣) + C16. (14)

Hence, by (14) and the boundedness of ϕ(un) we obtain

−C17 ≤ ϕ(un) =
1

2
((I −K)un, un) +

∫ T

0

(

F (t, un(t))− F (t, Qu0n)
)

dt

+

∫ T

0

F (t, Qu0n)dt+

∫ T

0

(e(t), un(t))dt

≤ C18 ‖ũn‖
2 + C15h

2(
∣

∣Qu0n
∣

∣) + C16 +

∫ T

0

F (t, Qu0n)dt+ C19 ‖ũn‖

≤ C20h
2(
∣

∣Qu0n
∣

∣) +

∫ T

0

F (t, Qu0n)dt+ C21

= h2(|Qu0n|)

(

C20 +
1

h2(|Qu0n|)

∫ T

0

F (t, Qu0n)dt

)

+ C21. (15)

It follows from (F2)(i) and (15) that (Qu0n) is bounded. Combining (13) and the bound-
edness of (Pu0n), we obtain that (un) is bounded. Arguing as in [Proposition 4.1, [5]] we
conclude that (un) contains a convergent subsequence. Thus we complete the proof.

Now we are ready to prove Theorem 1.5. First, we prove that ψ satisfies the (PS)
condition. Let (un) ⊂ H1

T be a (PS) sequence of ψ, that is (ψ(π(un))) is bounded and
ψ′(π(un)) → 0.

We have q(u) = 1
2 ((I −K)u, u) so q′(u) = (I−K)u and since uk− ûk =

r
∑

j=1

kjTjαj ∈



166 K. FATHI

N(I −K), we obtain that q(un) = q(ûn) and q
′(un) = q′(ûn). Moreover, by conditions

(F0) and (C2), we have F (t, un(t)) = F (t, ûn(t) +
r
∑

j=1

kjTjαj) = F (t, ûn(t) and

∫ T

0

(e(t), un(t))dt =

∫ T

0

(e(t), ûn(t) +
r
∑

j=1

kjTiαj)dt =

∫ T

0

(e(t), ûn(t))dt.

Hence, we obtain that ϕ(un) = ϕ(ûn). Consequently ψ(π(un)) = ψ(π(ûn)). It follows
from (F0) that ∇F (t, u + Tjαj) = ∇F (t, u) (1 ≤ j ≤ r). Hence ϕ′(un) = ϕ′(ûn),
namely, ψ′(π(un)) = ψ′(π(ûn)). As (P ûn) is bounded, we obtain by Lemma 3.2 that
(ûn) contains a convergent subsequence: ûnk

→ û. Then

lim
k→+∞

ψ(π(unk
)) = lim

k→+∞
ψ(π(ûnk

)) = ψ(π(û)),

lim
k→+∞

ψ′(π(unk
)) = lim

k→+∞
ψ′(π(ûnk

)) = ψ′(π(û)).

Hence ψ satisfies the (PS) condition.

In order to use the generalized saddle point theorem we only need to verify the
following conditions:

(ψ1) ψ(π(u)) → +∞, as ‖u‖ → +∞ in W × V,

(ψ2) ψ(π(u)) → −∞, as ‖u‖ → +∞ in Z × V.

By (9), (F1), the mean value theorem and the boundedness of (P ûn), we have ∀π(u) ∈
W × V, u = u+ + Pu0,
∫ T

0

(F (t, û(t))− F (t, 0)) dt

=

∫ T

0

∫ 1

0

(

∇F (t, s(u+(t) + P û0), u+(t) + P û0
)

dsdt

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, s(u+(t) + P û0)
∣

∣

∣

∣u+(t) + P û0
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

a(t)h(
∣

∣u+(t) + P û0
∣

∣) + b(t)
) ∣

∣u+(t) + P û0
∣

∣ dsdt

≤

∫ T

0

[

C0a(t)
(

h(‖u+‖∞) + h(|P û0|)
)

+ b(t)
] (

‖u+‖∞ + |P û0|
)

dt

≤
(

‖u+‖∞ + |P û0|
)

(

C0K1‖u
+‖α∞

∫ T

0

a(t)dt+ C0K2

∫ T

0

a(t)dt

)

+
(

‖u+‖∞ + |P û0|
)

h(|P û0|)C0

∫ T

0

a(t)dt+
(

‖u+‖∞ + |P û0|
)

∫ T

0

b(t)dt

≤ C22

∥

∥u+
∥

∥

α+1

∞
+ C23

∥

∥u+
∥

∥

α

∞
+ C24

∥

∥u+
∥

∥

∞
+ C25

≤ C26

∥

∥u+
∥

∥

α+1
+ C27

∥

∥u+
∥

∥

α
+ C28

∥

∥u+
∥

∥+ C25. (16)
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It follows from (11) and (16) that

ψ(π(u)) = ϕ(u) = ϕ(û)

=
1

2

(

(I −K)u+, u+
)

+

∫ T

0

(F (t, û(t))− F (t, 0)) dt

+

∫ T

0

F (t, 0)dt+

∫ T

0

(e(t), û(t))dt

≥
δ

2
‖u+‖2 − C26

∥

∥u+
∥

∥

α+1
− C27

∥

∥u+
∥

∥

α
− C29

∥

∥u+
∥

∥− C30. (17)

Since α+ 1 < 2, then by (17), (ψ1) is verified.
On the other hand, by (9), (F1), the mean value theorem, the boundedness of (P ûn) and
Young’s inequality we obtain for π(u) ∈ Z × V, u = u− +Qu0 + Pu0,
∫ T

0

(

F (t, û(t))− F (t, Qu0)
)

dt

=

∫ T

0

∫ 1

0

(

∇F (t, Qu0 + s(u−(t) + P û0), u−(t) + P û0
)

dsdt

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, Qu0 + s(u−(t) + P û0)
∣

∣

∣

∣u−(t) + P û0
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

a(t)h(
∣

∣Qu0 + s(u−(t) + P û0)
∣

∣) + b(t)
) ∣

∣u−(t) + P û0
∣

∣ dsdt

≤

∫ T

0

C0(C0 + 1)a(t)
(

h(|Qu0|) + h(‖u−‖∞) + h(|P û0|)
) (

‖u−‖∞ + |P û0|
)

dt

+

∫ T

0

b(t)
(

‖u−‖∞ + |P û0|
)

dt

≤ C31‖u
−‖∞h(‖u

−‖∞) + C31‖u
−‖∞h(|Qu

0|)

+ C32h(‖u
−‖∞) + C32h(|Qu

0|) + C33‖u
−‖∞ + C34

≤ C31

∥

∥u−
∥

∥

∞

(

K1

∥

∥u−
∥

∥

α

∞
+K2

)

+ C31

∥

∥u−
∥

∥

∞
h(
∣

∣Qu0
∣

∣) + C33‖u
−‖∞

+ C32h(|Qu
0|) + C32

(

K1

∥

∥u−
∥

∥

α

∞
+K2

)

+ C34

≤ C35

∥

∥u−
∥

∥

α+1

∞
+ C36

∥

∥u−
∥

∥

α

∞
+ C37

∥

∥u−
∥

∥

∞

+ C31

∥

∥u−
∥

∥

∞
h(|Qu0|) + C32h(|Qu

0|) + C38

≤ C39

∥

∥u−
∥

∥

α+1
+ C40

∥

∥u−
∥

∥

α
+ C41

∥

∥u−
∥

∥

+ C42

∥

∥u−
∥

∥h(|Qu0|) + C32h(|Qu
0|) + C38

≤ ε
∥

∥u−
∥

∥

2
+ C39

∥

∥u−
∥

∥

α+1
+ C40

∥

∥u−
∥

∥

α

+ C41

∥

∥u−
∥

∥+ C43h
2(
∣

∣Qu0
∣

∣) + C44 (18)
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for any ε > 0. Hence, by (10) and (18) we obtain

ψ(π(u)) = ϕ(u) = ϕ(û)

=
1

2

(

(I −K)u−, u−
)

+

∫ T

0

(

F (t, u(t))− F (t, Qu0)
)

dt

+

∫ T

0

F (t, Qu0)dt+

∫ T

0

(e(t), u−(t))dt

≤
−δ

2
‖u−‖2 + ε

∥

∥u−
∥

∥

2
+ C39

∥

∥u−
∥

∥

α+1

+ C40

∥

∥u−
∥

∥

α
+ C45

∥

∥u−
∥

∥+ C43h
2(|Qu0|) +

∫ T

0

F (t, Qu0)dt+ C44

= (
−δ

2
+ ε)

∥

∥u−
∥

∥

2
+ C39

∥

∥u−
∥

∥

α+1
+ C40

∥

∥u−
∥

∥

α
+ C45

∥

∥u−
∥

∥

+ h2(|Qu0|)

(

C43 +
1

h2(|Qu0|)

∫ T

0

F (t, Qu0)dt

)

+ C44. (19)

Fixing ε < δ
2 , by (19), (F2)(i) and since α+ 1 < 2, we obtain ϕ(u) → −∞ as ‖u‖ →

+∞ in Z × V . Thus (ψ2) is verified. The proof is completed. �

Proof of Theorem 1.6.
We only prove the case where (F ′

2)(i) holds. The other case can be similarly given.

Lemma 3.3 (Lemma 2.1, [19]) Suppose that there exists a positive function h∗

satisfying the conditions (i), (ii), (iv) of (F ′
1), then we have the following estimates:

(1) 0 < h∗(t) < εt+ C0 for any ε > 0, C0 > 0, t ∈ R
+,

(2) h∗2(t)
H∗(t) −→ 0 as t→ +∞,

(3) H∗(t) −→ +∞ as t→ +∞.

Lemma 3.4 Assume that (F ′
1) holds. Then for any (PS) sequence (un) ⊂ H1

T of the
functional ϕ, we have

‖ũn‖
2 ≤ C45h

∗2(
∣

∣u0n
∣

∣) + C45, (20)

where un = u+n + u−n + u0n and ũn = u+n + u−n .

Proof. Assume that (un) ⊂ H1
T is a (PS) sequence for ϕ. Then

|ϕ(un)| ≤ C46, |ϕ′(un)| ≤ C46, ∀n ∈ N.

It follows from (F ′
1), (9), Lemma 3.3 and Young’s inequality that
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∣

∣

∣

∣

∣

∫ T

0

∇F (t, un(t)), u
+
n (t)− u−n (t))dt

∣

∣

∣

∣

∣

≤

∫ T

0

|∇F (t, un(t))|
∣

∣u+n (t)− u−n (t)
∣

∣ dt

≤

∫ T

0

f(t)h∗(
∣

∣u0n + ũn(t)
∣

∣)
∣

∣u+n (t)− u−n (t)
∣

∣ dt+

∫ T

0

g(t)
∣

∣u+n (t)− u−n (t)
∣

∣ dt

≤
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

f(t)[C∗
0 + h∗(

∣

∣u0n
∣

∣+ ‖ũn‖∞)]dt+
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

g(t)dt

=
∥

∥u+n − u−n
∥

∥

∞
h∗(
∣

∣u0n
∣

∣+ ‖ũn‖∞)

∫ T

0

f(t)dt+
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

(C∗
0f(t) + g(t))dt

≤ C∗
∥

∥u+n − u−n
∥

∥

∞
h∗(‖ũn‖∞)

∫ T

0

f(t)dt+ C∗
∥

∥u+n − u−n
∥

∥

∞
h∗(
∣

∣u0n
∣

∣)

∫ T

0

f(t)dt

+
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

(C∗
0f(t) + g(t))dt

≤ εC∗
∥

∥u+n − u−n
∥

∥

∞
‖ũn‖∞

∫ T

0

f(t)dt+ C0C
∗
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

f(t)dt

+ C∗
∥

∥u+n − u−n
∥

∥

∞
h∗(
∣

∣u0n
∣

∣)

∫ T

0

f(t)dt+
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

(C∗
0f(t) + g(t))dt

≤ εC47 ‖ũn‖
2
+ C48h

∗(
∣

∣u0n
∣

∣) ‖ũn‖+ C49 ‖ũn‖

≤ 3εC47 ‖ũn‖
2
+ C50(ε)h

∗2(
∣

∣u0n
∣

∣) + C51(ε) (21)

for any ε > 0.
Thus, we have

C46

∥

∥u+n − u−n
∥

∥ = C46 ‖ũn‖

≥
(

ϕ′(un), u
+
n − u−n

)

=
(

(I −K)un, u
+
n − u−n

)

+

∫ T

0

(

∇F (t, un(t)) + e(t), u+n (t)− u−n (t)
)

dt

≥ δ ‖ũn‖
2 − 3εC47 ‖ũn‖

2 − C50(ε)h
∗2(
∣

∣u0n
∣

∣)− C51(ε)

−
∥

∥u+n − u−n
∥

∥

∞

∫ T

0

|e(t)| dt

≥ (δ − 3εC47) ‖ũn‖
2
− C50(ε)h

∗2(
∣

∣u0n
∣

∣)− C51(ε)− C52 ‖ũn‖ .

Hence, we obtain

(δ − 5εC47) ‖ũn‖
2
≤ C50h

∗2(
∣

∣u0n
∣

∣) + C53, (22)

if we fix ε < δ
5C47

, then by (22) we have

‖ũn‖
2
≤ C54h

∗2(
∣

∣u0n
∣

∣) + C55.

Take C45 = max {C54, C55}, the proof is complete.
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Lemma 3.5 Suppose that (F ′
1) and (F ′

2)(i) hold, Then every (PS) sequence (un) ⊂
H1

T such that (Pu0n) is bounded contains a convergent subsequence.

Proof. By (20), we have

‖ũn‖
2 ≤ C45h

∗2(
∣

∣u0n
∣

∣) + C45.

As (Pu0n) is bounded, we have the inequality

‖ũn‖
2
≤ C56h

∗2(
∣

∣Qu0n
∣

∣) + C56. (23)

It follows from (9), (F ′
1), (23), the mean value theorem and Young’s inequality that

∣

∣

∣

∫ T

0

(

F (t, un(t))− F (t, Qu0n)
)

dt
∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0

∫ 1

0

(

∇F (t, Qu0n + s(ũn(t) + P û0n), ũn(t) + P û0n
)

dsdt

∣

∣

∣

∣

∣

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, Qu0n + s(ũn(t) + P û0n)
∣

∣

∣

∣ũn(t) + P û0n
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

f(t)h∗(
∣

∣Qu0n + s(ũn(t) + P û0n)
∣

∣) + g(t)
) ∣

∣ũn(t) + P û0n
∣

∣ dsdt

≤

∫ T

0

[

f(t)
(

h∗(|Qu0n|+ ‖ũn‖∞ + |P û0n|) + C∗
0

)

+ g(t)
] (

|ũn(t)|+ |P û0n|
)

dt

≤ C∗(C∗ + 1)
(

h∗(|Qu0n|) + h∗(‖ũn‖∞) + h∗(|P û0n|)
) (

‖ũn‖∞ + |P û0n|
)

∫ T

0

f(t)dt

+
(

‖ũn‖∞ + |P û0n|
)

∫ T

0

(g(t) + C∗
0f(t))dt

≤ C57‖ũn‖∞h
∗(‖ũn‖∞) + C58‖ũn‖∞h

∗(|Qu0n|) + C59‖ũn‖∞ + C60h
∗(|Qu0n|)

+ C61h(‖ũn‖∞) + C62

≤ C63h
∗2(
∣

∣Qu0n
∣

∣) + C64. (24)

It follows from the boundedness of ϕ(un) and (24) that

−C65 ≤ ϕ(un)

=
1

2
((I −K)un, un) +

∫ T

0

(

F (t, un(t))− F (t, Qu0n)
)

dt

+

∫ T

0

F (t, Qu0n)dt+

∫ T

0

(e(t), un(t))dt

≤ C66 ‖ũn‖
2 + C63h

∗2(
∣

∣Qu0n
∣

∣) + C64 +

∫ T

0

F (t, Qu0n)dt+ C67 ‖ũn‖

≤ C68h
∗2(
∣

∣Qu0n
∣

∣) +

∫ T

0

F (t, Qu0n)dt+ C69

= H∗(|Qu0n|)

(

C68h
∗2(
∣

∣Qu0n
∣

∣)

H∗(|Qu0n|)
+

1

H∗(|Qu0n|)

∫ T

0

F (t, Qu0n)dt

)

+ C69. (25)
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Hence, by (F ′
2)(i), (25) and Lemma 3.3 we deduce that (Qu0n) is bounded. Combining

(20) and the boundedness of (Pu0n), we obtain that (un) is bounded. Arguing as in
[Proposition 4.1, [5]] we conclude that (un) contains a convergent subsequence. We
complete the proof.

Now we are ready to prove Theorem 1.6. First, we prove that ψ satisfies the (PS)
condition. Let (un) ⊂ H1

T be a (PS) sequence of ψ, that is (ψ(π(un))) is bounded
and ψ′(π(un)) → 0. We have q(u) = 1

2 ((I −K)u, u) so q′(u) = (I − K)u and since

uk − ûk =

r
∑

j=1

kjTjαj ∈ N(I −K), we obtain that q(un) = q(ûn) and q′(un) = q′(ûn).

Therefore, by conditions (F0) and (C2), we have

F (t, un(t)) = F (t, ûn(t) +
r
∑

j=1

kjTjαj) = F (t, ûn(t),

∫ T

0

(e(t), un(t))dt =

∫ T

0

(e(t), ûn(t) +

r
∑

j=1

kjTiαj)dt =

∫ T

0

(e(t), ûn(t))dt.

Hence, we obtain that ϕ(un) = ϕ(ûn). Consequently ψ(π(un)) = ψ(π(ûn)). It follows
from (F1) that ∇F (t, u + Tjαj) = ∇F (t, u) (1 ≤ j ≤ r). Hence ϕ′(un) = ϕ′(ûn),
namely, ψ′(π(un)) = ψ′(π(ûn)). As (P ûn) is bounded, we obtain by Lemma 3.5 that
(ûn) contains a convergent subsequence. Let ûnk

→ û.
Then

lim
k→+∞

ψ(π(unk
)) = lim

k→+∞
ψ(π(ûnk

)) = ψ(π(û)),

lim
k→+∞

ψ′(π(unk
)) = lim

k→+∞
ψ′(π(ûnk

)) = ψ′(π(û)).

It implies that ψ satisfies the (PS) condition.
In order to use the generalized saddle point theorem we only need to verify the

following conditions:
(ψ1) There exists α ∈ R such that ψ(π(u)) ≥ α, on W × V ,

(ψ2) There exists β < α such that ψ(π(u)) ≤ β, on Z × V .
It follows from (9), (F ′

1), the mean value theorem and the boundedness of (P ûn), that
∀π(u) ∈W × V, u = u+ + Pu0,
∫ T

0

(F (t, û(t))− F (t, 0)) dt

=

∫ T

0

∫ 1

0

(

∇F (t, s(u+(t) + P û0), u+(t) + P û0
)

dsdt

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, s(u+(t) + P û0)
∣

∣

∣

∣u+(t) + P û0
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

(

f(t)h∗(
∣

∣s(u+(t) + P û0)
∣

∣) + g(t)
) ∣

∣u+(t) + P û0
∣

∣ dsdt

≤

∫ T

0

[

f(t)
(

h∗(‖u+‖∞ + |P û0|) + C∗
0

)

+ g(t)
] (

‖u+‖∞ + |P û0|
)

dt

≤ C∗
(

‖u+‖∞ + |P û0|
) (

h∗(‖u+‖∞) + h∗(|P û0|)
)

∫ T

0

f(t)dt
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+
(

‖u+‖∞ + |P û0|
)

∫ T

0

(g(t) + C∗
0f(t))dt

≤ εC70

∥

∥u+
∥

∥

∞
h∗(
∥

∥u+
∥

∥

∞
) + C71h

∗(
∥

∥u+
∥

∥

∞
) + C72

∥

∥u+
∥

∥

∞
+ C73

≤ εC70

∥

∥u+
∥

∥

2

∞
+ C74

∥

∥u+
∥

∥

∞
+ C75

≤ εC76

∥

∥u+
∥

∥

2
+ C77

∥

∥u+
∥

∥+ C75 (26)

for any ε > 0.
Hence, we deduce from (11) and (26) that

ψ(π(u)) = ϕ(u) = ϕ(û)

=
1

2

(

(I −K)u+, u+
)

+

∫ T

0

(F (t, û(t))− F (t, 0)) dt

+

∫ T

0

F (t, 0)dt+

∫ T

0

(e(t), û(t))dt

≥ (
δ

2
− εC76)

∥

∥u+
∥

∥

2
− C80

∥

∥u+
∥

∥− C81. (27)

Choosing ε < δ
2C76

, by (27) ψ is bounded below on W × V , and (ψ1) is verified.
On the other hand, by (9), (F ′

1), the mean value theorem, the boundedness of (P ûn)
and Young’s inequality we have
∀π(u) ∈ Z × V, u = u− +Qu0 + Pu0,

∫ T

0

(

F (t, û(t))− F (t, Qu0)
)

dt

=

∫ T

0

∫ 1

0

(

∇F (t, Qu0 + s(u−(t) + P û0), u−(t) + P û0
)

dsdt

≤

∫ T

0

∫ 1

0

∣

∣∇F (t, Qu0 + s(u−(t) + P û0)
∣

∣

∣

∣u−(t) + P û0
∣

∣ dsdt

≤

∫ T

0

∫ 1

0

[

f(t)h∗(
∣

∣Qu0 + s(u−(t) + P û0)
∣

∣) + g(t)
] ∣

∣u−(t) + P û0
∣

∣ dsdt

≤

∫ T

0

f(t)
(

h∗(|Qu0|+ ‖u−‖∞ + |P û0|) + C∗
0

) (

‖u−‖∞ + |P û0|
)

dt

+
(

‖u−‖∞ + |P û0|
)

∫ T

0

g(t)dt

≤ C∗(C∗ + 1)
(

h∗(|Qu0|) + h∗(‖u−‖∞) + h∗(|P û0|)
) (

‖u−‖∞ + |P û0|
)

∫ T

0

f(t)dt

+
(

‖u−‖∞ + |P û0|
)

∫ T

0

(g(t) + C∗
0f(t))dt

≤ C82‖u
−‖∞h

∗(‖u−‖∞) + C82‖u
−‖∞h

∗(|Qu0|)

+ C83h
∗(‖u−‖∞) + C83h

∗(|Qu0|) + C84‖u
−|∞ + C85

≤ C86‖u
−‖2∞ + C86h

∗2(|Qu0|) + C87‖u
−‖∞ + C88

≤ C89‖u
−‖2∞ + C90h

∗(|Qu0|) + C91‖u
−‖∞ + C88

≤ C91h
∗2(
∣

∣Qu0
∣

∣) + C92. (28)
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Hence, by (10) and (28) we obtain

ψ(π(u)) = ϕ(u) = ϕ(û)

=
1

2

(

(I −K)u−, u−
)

+

∫ T

0

(

F (t, u(t))− F (t, Qu0)
)

dt

+

∫ T

0

F (t, Qu0)dt+

∫ T

0

(e(t), u−(t))dt

≤
−δ

2
‖u−‖2 + C91h

∗2(
∣

∣Qu0
∣

∣) + C92 + C93‖u
−‖+

∫ T

0

F (t, Qu0)dt

= H∗(|Qu0|)

(

C91h
∗2(
∣

∣Qu0
∣

∣)

H∗(|Qu0|)
+

1

H∗(|Qu0|)

∫ T

0

F (t, Qu0)dt

)

+
−δ

2

∥

∥u−
∥

∥

2
+ C93

∥

∥u−
∥

∥+ C92. (29)

Hence, by (29), (F ′
2)(i) we obtain that ϕ(u) → −∞ as ‖u‖ → +∞ in Z × V .

Thus, (ψ2) is verified and we complete the proof.
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Abstract: The second section of this paper is devoted to the study of the capac-
ity theory in Musielak–Orlicz–Sobolev space, we study basic’s properties, including
monotonicity, countable subadditivity and several convergence results, we prove that
each Musielak-Orlicz-Sobolev function has a quasi-continuous representative. In the
third section, we generalize the Theorem of H. Brezis and F.E. Browder in the setting
of Musielak–Orlicz–Sobolev space Wm

Lϕ(Ω), which extends the previous result of H.
Brezis and F.E. Browder [10]. In the fourth section, we make an application to an
unilateral problem.

Keywords: Musielak-Orlicz-Sobolev spaces; capacity; theorem of H. Brezis and F.E.

Browder; unilateral problem.
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1 Introduction

The theory of capacity and non-linear potential in the classical Lebesgue space Lp(Ω),
was mainly studied by Maz’ya and Khavin in [17] and Meyers in [21]. These authors in
their previous works have introduced the concept of capacity and non-linear potential in
these spaces and provided very rich applications in functional analysis, harmonic analysis
and in the theory of partial differential equations.

When we replace the spaces Lp(Ω) by the general one LA(Ω) generated by an N -
function, some fundamental properties are not satisfied, in particular, the reflexivity of
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spaces (obviously for an N -function which doses not satisfying the △2 condition). In this
case, we found some works, in particular In [3] and [4].

When we replace A(t) by some Musielak–Orlicz function ϕ(x, t), the situation belong
more difficult and the Musielak–Orlicz spaces obtained is Lϕ(Ω) which has lost many
interest functional properties. In this case, we refer the reader [13] and [18].

Thus, the first goal of this paper is to extend the theory of capacity in the setting
of Musielak–Orlicz–Sobolev spaces WmLϕ(Ω). Moreover, we generalize the Theorem 1
of [1], in the setting of Musielak–Orlicz–Sobolev spaces WmLϕ(Ω), this generalisation is
an extension of the corresponding result of H.Brezis and F.E.Browder(see [10] and [15]).

Now, let give and comment the following theorem:

Theorem 1.1 Let Ω be an open subset of RN , m ∈ N and 1 < p, p′ < +∞, such

that
1

p
+

1

p′
= 1. Consider u in Wm,p

0 (Ω), u > 0 a.e in Ω and T in W−m,p′

0 (Ω), such

that T = µ+h, where µ is a positive Radon measure and h an L1
loc(Ω) function; Assume

moreover that

h(x)u(x) > −|Φ(x)| a.e x ∈ Ω, for some Φ in L1(Ω).

Then:

hu ∈ L1(Ω), u ∈ L1(Ω, dµ) and < T, u >=

∫

Ω

udµ+

∫

Ω

hudx. (1)

This result is proved by L. Boccardo, D. Giachetti and F. Murat in [15], and extends
previous Theorem of H. Brezis and F. Browder in [10], who considered the cases where
either µ ≡ 0 or h ≡ 0. the main tool in order to prove these results is the Hedberg’s
approximation (in Wm,p

0 (Ω) norm) of function u ∈ Wm,p
0 (Ω) by a sequence of functions

(un)n which belong to L∞(Ω)∩Wm,p
0 (Ω), have compact support in Ω and satisfy unu > 0,

|un| 6 u a.e. in Ω.
Note that an application of the previous theorem to study the following nonlinear

variational inequality:

u ∈ KΦ, g(. , u) ∈ L1(Ω), ug(. , u) ∈ L1(Ω),

< Au, v − u > +

∫

Ω

g(., u)(v − u)dx >< f, v − u >, ∀v ∈ KΦ ∩ L∞(Ω), (2)

where A is a pseudo-monotone operator acting on Wm,p
0 (Ω), f ∈ W−m,p′

(Ω), KΦ = {v :
v ∈ Wm,p

0 (Ω), v > Ψ a.e in Ω}, Ψ ∈ Wm,p
0 (Ω)∩L∞(Ω) and g satisfies the sign condition

sg(x, s) > 0 but no growth restriction with respect to s.
Let us mention that a generalization of the Theorem1.1 and the problem ( 2 ) in the

setting of Orlicz-Sobolev space WmLA(Ω) is studied by A.Benkirane in [1].
Hence, our second purpose is to extend the above Theorem1.1 in the general setting

of Musielak–Orlicz–Sobolev space WmLϕ(Ω) and also, we give an application of this
generalized result in order to study the previous unilateral problem (2) in the Musielak–
Orlicz–Sobolev space WmLϕ(Ω).

2 Preliminary

2.1 Musielak–Orlicz function

Let Ω be a bounded Lipschitz domain in R
N , and let ϕ be a real-valued function defined

in Ω× R
+ and satisfying the following conditions:
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a) ϕ(x, .) is an N-function [convex; increasing; continuous; ϕ(x, 0) = 0; (∀t >

0) ϕ(x, t) > 0 ;
ϕ(x, t)

t
→ 0 as t → 0;

ϕ(x, t)

t
→ ∞ as t → ∞].

b) ϕ(., t) is a measurable function.
A function ϕ(x, t), which satisfies the conditions a) and b) is called a Musielak-Orlicz

function. Equivalently, ϕ admits the representation: ϕ(y, t) =

∫ t

0

a(y, τ)dτ , for all y ∈ Ω

and t > 0, where a(y, .) : R+ → R
+ is non-decreasing, right continuous, with for all

y ∈ Ω: a(y, 0) = 0, a(y, t) > 0 for t > 0 and lim
t→+∞

a(y, t) = +∞. The function a(y , .)

is called the derivative of ϕ(y, .). The Musielak–Orlicz function ϕ is said to satisfy the
∆2-condition if there exists K > 2 such that

ϕ(y, 2t) 6 Kϕ(y, t), for all y ∈ Ω and t > 0.

The smallest K is called the ∆2-constant of ϕ. When the last inequality holds only for
t > some t0 > 0 then ϕ is said to satisfy the ∆2-condition near infinity.

2.2 Musielak–Orlicz spaces

Let ϕ be a Musielak–Orlicz function, we define the functional

̺ϕ,Ω (u) =

∫

Ω

ϕ(x, |u(x)|)dx,

where u : Ω 7→ R a Lebesgue measurable function. In the following the measurability of
a function u : Ω 7→ R means the Lebesgue measurability.

The set
Kϕ(Ω) = {u : Ω 7→ R, measurable/̺ϕ,Ω (u) < ∞}

is called the Musielak–Orlicz class. The Musielak–Orlicz spaces Lϕ(Ω) is the vector space
generated by Kϕ(Ω), that is Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω).
Equivalently:

Lϕ(Ω) = {u : Ω 7→ R, measurable/̺ϕ,Ω (
u

λ
) < +∞, for some λ > 0}.

Kϕ(Ω) is a convex subset of Lϕ(Ω). If Ω = R
N then Lϕ(R

N ) is denoted by Lϕ.
Let

ϕ∗(x, s) = sup{st− ϕ(x, t) /t > 0}.

That is, ϕ∗ is the Musielak–Orlicz function complementary to ϕ in the sense of Young
with respect to the variable s. For two complementary Musielak–Orlicz functions ϕ and
ϕ∗ the following inequality is called the Young inequality [20]

t.s 6 ϕ(x, t) + ϕ∗(x, s) for all s, t > 0 , x ∈ Ω. (3)

If s = a(x, t), then

t.a(x, t) = ϕ(x, t) + ϕ∗(x, a(x, t)) for all t > 0 , x ∈ Ω. (4)

In the space Lϕ(Ω) we define the following two norms:

||u||ϕ,Ω= inf{λ > 0 : ̺ϕ,Ω(
u

λ
) 6 1}
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which is called the Luxemburg norm and the so-called Orlicz norm by:

|||u|||ϕ,Ω= sup
||v||ϕ∗,Ω61

∫

Ω

|u(x)v(x)|dx,

where ϕ∗ is the Musielak–Orlicz function complementary to ϕ. These two norms are
equivalent [20].

For two complementary Musielak–Orlicz functions ϕ and ϕ∗ let u ∈ Lϕ(Ω) and v ∈
Lϕ∗(Ω), we have the Hölder inequality [20]

|

∫

Ω

u(x)v(x)dx| 6 ||u||ϕ,Ω |||v|||ϕ∗,Ω . (5)

In Lϕ(Ω) we have the relation with the norm and the modular:

|||u|||ϕ,Ω6 ̺ϕ,Ω (u) + 1, (6)

||u||ϕ,Ω 6 ̺ϕ,Ω (u) , if ||u||ϕ,Ω> 1, (7)

||u||ϕ,Ω > ̺ϕ,Ω (u) , if ||u||ϕ,Ω6 1. (8)

If Ω = R
N then ||u||ϕ,RN , |||u|||ϕ,RN and ̺ϕ,RN (u) are denoted respectively by ||u||ϕ,

|||u|||ϕ and ̺ϕ(u) (∀u ∈ Lϕ).
We say that a sequence of function un ∈ Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω)

if there exists a constant k > 0 such that

lim
n→+∞

̺ϕ,Ω (
un − u

k
) = 0.

If ϕ satisfies the △2 condition, then modular convergence coincides with norm conver-
gence. The closure in Lϕ(Ω) of the set of bounded measurable functions with com-
pact support in Ω̄ is denoted by Eϕ(Ω) and it is a separable space. The equality
Kϕ(Ω) = Eϕ(Ω) = Lϕ(Ω) holds if and only if ϕ satisfies the △2 condition, for all t
or for large t according to whether Ω has infinite measure or not. The dual of Eϕ(Ω)

can be identified with Lϕ∗(Ω) by means of the pairing

∫

Ω

u(x)v(x)dx and the dual norm

on Lϕ∗(Ω) is equivalent to ||.||ϕ∗,Ω. The space Lϕ(Ω) is reflexive if and only if ϕ and
ϕ∗ satisfies the △2 condition, for all t or for large t according to whether Ω has infinite
measure or not.

Lemma 2.1 [12] Let ϕ be a Musielak-Orlicz function and fn, f, g are measurable
functions.

(a) If fn −→ f almost everywhere, then ̺ϕ,Ω (f) 6 lim inf
n→+∞

̺ϕ,Ω (fn).

(b) If |fn| ր |f | almost everywhere, then ̺ϕ,Ω (f) = lim
n→+∞

̺ϕ,Ω (fn).

(c) If fn −→ f almost everywhere, |fn| 6 |g| almost everywhere, and ̺ϕ,Ω (λg) <
∞ for every λ > 0, then fn → f strongly in Lϕ(Ω).

Theorem 2.1 [12] Let ϕ be a Musielak-Orlicz function.
(a) ||f ||ϕ,Ω = || |f | ||ϕ,Ω for all f ∈ Lϕ(Ω).
(b) If f ∈ Lϕ(Ω), g a measurable function, and 0 6 |g| 6 |f | almost everywhere,

then:
g ∈ Lϕ(Ω) and ||g||ϕ,Ω6 ||f ||ϕ,Ω .
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(c) If fn → f almost everywhere, then: ||f ||ϕ,Ω 6 lim inf
n→+∞

||fn||ϕ,Ω .

(d) If |fn| ր |f | almost everywhere, with fn ∈ Lϕ(Ω) and sup
n

||fn||ϕ,Ω< ∞ then:

f ∈ Lϕ(Ω) and ||fn||ϕ,Ωր ||f ||ϕ,Ω .

2.3 Musielak–Orlicz–Sobolev spaces

For any fixed non-negative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω) : ∀ |α| 6 m, Dαu ∈ Lϕ(Ω)},

where α = (α1, α2, ....., αn) with non-negative integer αi, |α| = |α1| + |α2|+ ....|αn| and

Dαu =
∂|α|

∂xα1
1 .....∂xαn

n
denote the distributional derivatives of u. The WmLϕ(Ω) is called

the Musielak–Orlicz–Sobolev space.
For u ∈ WmLϕ(Ω) let:

¯̺mϕ ,Ω (u) =
∑

|α|6m

̺ϕ,Ω (Dαu)

and
||u||mϕ,Ω

= inf{λ > 0 : ¯̺ϕ,Ω (
u

λ
) 6 1}.

These functionals are a convex modular and a norm on WmLϕ(Ω), respectively, and the
pair (WmLϕ(Ω),||u||

m
ϕ,Ω

) is a Banach space if ϕ satisfies the following condition [20]:

(∃c > 0) : inf
x∈Ω

ϕ(x, 1) > c. (9)

We say that a sequence of functions un ∈ WmLϕ(Ω) is modular convergent to u ∈
WmLϕ(Ω) if there exists a constant k > 0 such that:

lim
n→+∞

¯̺mϕ ,Ω (
un − u

k
) = 0.

If Ω = R
N then WmLϕ(Ω), ¯̺mϕ ,Ω (u) and ||u||mϕ,Ω

are denoted respectively by WmLϕ ,
¯̺mϕ (u) and ||u||mϕ , ∀u ∈ WmLϕ.

Theorem 2.2 [7] Let ϕ and ϕ∗ be two complementary Musielak–Orlicz functions
such that ϕ satisfies the conditions (9) and there exists a constant A > 0 such that for

all x, y ∈ Ω : |x− y| 6
1

2
we have:

ϕ(x, t)

ϕ(y, t)
6 t

A

log(
1

|x− y|
)

(10)

for all t ≥ 1. If D ⊂ Ω is a bounded measurable set, then

∫

D

ϕ(x, 1)dx < ∞. ϕ∗ satisfies

the following condition :

∃C > 0 : ϕ∗(x, 1) 6 C almost everywhere in Ω. (11)

Under the previous conditions, D(Ω) is dense in WmLϕ(Ω) with respect to the modular
topology.
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Theorem 2.3 [7] Let ϕ be a Musielak–Orlicz functions which satisfies the assump-
tions of theorem2.2, with Ω = R

N . Then D(RN ) is dense in WmLϕ(R
N ) with respect to

the modular topology.

2.4 Capacity

Definition 2.1 Let T the classe of Borel sets in R
N , and a function C : T → [0,+∞].

1) C is called capacity if the following axioms are satisfied:
i) C(∅) = 0.
ii) X ⊂ Y ⇒ C(X) 6 C(Y ), for all X and Y in T.
iii) For all sequences (Xn) ⊂ T :

C(
⋃

n

Xn) 6
∑

n

C(Xn).

2) C is called outer capacity if for all X ∈ T :

C(X) = inf{C(O) : O ⊃ X, O is open}.

3) C is called an interior capacity if for all X ⊂ T :

C(X) = sup{C(K) : K ⊂ X, K is compact}.

4) A property, that holds true except perhaps on a set of capacity zero, is said to be
true C-quasi-everywhere, ( abbreviated C-q.e).

5) f and (fn) are real-valued finite functions C-q.e. We say that (fn) converges to
f in C-capacity if:

∀ε > 0, lim
n→+∞

C({x : |fn(x) − f(x)| > ε}) = 0.

6) f and (fn) are real-valued function finite C-q.e. We say that (fn) converges to
f C-quasi- uniformly, (abbreviated C-q.u) if

(∀ε > 0), (∃ X ∈ T ) : C(X) < ε and (fn) converges to f uniformly on Xc.

3 The Main Results

3.1 Preliminary lemma

Lemma 3.1 Let ϕ be a Musielak-Orlicz function which satisfies the condition (9). If
u, v ∈ WmLϕ(Ω), then max{u, v} and min{u, v} are in WmLϕ(Ω) with ∀ |α| 6 m:

Dα max{u, v}(x) =

{

Dαu(x), for almost every x ∈ {u > v};
Dαv(x), for almost every x ∈ {v > u};

and

Dα min{u, v}(x) =

{

Dαu(x), for almost every x ∈ {u 6 v};
Dαv(x), for almost every x ∈ {v 6 u}.

In particular, |u| belongs to WmLϕ(Ω).
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Proof. It suffices to prove the assertions for max{u, v} since min{u, v} =
−max{−u,−v} . We have max{u, v} 6 |u| + |v| almost everywhere in Ω, and
(|u|+ |v|) ∈ Lϕ(Ω), then by Theorem 2.1 we obtain max{u, v} ∈ Lϕ(Ω).

On the other hand we have |Dα max(u, v)| 6 |Dαu|+ |Dαv| almost everywhere in Ω,
and (|Dαu|+ |Dαv|) ∈ Lϕ(Ω), then by Theorem 2.1 we obtain Dα max{u, v} ∈ Lϕ(Ω).

Thus
max{u, v} ∈ WmLϕ(Ω).

For |u| ∈ WmLϕ(Ω) it suffices to note that |u| = max{u, 0} −min{u, 0}.

3.2 Capacity in Musielak–Orlicz–Sobolev space

In this section, Ω = R
N and ϕ is a Musielak-Orlicz function which satisfies the condition

(9).

Definition 3.1 The Sobolev ϕ-capacity of the set, E ⊂ R
N is defined by :

Cϕ(E) = inf
u∈Aϕ(E)

ρ̄m,ϕ(u),

where

Aϕ(E) = {u ∈ WmLϕ : u > 1 on an open set containing E and u > 0}.

If Aϕ(E) = ∅ we set Cϕ(E) = ∞. Functions belonging to Aϕ(E) are called admissible
functions for E.

Remark 3.1 In the definition of the capacity Cϕ, we can restrict ourselves to those

admissible functions u for which, 0 6 u 6 1. Indeed, if A
′

ϕ(E) = {u ∈ Aϕ(E) : 0 6 u 6

1}, then A
′

ϕ(E) ⊂ Aϕ(E) implies

Cϕ(E) 6 inf
u∈A

′

ϕ(E)
ρ̄m,ϕ(u).

For the reverse inequality, let ε > 0 and take u ∈ Aϕ(E) such that

ρ̄m,ϕ(u) 6 Cϕ(E) + ε.

Then by Lemma 3.1 , we have v = max(0,min(u, 1)) belongs to A
′

ϕ(E).
Therefore,

inf
ω∈A

′

ϕ(E)
ρ̄m,ϕ(ω) 6 ρ̄m,ϕ(v) 6 ρ̄m,ϕ(u) 6 Cϕ(E) + ε.

Letting ε −→ 0, we obtain

inf
ω∈A

′

ϕ(E)
ρ̄m,ϕ(ω) 6 Cϕ(E).

This completes the proof.

Theorem 3.1 Let E ⊂ R
N . If there exists f ∈ WmLϕ such that f = +∞ on E,

then Cϕ(E) = 0.



182 M.C. HASSIB, Y. AKDIM, A. BENKIRANE AND N. AISSAOUI

Proof. If there exists f ∈ WmLϕ such that f = +∞ on E, then f > α onE for all

α > 0. Therefore, ∀ α > 0 : Cϕ(E) 6 ρ̄m,ϕ(
f

α
).

Let α > 1, we have ρ̄m,ϕ(
f

α
) 6

1

α
ρ̄m,ϕ(f), then 0 6 Cϕ(E) 6

1

α
ρ̄m,ϕ(f).

Letting α −→ +∞, we obtain Cϕ(E) = 0.

Theorem 3.2 Let us consider the following propositions:
i) fn −→ f in WmLϕ.
ii) fn −→ f in Cϕ − capacity.
iii) there is a subsequence (fnj

) such that : fnj
−→ f, Cϕ − q.u.

iv) fnj
−→ f, Cϕ − q.e.

We have i) ⇒ ii) ⇒ iii) ⇒ iv).

Proof. Let show that i) ⇒ ii). By Theorem 3.1 we have f and fn are finite for every
n; Cϕ − q.e.

Let ε > 0, we have

Cϕ({x : |fn − f |(x) > ε}) 6 ρ̄m,ϕ(
fn − f

ε
).

Since fn −→ f in WmLϕ(Ω),

(∀ε > 0) : ρ̄m,ϕ(
fn − f

ε
) −→ 0.

Therefore,
lim

n→+∞
Cϕ({x : |fn − f |(x) > ε}) = 0.

Let show that ii) ⇒ iii). Let ε > 0 ∃ fnj
such that Cϕ({x : |fnj

− f |(x) > 2−j}) <

ε.2−j.
We put

Ej = {x : |fnj
− f |(x) > 2−j} and Gm =

⋃

j>m

Ej ,

we have Cϕ(Gm) 6
∑

j>m

ε.2−j < ε.

On the other hand,

(∀x ∈ (Gm)c) : |fnj
− f |(x) 6 2−j, (∀j > m).

Thus
fnj

−→ f Cϕ − q.u.

Let show that iii) ⇒ iv). We have ∀j ∈ N, ∃Xj : Cϕ(Xj) 6
1

j
and fnj

−→ f on (Xj)
c.

We put X =
⋂

j

Xj , then Cϕ(X) = 0 and fnj
−→ f on Xc.

Theorem 3.3 Let ϕ be a Musielak-Orlicz function, uniformly convex that satisfies
the △2 condition. If fn, f ∈ WmLϕ such that fn ⇀ f weakly in WmLϕ, then

lim inf(fn)(x) 6 f(x) 6 lim sup fn(x) Cϕ − q.e.
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Proof. (WmLϕ , ||.||) is uniformly convex, therefore reflexive. By the Banach–
Saks theorem, there is a subsequence denoted again by (fn) such that the sequence

gn =
1

n

n
∑

i=1

fi converges to f strongly in WmLϕ. By Theorem 3.2, there is a subsequence

of (gn) denoted again (gn) such that

lim
n→+∞

gn(x) = f(x) Cϕ − q.e.

On the other hand,
lim inf fn(x) 6 lim

n→+∞
gn(x).

Therefore,
lim inf
n→+∞

fn(x) 6 f(x) Cϕ − q.e.

For the second inequality, it suffices to replace fn by (−fn) in the first inequality.

Theorem 3.4 Let ϕ be a Musielak–Orlicz function, uniformly convex which satisfies

the △2 condition. Let (Xn) be an increasing sequence of sets and X =
⋃

n

Xn. Then

lim
n→+∞

Cϕ(Xn) = Cϕ(X).

Proof. We have lim
n→+∞

Cϕ(Xn) 6 Cϕ(X). For the reverse inequality, if

lim
n→+∞

Cϕ(Xn) = +∞, there is nothing to show.

Assuming that lim
n→+∞

Cϕ(Xn) < +∞, we have

∀n ∈ N, ∃fn ∈ WmLϕ : fn > 1 on Xn and ¯̺m,ϕ(fn) 6 Cϕ(Xn) +
1

n
.

Now (fn) is a bounded sequence in WmLϕ, hence there exists a subsequence, which
we denote again by (fn), which converges weakly to a function f ∈ WmLϕ. Thus

ρ̄m,ϕ(f) 6 lim inf
n

¯̺m,ϕ(fn).

On the other hand by Theorem 3.3, we have

∀n ∈ N : f > 1 on Xn , Cϕ − q.e.

Therefore, f > 1 on X Cϕ − q.e.
Let Y be a subset of X where f > 1, then Cϕ(X) = Cϕ(Y ). Thus,

ρ̄m,ϕ(f) 6 lim
n
(Cϕ(Xn) +

1

n
).

Hence
Cϕ(X) 6 lim

n
(Cϕ(Xn).

Theorem 3.5 Let ϕ be a Musielak–Orlicz function, uniformly convex which satisfies
the △2 condition. Cϕ is an outer capacity.
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Proof. It is obvious that Cϕ(∅) = 0 and Cϕ(X) 6 Cϕ(Y ) if X ⊂ Y.
To prove the countable sub-additivity, suppose that Ei , i = 1, 2, . . . , subsets of RN ,

let ε > 0. We may assume that
∑

i

Ck,ϕ (Xi) < +∞, then

Ck,ϕ (Xi) < +∞; ∀i ∈ N.

Next we choose ui ∈ Aϕ(Ei) so that

ρ̄m,ϕ(ui) 6 Cϕ(Ei) + ε.2−i; ∀i ∈ N.

Let k ∈ N and vk = max
16i6k

ui. By Lemma 3.1 we have vk ∈ Aϕ(

k
⋃

i=1

Ei).

Thus,

ρ̄m,ϕ(vk) 6

k
∑

i=1

ρ̄m,ϕ(ui) 6

k
∑

i=1

(Cϕ(Ei) + ε.2−i) 6

k
∑

i=1

Cϕ(Ei) + (ε(1− (
1

2
)k).

Then,

Cϕ(
k
⋃

i=1

Ei) 6
k

∑

i=1

Cϕ(Ei) + ε.

Letting ε → 0, we obtain

Cϕ(

k
⋃

i=1

Ei) 6

k
∑

i=1

Cϕ(Ei) 6

∞
∑

i=1

Cϕ(Ei).

Since (

k
⋃

i=1

Ei) increase to (

∞
⋃

i=1

Ei), by Theorem 3.4 we obtain:

Cϕ(

∞
⋃

i=1

Ei) 6

∞
∑

i=1

Cϕ(Ei).

It remains to prove that Cϕ is outer. Indeed, by monotonicity we have:

(∀ E ⊂ R
N ) : Cϕ(E) 6 inf{Cϕ(O) : O ⊃ E, O is open}.

For the reverse inequality, if Cϕ(E) = +∞, there is nothing to show.
Assume that Cϕ(E) < +∞, let ε > 0 and take u ∈ Aϕ(E) such that

ρ̄m,ϕ(u) 6 Cϕ(E) + ε.

Since u ∈ Aϕ(E), there is an open set O containing E such that u > 1 on O, which
implies that

Cϕ(O) 6 ρ̄m,ϕ(u) 6 Cϕ(E) + ε.

The inequality follows by letting ε → 0.
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Theorem 3.6 Let (Kn) be a decreasing sequence of compacts and K =
⋂

n

Kn. Then,

lim
n→+∞

Cϕ(Kn) = Cϕ(K).

Proof. First, we observe that Cϕ(K) 6 lim
n→+∞

Cϕ(Kn). On the other hand, let O be

an open set containing K. By the compactness of K, Ki ⊂ O for all sufficiently large
i. Therefore lim

n→+∞
Cϕ(Kn) 6 Cϕ(O), and since Cϕ is an outer capacity, we obtain the

claim by taking infimum over all open set O containing K.

Theorem 3.7 Let ϕ be a Musielak–Orlicz function.

(∃c > 0)(∀X ⊂ R
N ) : |X | 6 c.Cϕ(X),

where |X | is the Lebesgue’s measure of X.

Proof. Let u ∈ Aϕ(X), we have u > 1 on X and ̺ϕ(u) 6 ρ̄m,ϕ(u). But ̺ϕ(u) =
∫

RN

̺ϕ(y, |u(y)|dy, then

̺ϕ(u) >

∫

X

̺ϕ(y, |u(y)|dy >

∫

X

̺ϕ(y, 1)dy.

By the inequality (9) there exists a constant c > 0 such that inf
y∈RN

ϕ(y, 1) > c. Therefore,

̺ϕ(u) > c.|X |. Thus,
c.|X | 6 ρ̄m,ϕ(u).

The claim follows by passing to inf on u ∈ Aϕ(X).

Corollary 3.1 Let ϕ be a Musielak–Orlicz function. If (fn)n is a sequence which
converges to f in WmLϕ, then there exists a subsequence of (fn)n which converge to f
almost everywhere.

Proof. It is an immediate consequence of Theorem 3.2 and Theorem 3.7.

Theorem 3.8 Let ϕ be a Musielak–Orlicz function which satisfies the condition △2

and the assumptions of Theorem 2.2. For each f ∈ WmLϕ, there is a Cϕ-quasicontinuous
function g ∈ WmLϕ such that f = g almost everywhere.

Proof. Let f ∈ WmLϕ. By Theorem 2.3, there exists a sequence (fn) in D(RN ) such
that fn −→ f in WmLϕ. By Theorem 3.2, there exists a subsequence of (fn) denoted
again by (fn) such that fn −→ f Cϕ − q.u. The claim follows by Theorem 3.7.

Remark 3.2 By theorem 2.6 in [7], we have the same result if we replace WmLϕ,
by WmLϕ(Ω), where Ω is a bounded Lipschitz domain in R

n.

Theorem 3.9 Let ϕ be a Musielak-Orlicz function, uniformly convex which satisfies
the condition △2

1) If O is an open set of RN and E ⊂ R
N such that |E| = 0, then

Cϕ(O) = Cϕ(O − E).
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2) Let u and v are Cϕ-quasicontinuous functions in R
N , we have

i) if u = v, almost everywhere in an open set O ⊂ R
N , then

u = v Cϕ − quasieverywhere in O,

ii) if , u 6 v, almost everywhere in an open set O ⊂ R
N , then

u 6 v Cϕ − quasieverywhere in O.

Proof. 1) It obvious that Cϕ(O) > Cϕ(O−E). Let u ∈ Aϕ(O−E) thus u > 1 in an
open containing O − E. Let the function f define as

{

f(x) = u(x), if x ∈ R
N − E

f(x) = 1, if x ∈ E.

We have f ∈ Aϕ(O) and ρ̄m,ϕ(f) = ρ̄m,ϕ(u), thus

Cϕ(O) 6 ρ̄m,ϕ(u),

and by passing to inf we get Cϕ(O) 6 Cϕ(O − E).
2) Since Cϕ is an outer capacity we get the results by [16].

Lemma 3.2 Let Ω be a bounded Lipschitz domain in Rn, ϕ be a Musielak-Orlicz
function which satisfies the condition (9), ϕ and ϕ∗ satisfy the △2 condition and m ∈ N.
Consider T ∈ W−mLϕ∗(Ω) ∩M(Ω), where M(Ω) denote the set of Radon measures in
Ω. If X ⊂ Ω is such that Cϕ(X) = 0, then X is |T | -measurable and |T |(X) = 0.

Proof. It is the same as in [19] and [10].

3.3 Theorem of H. Brezis and F. Browder type in Musielak–Orlicz–Sobolev
spaces

In this section we generalize the theorem of H. Brezis and F. Browder [10] in the setting
of the Musielak–Orlicz–Sobolev spaces WmLϕ(Ω).

Let Ω be a bounded Lipschitz domain in R
N and m ∈ N. In this section we study

the following question: let w ∈ Wm
0 Lϕ (Ω) and T ∈ W−mLϕ∗(Ω) such that T = µ+ h,

where µ lie in M+(Ω) (the subset of positive Radon measures) and h lie L1
loc(Ω); find

sufficient conditions on the data in order for w to belong L1(Ω; dµ), for hw to belong to
L1(Ω) and finally to have:

< T,w >=

∫

Ω

wdµ +

∫

Ω

hwdx.

This question was solved in [15] in the case of the classical Sobolev spaces, in [5] when
µ = 0 in the case of Orlicz–Sobolev spaces and in [1] in the case of Orlicz–Sobolev spaces.

Theorem 3.10 Let ϕ be a Musielak–Orlicz function which satisfies the condition (9),
ϕ and ϕ∗ satisfy the △2 condition and m ∈ N. Consider w ∈ Wm

0 Lϕ(Ω), w > 0 a.e in Ω
and T ∈ W−mLϕ∗(Ω) such that T = µ+ h, where µ lie in M+(Ω) (the subset of positive
Radon measures) and h ∈ L1

loc(Ω), assume that:

hw > −|Φ| a.e in Ω for some Φ in L1(Ω). (12)

Then:

hw ∈ L1(Ω), w ∈ L1(Ω; dµ) and < T,w >=

∫

Ω

wdµ+

∫

Ω

hwdx. (13)
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Remark 3.3 Note that µ(X) = 0 for all X ⊂ Ω such that Cϕ(X) = 0. Indeed by
Lemma 3.2

|T |(X) = |µ+ h|(X) = 0,

but

0 6 µ(X) 6 |h|(X) + |µ+ h|(X) = 0.

Let prove Theorem 3.10.

Proof. Let w ∈ Wm
0 Lϕ(Ω), the Lemma 2.4 of [9] yields the existence of a sequence

wn such that:
(i) wn ∈ Wm

0 Lϕ(Ω) ∩ L∞(Ω),
(ii) supp wn is compact,
(iii) |wn| 6 |w| a.e. in Ω,
(v) wn −→ w in Wm

0 Lϕ(Ω).
(vi) wnw > 0 a.e. in Ω.

Following the lines of [15], it is easy to deduce that

< µ+ h,wn >=

∫

Ω

wndµ+

∫

Ω

hwndx. (14)

Since wn −→ w in Wm
0 Lϕ(Ω), by using the Theorem 3.2, Lemma3.2 and Remark 3.3

we have

wn −→ w µ.a.e and a.e. in Ω. (15)

We recall that by Theorem 3.9 and Theorem 3.7, for any v ∈ WmLϕ(Ω) one has

v > 0 a.e. in Ω ⇔ v > 0 q.e. in Ω.

This equivalence, Remark 3.3 and the fact (w > 0 a.e. in Ω), imply

wn > 0 a.e. , wn > 0 µ.a.e. and 0 6 wn 6 w a.e. in Ω. (16)

On the other hand from hw > −|Φ| and 0 6 wn 6 w a.e. in Ω we have

hwn > −|Φ| a.e.in Ω (17)

Since < µ+h,wn > is bounded, (14 )and (16) imply

∫

Ω

hwndx 6 cst; Similary (14 ) and

(17 ) imply

∫

Ω

wndµ 6 cst.

By using (15), (16), (17) and Fatou’s lemma we get hw ∈ L1(Ω) and w ∈ L1(Ω; dµ).
Using 0 6 wn 6 w µ.a.e. in Ω and |hwn| 6 |hw| a.e. in Ω, it is now easy to pass to
the limit in (14); we use the convergence of wn to w in Wm

0 Lϕ (Ω) for the left hand side
and Lebesgue’s dominated convergence theorem in each term of the right hand side: we
obtain

< T,w >=

∫

Ω

wdµ +

∫

Ω

hwdx.
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3.4 Application to unilateral problem

Let Ω be a bounded Lipschitz domain in R
N and m ∈ N. ϕ be a Musielak-Orlicz function

which satisfies the condition (9), ϕ and ϕ∗ satisfy the △2 condition.
We consider some right hand side f ∈ W−mLϕ∗(Ω) and the convex set

KΦ = {v ∈ Wm
0 Lϕ(Ω), v > Φ a.e in Ω},

where the obstacle Φ belong to Wm
0 Lϕ(Ω) ∩L∞(Ω). Let a pseudo-monotone mapping S

from Wm
0 Lϕ(Ω) into W−mLϕ∗(Ω). which satisfies the following conditions:

(1) S is continuous from each finite-dimensional subspace ofWm
0 Lϕ(Ω) intoW

−mLϕ∗(Ω)
for the weak∗ topology.
(2) S maps bounded sets into bounded sets.
(3) S is coercive, i.e that for some v0 in KΦ ∩ L∞(Ω)

< S(v), v − v0 >

||v||Wm
0 Lϕ(Ω)

−→ +∞ as ||v||Wm
0 Lϕ(Ω) −→ +∞. (18)

Consider finally a carathéodory function g : Ω× R −→ R witch satisfies :
(4) s.g(x, s) > 0, ∀ s ∈ R and a.e in Ω,
(5) ht = sup|s|6t|g(x, s)| ∈ L1(Ω) ∀t > 0.

Theorem 3.11 The variational inequality:

u ∈ KΦ, g(., u) ∈ L1(Ω), ug(., u) ∈ L1(Ω)

< Su, v − u > +

∫

Ω

g(., u)(v − u)dx > < f, v − u >, ∀v ∈ KΦ ∩ L∞(Ω)

has at least one solution.

Proof. First part Approximation and a priori istimates .

Define gn(x, s) =







χn(x)g(x, s) if |g(x, s)| 6 n,

χn(x)n
g(x, s)

|g(x, s)|
if |g(x, s)| > n,

where χn is the characteristic function of the set {x ∈ Ω : |x| 6 n}
By by using the proposition 1 of [14] we have the approximate problem







un ∈ KΦ,

< Sun, v − un > +

∫

Ω

gn(., un)(v − un)dx > < f, v − un >, ∀v ∈ KΦ ∩ L∞(Ω)

(19)
has at least one solution. Using v = v0 as test function in (19) we get

< Sun, un − v0 > +

∫

Ω

gn(., un)(un − v0)dx 6 < f, un − v0 > . (20)

If (un) is not bonded in Wm
0 Lϕ(Ω) then by the assumptions (3) we have

(∀A > 0)(∃n0 ∈ N) : (∀n > no)(
< S(un), un − v0 >

||un||Wm
0 Lϕ(Ω)

> A). (21)
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Let En = {x ∈ Ω : un(x) > 0}, by (20) and (21) we have for large n :

A||un||Wm
0 Lϕ(Ω) +

∫

En

gn(., un)(un − v0)dx+

∫

Ω−En

gn(., un)undx

6

∫

Ω−En

gn(., un)v0dx + ||f ||W−mLϕ∗(Ω)||un||Wm
0 Lϕ(Ω) + ||f ||W−mLϕ∗ (Ω)||v0||Wm

0 Lϕ(Ω)

Let Gn = {x ∈ Ω : un(x) > vo} and l = sup(|v0|, |Φ|).
By the assumptions (4) and (5) we have

∫

En∩Gn

gn(., un)(un − v0)dx > 0,

∫

En∩Gc
n

gn(., un)undx > 0,

∫

En∩Gc
n

gn(., un)v0dx 6

∫

Ω

|h||l||L∞(Ω)
v0|,

∫

Ω−En

gn(., un)undx > 0,

∫

Ω−En

gn(., un)v0dx 6

∫

Ω

|h||Φ||L∞(Ω)
v0|.

Then we get
||un||Wm

0 Lϕ(Ω) 6 C1, ∀n > n0,

which is impossible, thus (un) is bounded in Wm
0 Lϕ(Ω).

It follows that there exists a subsequence, again denoted by un such that

un ⇀ u, weakly in Wm
0 Lϕ(Ω) and a.e. in Ω.

Thus
gn(x, un(x)) −→ g(x, u(x)) a.e. in Ω.

From (20) we get
∫

Ω

gn(., un)(un − v0)dx 6 C2. (22)

We shall prove
∫

Ω

|gn(., un)(un − v0)|dx 6 C3.

Indeed

∫

Ω

|gn(., un)(un − v0)|dx =

∫

Gn

gn(., un)(un − v0)dx −

∫

Ω−Gn

gn(., un)(un − v0)dx

= −2

∫

Ω−Gn

gn(., un)(un − v0)dx+

∫

Ω

gn(., un)(un − v0)dx

6 C2 + 2

∫

Ω−Gn

gn(., un)v0dx

6 C2 + 2

∫

Ω

|h||b||L∞
v0|dx = C3,

(23)
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where b = sup(|Φ|, |v0|).
In order to prove

gn(., un) −→ g(., u) in L1(Ω), (24)

let us observe that, for any δ > 0,

|gn(x, un(x))| 6 sup
|t|6δ−1+||v0||L∞

|g(., t)|+ δ|gn(x, un(x))(un(x) − v0(x))|,

and there fore, fore any measurable set E in Ω we have

∫

E

|gn(., un)|dx 6

∫

E

|h 1
δ
+||v0||L∞

|+ δC3.

By Vitali’s theorem, we obtain (24).
Furthermore by (22) we have

∫

Ω

gn(., un)undx 6 C2 +

∫

Ω

gn(., un)v0dx.

By Fatou’s lemma and (24), we get

0 6

∫

Ω

g(., u)udx 6 C2 +

∫

Ω

g(., u)v0dx.

Thus
g(., u)u ∈ L1(Ω).

Second part : Passing to the limit in (19)
Let

µn = Sun − f + gn(., un).

From (19) it is clear that µn ∈ M+(Ω). Since S maps bounded sets of Wm
0 Lϕ (Ω) in

to bounded sets of W−mLϕ∗ (Ω), then we can assume for the same sequence that

Sun ⇀ χ weakly in W−mLϕ∗ (Ω),

which implies that
µn −→ µ in D

′

(Ω),

where
µ = χ− f + g(., u).

We put w = u− Φ, h = −g(., u) and T = µ+ h.
The assumptions of theorem 3.10 are satisfied since T = χ − f ∈ W−mLϕ∗ (Ω) and

h ∈ L1(Ω). Thus







u− Φ ∈ L1(Ω; dµ),

< χ− f, u− Φ >=

∫

Ω

(u− Φ)dµ−

∫

Ω

g(., u)(u− Φ)dx.
(25)

Using v = Φ as test function in (19 ) we get

< Sun, un > 6 < Sun,Φ > − < f,Φ− un > +

∫

Ω

gn(., un)(Φ− un),
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which gives passing to the limit and then using (25)











limsupn < Sun, un > 6 < χ,Φ > − < f,Φ− u > +

∫

Ω

g(., u)(Φ− u)dx,

6 < χ, u > +

∫

Ω

(Φ− u)dµ 6 < χ, u >;
(26)

since, by theorem 3.9 we have

(Φ− u) 6 0 µ.a.e. in Ω. (27)

Using (26 ) and since S is a pseudo-monotone operator, we obtain

χ = Su and < Sun, un >−→< Su, u > .

It is now easy to pass to the limit in (19) for any fixed v ∈ KΦ ∩ L∞(Ω).
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Abstract: This paper mainly concerns with the general methods for the function
projective dual synchronization of a pair of chaotic systems with unknown parame-
ters. The adaptive control law and the parameter update law are derived to make
the states of a pair of chaotic systems asymptotically synchronized up to a desired
scaling function by Lyapunov stability theory. The general approach for function pro-
jective dual synchronization of Lü system and Lorenz system is provided. Numerical
simulation results show that the proposed method is effective and convenient.
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The essence of studying chaotic systems is to understand their structure and behavior.
These systems are deemed important as they reflect and model natural phenomena. One
of the main reasons for studying chaotic systems lies in the interest of controlling chaos.
Many areas have branched from this study due to practical applications in many fields.
The main property of chaotic dynamics is its critical sensitivity to initial conditions which
is responsible for initially neighboring trajectories separating from each other exponen-
tially in the course of time. For many years, this feature made chaos undesirable, insofar
as the sensitivity to initial conditions of chaotic systems reduces their predictability over
long time scales. On the other hand, the capability of chaotic dynamics to amplify small
perturbations improves their utility for reaching specific desired states with very high
flexibility and low energy cost. In contrast, the process of controlling chaos is directed to
improving a desired behavior by making only small time-dependent perturbations in an
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accessible system parameter or dynamical variable. Therefore, understanding the beha-
vior of chaos is crucial in the process of seeking beneficial applications to our lives [1,2,4].

The study of synchronization has been widely explored in a variety of systems includ-
ing physical, chemical and ecological systems. In the broadest sense, synchronization is
often understood as the tendency to undergo resembling evolution in time. Synchroniza-
tion is an important mechanism for creating order in complex systems. Many nonlinear
dynamical systems have been found to show a kind of behavior known as chaos, be-
ing characterized as chaotic systems by their extreme sensitivity to initial conditions
and having noise-like behaviors. Several types of synchronization behaviors have been
demonstrated and identified, such as, complete synchronization [3], phase synchroniza-
tion [5, 6], anti-phase synchronization [7–10], lag synchronization [11, 12], generalized
synchronization [13], projective synchronization [14–21] and so on. Function projective
synchronization, which is the generalization of projective synchronization, is one of the
important synchronization methods that have been widely investigated to obtain faster
communication with its proportional feature. function projective synchronization means
that the drive and response systems could be synchronized up to a scaling function.
Recently, many authors have investigated the function projective synchronization. It is
obvious that the unpredictability of the scaling function in function projective synchro-
nization can additionally improve the security of communication [22–25].

However, the theory of dual synchronization has been intensively reviewed and studied
recently. The first study on dual synchronization of chaotic systems has been reported by
Tsimring and Sushchik in 1996 in [26]. Later, several dual synchronization methods have
been reported, for example, dual synchronization of one dimensional discrete chaotic sys-
tems was undertaken in [27], where the authors achieved dual synchronization via specific
classes of piecewise-linear maps with conditional linear coupling. In [28], the authors ex-
perimentally demonstrated dual synchronization of chaos in two pairs of microchip lasers
in a one-way coupling configuration over one transmission channel. In [29], the authors
demonstrated that dual synchronization of Lorenz and Rössler systems can be obtained
by using the means of Lyapunov stabilization theory. In [30], the authors addressed dual
synchronization via output feedback strategy in two different chaotic systems. In [31], the
authors achieved dual synchronization of modulated time-delayed system by designing
a delay feedback controller. In [32], the author investigated the existence of projective-
dual-anticipating, projective-dual, and projective-dual-lag synchronization in a coupled
time-delayed systems with modulated delay time using Krasovskii–Lyapunov stability
theory. In [33], the authors studied the problem of dual synchronization of two different
fractional-order chaotic systems by a linear controller. Finally, in [34–37], the authors
investigated dual synchronization and dual anti-dual synchronization using nonlinear and
adaptive control. To the best of our knowledge, the function projective dual synchro-
nization of chaotic systems with unknown parameters has not yet been studied by any
researcher. Inspired by the previous works, in this paper we propose a new analytic
treatment of function projective dual synchronization of chaotic systems using adaptive
control method in which a state variable of the drive system dual synchronizes with
the state variable of the response system up to a scaling function. Numerical simula-
tions are carried out for adaptive function projective dual synchronization behavior of
two chaotic systems with uncertain parameters which are depicted through figures for
different particular cases.
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1 Problem Statement

Consider the following two chaotic systems with uncertain parameters as the drive sys-
tem:

{

ẋ1 = f1(x1) + F1(x1)α,
ẏ1 = g1(y1) +G1(y1)β,

(1)

where x1 = (x11, x12, ..., x1n)
T ∈ Rn and y = (y11, y12, ..., y1n)

T ∈ Rn are the state
vectors of the systems, f1 : Rn → Rn and g1 : Rn → Rn are two continuous vector
functions, F1 : Rn → Rn×m, G1 : Rn → Rn×m are two matrix functions and α, β ∈ Rm

are the unknown parameter vectors of the two drive systems. The systems studied in this
paper depend linearly on the parameters and many resemble well-known chaotic systems.
By a linear combination of the drive systems states, a scalar signal is generated in the
form of

εd =

n
∑

i=1

(aix1+biy1) = ATx1 +BT y1 = CTx, (2)

where A = (a1, a2, ..., an)
T and B = (b1, b2, ..., bn)

T are known matrices and C =
(AT BT )T and x = (xT

1 yT1 )
T . This generated scalar signal is fed to the response

systems which are corresponding to the drive systems. The response systems are
{

ẋ2 = f2(x2) + F2(x2)α̂+ u1,

ẏ2 = g2(y2) +G2(y2)β̂ + u2,
(3)

where x2 = (x21, x22, ..., x2n)
T ∈ Rn and y2 = (y21, y22, ..., y2n)

T ∈ Rn are the state
vectors, f2 : Rn → Rn and g2 : Rn → Rn are two continuous vector functions, F2 :
Rn → Rn×m, G2 : Rn → Rn×m are two matrix functions and α̂, β̂ ∈ Rm represent
the estimated vectors of unknown parameter vectors α, β and u = (u1 u2)

T ∈ R2n is
a controller. By the linear combination of the response systems states a scalar signal is
generated in the form of

εr =
n
∑

i=1

(aix2+biy2) = ATx2 +BT y2 = CT y. (4)

Our goal is to obtain the function projective dual synchronization between the drive and
the response systems. Now define the error function between the drive and the response
systems as es = εr −h(t)εd = CT (y−h(t)x), where h(t) = diag(h1(t), h2(t), ..., h2n(t)) is
a scaling matrix. Therefore, for function projective dual synchronization we use adaptive
control method to design the control in such a way that the origin becomes asymptotically
stable equilibrium point of the error dynamics i.e., lim

t→∞

‖e(t)‖ = lim
t→∞

‖x2 − h(t)x1‖ =

0, lim
t→∞

‖e(t)‖ = lim
t→∞

‖y2 − h(t)y1‖ = 0, where the scaling function h(t) ∈ C1 (0,+∞)

and 0 < h(t) < Nh for all t > 0 , (Nh is a positive constant for the function h(t)).

1.1 Adaptive function projective dual synchronization controller design

System (1) can be rewritten in the following form:
(

ẋ1

ẏ1

)

=

(

f1(x1)
g1(y1)

)

+

(

F1(x1) 0
0 G1(y1)

)(

α
β

)

, ẋ = f (x) + F (x)Φ, (5)
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where ẋ =

(

ẋ1

ẏ1

)

∈ R2n, f(x) =

(

f1(x1)
g1(y1)

)

∈ R2n, F (x) =

(

F1(x1) 0
0 G1(y1)

)

:

R2n → R2n×2m and Φ =

(

α
β

)

∈ R2m. Similarly, system (3) can be rewritten in the

following form:

(

ẋ2

ẏ2

)

=

(

f2(x2)
g2(y2)

)

+

(

α̂

β̂

)

+

(

u1

u2

)

, ẏ = g (y) +G (y) Φ̂ + u, (6)

where ẏ =

(

ẋ2

ẏ2

)

∈ R2n, g(y) =

(

f2(x2)
g2(y2)

)

∈ R2n, G(x) =

(

F2(x2) 0
0 G2(y2)

)

:

R2n → R2n×2m and Φ̂ =

(

α̂

β̂

)

∈ R2m and u =

(

u1

u2

)

∈ R2n. Now, define the error

vector as

e = y − h(t)x. (7)

The time derivative of equation (7) is

ė(t) = ẏ − h(t)ẋ − ḣ(t)x (8)

= g(y) +G(y)Φ̂− h(t)f(x)− h(t)F (x)Φ − ḣ(t)x+ u

= h(t)F (x)Φ̃ + F̃ Φ̂ + f̃ − ḣ(t)x + u,

where f̃ = g(y)− h(t)f(x), F̃ = G(y)− h(t)F (x) and Φ̃ = Φ̂−Φ. In practical situation,
the parameters belonging to the drive and the response systems are always unknown.
Therefore, by using adaptive control and the parameters identification techniques, the
controller can be designed as:

u = −f̃ − F̃ Φ̂ + ḣ(t)x − ke− es, (9)

where

es = CT e, (10)

denotes the linear coupling of the drive and response systems and the adaptive parameter
update laws are chosen as

˙̂
Φ = −FT (x)h(t)e. (11)

Definition 1.1 For the drive system (5) and the response system (6), it is said that
the systems (5) and (6) are function projective dual synchronization if there exists a
scaling function h(t), such that lim

t→∞

‖e(t)‖ = 0.

Theorem 1.1 For given synchronization scaling function h(t) and any initial con-
ditions x(0), y(0), the function projective dual synchronization between drive system (5)
and response system (6) will occur by the control law (9) and the parameter update law
(11).
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Proof. Construct dynamical Lyapunov function candidate in the form of:

V =
1

2
[eT e+ Φ̃T Φ̃], (12)

with the choice of the controller (9) and the parameter update law (11), the time deriva-
tive of V along the trajectories of equation (8) is

V̇ = eT ė + ˙̃ΦT Φ̃ = eT [h(t)F (x)Φ̃ − ke− es] + [−F (x)Th(t)e]T Φ̃ = −eTPe < 0. (13)

Suppose we select an appropriate positive definite matrix P such that V̇ < 0, that is, V̇
is negative definite. Then, according to the Lyapunov stability theorem [38], the function
projective dual synchronization of the systems (5) and (6) is achieved under the certain
chosen controller u and parameters update law. This completes the proof.

2 Adaptive Function Projective Dual Synchronization of Chaotic Systems

In this section, we realized the adaptive projective dual synchronization behavior in a
pair of chaotic Lorenz and Lü systems, using proposed the technique. Now, define the
pair of the drive system equations and the pair of the response system equations as

Drive 1: Lü system [40] is given by

ẋ1 = α(y1 − x1), (14)

ẏ1 = −x1z1 + δy1,

ż1 = x1y1 − βz1.

Drive 2: Lorenz system [41] is given by

ẋ2 = σ(y2 − x2), (15)

ẏ2 = ρx2 − x2z2 − y2,

ż2 = x2y2 − γz2.

So the corresponding response systems are as follows:

Response 1:

ẋ3 = α̂(y3 − x3) + u1, (16)

ẏ3 = −x3z3 + δ̂y3 + u2,

ż3 = x3y3 − β̂z3 + u3.

Response 2:

ẋ4 = σ̂(y4 − x4) + u4, (17)

ẏ4 = ρ̂x4 − x4z4 − y4 + u5,

ż4 = x4y4 − γ̂z4 + u6,

where α, δ, β, σ, ρ, γ, are unknown system parameters, α̂, δ̂, β̂, σ̂, ρ̂, γ̂ are the estimates of
α, δ, β, σ, ρ, γ, respectively, and U = (u1, u2, u3, u4, u5, u6)

T is the controller function to
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be determined. The error dynamical system can be written as

ė1 = α̂((y3 − x3)− h1(t)(y1 − x1)) + h1(t)α̃(y1 − x1)− ḣ1(t)x1 + u1, (18)

ė2 = −x3z3 + δ̂(y3 − h2(t)y1) + h2(t)(x1z1 + δ̃y1)− ḣ2(t)y1 + u2,

ė3 = x3y3 − β̂(z3 − h3(t)z1)− h3(t)(x1y1 + β̃z1)− ḣ3(t)z1 + u3,

ė4 = σ̂((y4 − x4)− h4(t)(y2 − x2)) + h4(t)σ̃(y2 − x2)− ḣ4(t)x2 + u4,

ė5 = ρ̂(x4 − h5(t)x2)− x4z4 − y4 + h5(t)(x2z2 + y2 + ρ̃x2)− ḣ5(t)y2 + u5,

ė6 = x4y4 − γ̂(z4 − h6(t)z2)− h6(t)(x2y2 + γ̃z2)− ḣ6(t)z2 + u6,

where e1 = x3 − h1(t)x1, e2 = y3 − h2(t)y1, e3 = z3 − h3(t)z1, e4 = x4 − h4(t)x2,

e5 = y4 − h5(t)y2, e6 = z4 − h6(t)z2, and α̃ = α̂ − α, δ̃ = δ̂ − δ, β̃ = β̂ − β, σ̃ = σ̂ − σ,
ρ̃ = ρ̂−ρ, γ̃ = γ̂−γ, respectively. Our goal is to find a suitable adaptive control law and
parameter update rule equation so that pair of the two chaotic systems will approach
projective dual synchronization for any initial conditions.
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Figure 1: (a)–(b): Error signals between drive and response systems for Case I. (c)–(d): Esti-
mated values for unknown parameters for Case I.

Theorem 2.1 For given synchronization scaling function matrix h(t) =
diag(h1(t), h2(t), ..., h6(t)), the function projective dual synchronization between
the drive systems (14)-(15) and the response systems (16)–(17) will occur if the adaptive
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Figure 2: Signals x1 versus x3, y1 versus y3, and z1 versus z3 and signals x2 versus x4, y4
versus y4, and z2 versus z4 after dual–synchronization for Case I.

control law equation is designed as follows

u1 = −α̂((y3 − x3)− h1(t)(y1 − x1)) + ḣ1(t)x1 − ke1 − es, (19)

u2 = x3z3 − h2(t)x1z1 − δ̂(y3 − h2(t)y1) + ḣ2(t)y1 − ke2 − es,

u3 = h3(t)x1y1 − x3y3 + β̂(z3 − h3(t)z1) + ḣ3(t)z1 − ke3 − es,

u4 = −σ̂((y4 − x4)− h4(t)(y2 − x2)) + ḣ4(t)x2 − ke4 − es,

u5 = x4z4 + y4 − ρ̂(x4 − h5(t)x2)− h5(t)(x2z2 + y2) + ḣ5(t)y2 − ke5 − es,

u6 = γ̂(z4 − h6(t)z2) + h6(t)x2y2 − x4y4 + ḣ6(t)z2 − ke6 − es,

where

es = a1e1 + a2e2 + a3e3 + b1e4 + b2e5 + b3e6 (20)

denotes the linear coupling of the drive and response systems and the adaptive parameter
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Figure 3: (a)–(b): Error signals between drive and response systems for Case II. (c)–(d):
Estimated values for unknown parameters for Case II.

update laws are chosen as

˙̂α = −h1(t)(y1 − x1)e1,
˙̂
δ = −h2(t)y1e2, (21)

˙̂
β = h3(t)z1e3, ˙̂σ = −h4(t)(y2 − x2)e4,
˙̂ρ = −h5(t)x2e5, ˙̂γ = h6(t)z2e6.

Proof. Substituting (19) into (18) leads to the following error system

ė1 = h1(t)α̃(y1 − x1)− ke1 − es, ė2 = h2(t)δ̃y1 − ke2 − es, (22)

ė3 = −h3(t)β̃z3 − ke3 − es, ė4 = h4(t)σ̃(y2 − x2)− ke4 − es,

ė5 = h5(t)ρ̃x2 − ke5 − es, ė6 = −h6(t)γ̃z2 − ke6 − es.

Construct a Lyapunov function of the form:

V =
1

2
(eT e+ α̃2 + δ̃2 + β̃2 + σ̃2 + ρ̃2 + γ̃2). (23)

Inserting (20), (21) and (22) into the time derivative of V leads to

V̇ = eT ė+ α̃ ˙̃α+ δ̃
˙̃
δ + β̃

˙̃
β + σ̃ ˙̃σ + ρ̃ ˙̃ρ+ γ̃ ˙̃γ (24)

= (h1(t)α̃(y1−x1)−ke1−es)e1+(h2(t)δ̃y1 − ke2 − es)e2 − (h3(t)β̃z3 + e3 + es)e3

+(h4(t)σ̃(y2−x2)− ke4−es)e4+(h5(t)ρ̃x2−ke5−es)e5−(h6(t)γ̃z2+ke6+es)e6

−α̃(h1(t)(y1 − x1)e1)− δ̃(h2(t)y1e2) + β̃(h3(t)z1e3)− σ̃(h4(t)(y2 − x2)e4)

−ρ̃(h5(t)x2e5) + γ̃(h6(t)z2e6)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 17 (2) (2017) 193–204 201

(a) x1

x
3

2520151050-5-10-15-20

25

20

15

10

5

0

-5

-10

-15

-20

(b) y1

y 3

302520151050-5-10-15-20

30

25

20

15

10

5

0

-5

-10

-15

-20

(c) z1

z 3

50403020100-10

50

40

30

20

10

0

-10

(d) x2

x
4

20151050-5-10-15-20

20

15

10

5

0

-5

-10

-15

-20

(e) y2

y 4

2520151050-5-10-15-20-25

25

20

15

10

5

0

-5

-10

-15

-20

-25

(f) z2

z 4

50403020100-10-20

50

40

30

20

10

0

-10

-20

Figure 4: Signals x1 versus x3, y1 versus y3, and z1 versus z3 and signals x2 versus x4, y4
versus y4, and z2 versus z4 after dual–synchronization for Case II.

= − [(k + a1)e
2

1
+ (a1 + a2)e1e2 + (a1 + a3)e1e3 + (a1 + b1)e1e4 + (a1 + b2)e1e5

+(a1 + b3)e1e6 + (k + a2)e
2

2 + (a2 + a3)e2e3 + (a2 + b1)e2e4 + (a2 + b2)e2e5

+(a2 + b3)e2e6 + (k + a3)e
2

3
+ (a3 + b1)e3e4 + (a3 + b2)e3e5 + (a3 + b3)e3e6

+(k+b1)e
2

4+(b1+b2)e4e5+(b1+b3)e4e6+(k+b2)e
2

5+(b2+b3)e5e6 + (k+b3)e
2

6]

= −eTPe < 0,

where e = [|e1|, |e2|, |e3|, |e4|, |e5|, |e6|] and P is real symmetric matrix. From the Lya-
punov theorem of stability [38], it is simple to point out that the zero equilibrium point
(ei = 0, i = 1, ..., 6) of the error dynamical system (18) is asymptotically stable if the
real symmetric matrix P is positive definite. According to Sylvester’s theorem [39], P is
positive definite if and only if ∆i > 0, i = 1, 2, ..., 6, where ∆i represents the ith order
sequential sub determinant of matrix. That is, we should choose the appropriate coupled
parameters. Then, we realize the function projective dual synchronization between a pair
of Lü systems and a pair of Lorenz systems. This completes the proof.
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2.1 Numerical simulation and results for function projective dual synchro-
nization

In the present section, the numerical simulations for the function projective dual syn-
chronization of a pair of chaotic systems are studied. The true values of the un-
known parameter of the systems ((14)–(15)) are taken as α = 36, δ = 20, β = 3,
and σ = 10, ρ = 28, γ = 8/3, so both systems exhibit chaotic behavior. The ini-
tial values of the estimated unknown parameter vectors of the systems are taken as
α(0) = 2, δ(0) = −1, β(0) = 3, and σ(0) = 4, ρ(0) = −5, γ(0) = 6. The initial condi-
tions of the drive system (14) and the drive system (15) are taken as x1(0) = 1, y1(0) =
2, z1(0) = 3, x2(0) = −9, y2(0) = 5, z2(0) = 30, the initial conditions of the response
system (16) and the response system (17) are taken as x3(0) = 11, y3(0) = 12, z3(0) = 13
and x4(0) = −4, y4(0) = 3, z4(0) = 10, respectively. The coupled parameters are valued
as ai = (1, 1, 1), bi = (1, 1, 1), i = 1, 2, 3, for which condition P is positive definite. The
real positive constants k is taken as 1.

Case I. Let the scaling function be hi(t) = 0.9 +
t

1 + t2
, i = (1, .2, ..., 6). The simula-

tion results are shown through Fig. 1 (a)–(d), which shows that the dual synchronization

errors converge asymptotically to zero and the estimated parameters α̂, δ̂, β̂, and σ̂, ρ̂, γ̂
converge to the original parameter α = 36, δ = 20, β = 3 , and σ = 10, ρ = 28, γ = 8/3
as t → ∞. Fig. 2 shows the signals after dual synchronization.

Case II. Let the scaling function be hi(t) = 0.2 + 0.5 sin

(

πt

10

)

. The simulation

results are depicted through Fig. 3 (a)–(d), which shows that the dual synchronization

errors converge asymptotically to zero and the estimated parameters α̂, δ̂, β̂, and σ̂, ρ̂, γ̂
converge to the original parameters α = 36, δ = 20, β = 3 , and σ = 10, ρ = 28, γ = 8/3
as t → ∞. Fig. 4 shows the signals after dual synchronization.

3 Conclusion

In the present paper, we have successfully demonstrated the function projective dual
synchronization between a pair of chaotic systems using adaptive control method with
uncertain parameters. The method is applied for the function projective dual synchro-
nization between chaotic Lü and Lorenz systems. This clearly exhibits that the adaptive
control method is effective and convenient to achieve the global dual synchronization of
a pair of chaotic systems. Eventually some simulation results shown in corresponding
figures have illustrated the effectiveness and feasibility of the proposed controller.
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1 Introduction

Neural networks is an exciting area for research with a broad spectrum of applications [1-
12, 16, 22-24]. Networks of neurons have taken many shapes as mathematical models bas-
ing on the application which they are designed for. Models of Hopfield, Cohen-Grossberg,
cellular networks, recurrent networks, cooperative modular networks and spiking neural
networks are such popular models to quote [1-9, 13, 20]. Along the cite, a new class
of neural networks, designated as co-operative and supportive neural network (CSNN,
for short) is introduced in [26]. It consists of a network of neurons called main compo-
nents each of which is connected to and supported by another network of neurons called
subnetwork components. The model is aimed at explaining the dynamics of systems
exhibiting hierarchy that takes into account the collective capabilities of components for
better performance of the system. Such systems are useful in understanding industrial
information management, financial and economic systems which involve distribution and
monitoring of various tasks. They are utilized to decompose complex classification tasks
into simpler subtasks and puzzle them out. In particular, the network of [26] was utilized
for estimation of key parameters in an infectious disease model [25]. For different models
of cooperative neural networks and their applications, readers are referred to [9, 14, 15,
17, 21]. It was also claimed that the CSNN model presented in [26] was entirely new
and different from all the above neural models in terms of formulation and application.
Hereunder, we explain briefly the CSNN model introduced in [26], which we are going to
modify and analyze further in the present study.

The model comprises two neuronal fields, say, Fx and Fy. Each neuron in Fx is
denoted by xi, i = 1, 2, ..., n and is connected to other neurons xj , j = 1, 2, ...n in the
same field Fx. Also each xi is connected to ri number of neurons in the neuronal field
Fy. These are denoted by yik , k = 1, 2, ....ri, 1 ≤ ri ≤ n. These yik ’s support xi in the
sense that they coordinate and cooperate with it so that any task assigned to them by
xi will be attended to. The dynamics of the model are described by the following system
of equations

x′

i = −aixi +

n∑

j=1

bijfj(xj) +

ri∑

k=1

ciikgik(xi, yik) + Ii, i = 1, 2, ..., n,

y′ik = −cikyik +

ri∑

l=1

dilhil(yil) + Jik , k = 1, 2, ..., ri, 1 ≤ ri ≤ n. (1)

In (1), ai and cik are positive constants known as decay rates, Ii, Jik are exogenous inputs
and bij , dil are the synaptic connection weights which may be real or complex constants.
ciik is the rate of distribution of information between xi and yik . The functions fi, gik
and hik are the neuronal output response functions and are more commonly known as
the signal functions.

Besides a study of qualitative behavior of the system, several modifications of the
CSNN model (1) are suggested and left as open problems in [26] for enthusiastic readers.
Present authors have studied two such modified models [18, 19] of (1) that increase its
applicability. Extending this view point, we shall address one more modification of (1)
in our present study. Motivation for this stems from the following observations.

The second equation of (1) contains no term that includes xi. That means, the sub-
components yik work independently of xi, supply information to xi and do not bother
whether their contribution is fully utilized or are contributing more than what is re-
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quired. At the same time for the main component xi there is a need to check this
contribution from yik either in terms of money or in terms of easing out yik from unnec-
essary production beyond what is required. Thus, there is a need to check the activity
of sub-components. Also when yik depends mainly on xi for its survival or activity
there should be a term that reflects the interaction between xi and yik . Such a term
in second equation of (1) represents: (i) physical transfer of subcomponents in case of
ancillary manufacturing units; (ii) removal of data/information after transferring it to
main component (’cut and paste’ instead of ’copy and paste’) or (iii) deactivation of
subcomponents as soon as the required data is supplied.

Another argument runs as follows. System (1) reflects how xi receives information
from yik represented by gik(xi, yik) but not how it is sent from yik - term at receiver’s
end but not at giver’s end. It may also be understood as that yik keeps a copy of what
ever information/data sent to xi. This may not be possible in all cases. We can not keep
copies of physical quantities such as spare parts, components, etc., of the main item in
a manufacturing unit. Even in data processing systems, retention of data at too many
places may raise security problems. Absence of a term involving xi may also infer that
the requirements of xi are insignificant when compared to the quantum of work done by
yik for all its purposes.

In order to incorporate these, we introduce a term which may be utilized for deacti-
vating or resting of yik once its task is done. Introduction of such term into the second
equation modifies (1) to

x′

i = −aixi +
n∑

j=1

bijfj(xj) +

ri∑

k=1

ciikgik(xi, yik) + Ii,

y′ik = −cikyik +

ri∑

l=1

dilhil(yil)− ciikgik(xi, yik) + Jik . (2)

In (2), the term c̄iik ḡik(xi, yik) denotes the resting or deactivating component for the
subsystem. Here each c̄iik > 0 may be called the rate of de-activation of yik by xi. The
functional term ḡik(xi, yik) denotes how the deactivation takes place. System (2) is Model
I in [26] which is left open for exploration. Our task in this paper shall be to study the
influence of this new term on the dynamics of the system (1). Is this term going to pacify
sub-components or influence the entire network will be a question of utmost importance.
How to manage its influence using the system parameters may be reasonable task to take
up. This we study in terms of stability of equilibrium patterns of the system (2) in the
light of existing results on (1).

The paper is organized as follows. In Section 2, we provide conditions for existence
and uniqueness of solutions, equilibria for system (2) — basic properties of any such
dynamical system. Results on global asymptotic stability of equilibria are obtained in
Section 3. The results are compared with earlier results on (1). Examples are provided
for illustration of results. Finally a discussion follows in Section 4.

2 Basic Properties

In this section, we explain basic properties of (2) such as existence of solutions along
with equilibria. This is to be done with appropriate assumptions or restrictions on
system parameters and nonlinear functions. To begin with we assume that the response
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functions fj , giik , hik and giik satisfy local Lipschitz conditions given by

‖ gik(xi, yik)− gik(xi, yik) ‖ ≤ M1ik |yik − yik |+M2ik |xi − xi|, (3)

‖ gik(xi, yik)− gik(xi, yik) ‖ ≤ M1ik |yik − yik |+M2ik |xi − xi|, (4)

|fj(xj)− fj(xj)| ≤ pj |xj − xj |, (5)

|hil(yil)− hil(yil)| ≤ qil |yil − yil |, (6)

where M1ik , M2ik , pj and qil are positive constants. Then from the theory of differential
equations, it is evident that solutions for (2) do exist, are unique and continuable in their
maximal intervals of existence.

Since the stability of a system is understood in terms of the stability of its equilibria, we
verify whether (2) provides scope for equilibrium patterns to exist. The following result
provides one such set of sufficient conditions.

Theorem 2.1. Let ai and cik be positive numbers such that

1

ai

n∑

j=1

|bij |pj +
1

ai

ri∑

k=1

|ciik |M2ik +
1

cik
|ciik |M2ik < 1, i = 1, 2, ..., n.

1

cik

ri∑

l=1

|dil |qil +
1

ai

ri∑

k=1

|ciik |M1ik +
1

cik
|ciik |M1ik < 1, 1 ≤ ri ≤ n. (7)

Then the system (2) has a unique equilibrium solution (x∗

i , y
∗

ik
) for each i, k.

Since several results are available in literature on similar systems, we omit the proof
of the above result here and refer the interested readers to [3],[26] for a line of proof
based on contraction mapping principle.

Since (x∗

i , y
∗

ik
) is a constant solution of (2), we have

x∗
′

i = 0 = −aix
∗

i +
n∑

j=1

bijfj(x
∗

i ) +

ri∑

k=1

ciikgik(x
∗

i , y
∗

ik
) + Ii,

y∗
′

ik
= 0 = −ciky

∗

ik
+

ri∑

l=1

dilhil(y
∗

il
)− ciikgik(x

∗

i , y
∗

ik
) + Jik . (8)

We shall now take up the aspect of stability of equilibrium pattern of (2), assuming its
existence tacitly.

3 Global Stability Results

In this section we study the influence of deactivation term on the stability of the system.
Whether its presence will increase strain on parameters or reduce it when compared to
(1) — is the main concern.

Before we present our results, we rearrange system (2) as follows. Utilizing (8) in (2),
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we get

(xi−x∗

i )
′

= −ai(xi−x∗

i )+
n∑

j=1

bij [fj(xj)−fj(x
∗

j )]+

ri∑

k=1

ciik [gik(xi, yik)−gik(x
∗

i , y
∗

ik
)],

(yik−y∗ik)
′ = −cik(yik−y∗ik)+

ri∑

l=1

dil [hil(yil)−hil(y
∗

il
)]−ciik [gik(xi, yik)−gik(x

∗

i , y
∗

ik
)].

(9)

We shall establish our first result now.

Theorem 3.1. Assume that the parameters of the system (2) satisfy the following
conditions:

ai >

n∑

j=1

|bji|pi +

ri∑

k=1

|ciik |M2ik +

ri∑

k=1

|ciik |M2ik ,

cik >

ri∑

l=1

|dil |qil + |ciik |M1ik + |ciik |M1ik .

Assume further that conditions (3) - (6) on response functions hold. Then the equilibrium
(x∗

i , y
∗

ik
) is globally asymptotically stable in the sense that all solutions of (2) satisfy the

convergence requirement

lim
t→∞

yik → y∗ik , lim
t→∞

xi → x∗

i .

Proof. We consider the functional

V (t) =
n∑

i=1

{
|xi − x∗

i |+

ri∑

k=1

|yik − y∗ik |
}
. (10)

The upper right derivative of V along the solutions of (2) utilizing (9) may be given by

D+V (t) ≤

n∑

i=1

{
− ai|xi − x∗

i |+

n∑

j=1

|bij ||fj(xj)− fj(x
∗

j )|

+

ri∑

k=1

|ciik ||gik(xi, yik)− gik(x
∗

i , y
∗

ik
)|

+

ri∑

k=1

[
− cik |yik − y∗ik |+

ri∑

l=1

|dil ||hil(yil)− hil(y
∗

il
)|
]

−

ri∑

k=1

|ciik ||gik(xi, yik)− gik(x
∗

i , y
∗

ik
)|
}
.
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Then,

D+V (t) ≤

n∑

i=1

{
− ai|xi − x∗

i |+

n∑

j=1

|bij |pj|xj − x∗

j |

+

ri∑

k=1

|ciik |M2ik |xi − xi|+

ri∑

k=1

|ciik |M1ik |yik − y∗ik |

+

ri∑

k=1

[
− cik |yik − y∗ik |+

ri∑

l=1

|dil |qil |yil − y∗il |
]

+

ri∑

k=1

|ciik |[M1ik |yik − y∗ik |+M2ik |xi − x∗

i |]
}
,

using (3) - (6) on the response functions. Thus,

D+V (t) ≤ −

n∑

i=1

{
[ai −

n∑

j=1

|bji|pi −

ri∑

k=1

|ciik |M2ik −

ri∑

k=1

|ciik |M2ik ] |xi − x∗

i |

+

ri∑

k=1

[cik −

ri∑

l=1

|dil |qil − |ciik |M1ik − |ciik |M1ik ] |yik − y∗ik |
}

≤ −ÃV < 0, by hypotheses,

where Ã = min
{
A, B

}
, and

A =




min



ai −
n∑

j=1

|bji|pj −

ri∑

k=1

|ciik |M2ik −

ri∑

k=1

|ciik |M2ik



 > 0, 1 ≤ i ≤ n.






B =

{
min

[
cik −

ri∑

l=1

|dil |qil − |ciik |M1ik − |ciik |M1ik

]
> 0, 1 ≤ k ≤ ri, 1 ≤ i ≤ n.

}

Thus, D+V (t) + ÃV (t) < 0. Integrating on both sides with respect to t from 0 to t,

we have V (t) < V (0)e−Ãt → 0 for large t. The conclusion follows from the definition of
V.

We shall present yet another result on global asymptotic stability of equilibrium
pattern of (2) using a different Lyapunov functional providing one more set of sufficient
conditions on parameters of the system.

Theorem 3.2. Assume that the conditions (3)–(6) on response functions hold.
Furthermore the parameters satisfy the following inequalities

ai >
1

2

n∑

j=1

|bij |pj +
1

2

n∑

j=1

|bji|pi +
1

2

ri∑

k=1

|ciik |M2ik (11)

+
1

2

ri∑

k=1

|ciik |M1ik +
1

2

ri∑

k=1

|ciik |M2ik ,

cik >

ri∑

l=1

|dil |qil +
1

2
|ciik |M1ik +

1

2
|ciik |M2ik + |ciik |M1ik ,
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for all i and ik. Then the equilibrium pattern of (2) is globally asymptotically stable.
Proof. We consider the functional

V (t) =

n∑

i=1

{
(xi(t)− x∗

i )
2

2
+

ri∑

k=1

(yik − y∗ik)
2

2

}
.

The derivative of V along the solutions of (1.2), using (3.1), is given by

V ′(t) =

n∑

i=1

[
(xi(t)− x∗

i )(x
′

i(t)− x∗
′

i ) +

ri∑

k=1

(yik(t)− y∗ik)(y
′

ik
(t)− y∗

′

ik
)
]

=

n∑

i=1

[[
− ai(xi(t)− x∗

i )
2 + (xi(t)− x∗

i )

n∑

j=1

bij(fj(xj)− fj(x
∗

j ))

+(xi(t)− x∗

i )

ri∑

k=1

ciik(gik(xi, yik)− gik(x
∗

i , y
∗

ik
))
]

+

ri∑

k=1

[
− cik(yik(t)− y∗ik)

2 + (yik(t)− y∗ik)

ri∑

l=1

dil [hil(yil)− hil(y
∗

il
)]

−(yik(t)− y∗ik)ciik

(
gik(xi, yik)− gik(x

∗

i , y
∗

ik
)
)]]

≤
n∑

i=1

[
− ai(xi(t)− x∗

i )
2 + |xi(t)− x∗

i |
n∑

j=1

|bij |pj |xj(t)− x∗

j |

+|xi(t)− x∗

i |

ri∑

k=1

|ciik |
[
M2ik |xi − x∗

i |+M1ik |yik − y∗ik |
]

+

ri∑

k=1

[
− cik(yik(t)− y∗ik)

2 + |yik(t)− y∗ik |

ri∑

l=1

|dil |qil |yil − y∗il |

+|yik − y∗ik ||ciik |
(
M2ik |xi − x∗

i |+M1ik |yik − y∗ik |
)]]

,

utilizing (3)-(6). Employing the inequality ab ≤ a2
+b2

2
and rearranging the terms we get

V ′(t) ≤

n∑

i=1

[
− ai(xi(t)− x∗

i )
2 +

1

2

n∑

j=1

|bij |pj

[
(xi(t)− x∗

i )
2 + (xj − x∗

j )
2

]

+
1

2

ri∑

k=1

|ciik |M2ik(xi − x∗

i )
2

+
1

2

ri∑

k=1

|ciik |M1ik

[
(yik − y∗ik)

2 + (xi − x∗

i )
2

]]

−

ri∑

k=1

[
cik −

1

2

ri∑

l=1

|dil |qil −
1

2

ri∑

k=1

|dik |qik

]
(yik − y∗ik)

2

+
1

2

ri∑

k=1

|ciik |M2ik(xi − x∗

i )
2 +

1

2
|ciik |M2ik(yik − y∗ik)

2

+|ciik |M1ik(yik − y∗ik)
2

]
.
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Thus,

V ′(t) ≤ −

n∑

i=1

[
ai −

1

2

n∑

j=1

|bij |pj −
1

2

n∑

j=1

|bji|pi −
1

2

ri∑

k=1

|ciik |M2ik

−
1

2

ri∑

k=1

|ciik |M1ik −
1

2

ri∑

k=1

ciikM2ik

]
(xi − x∗

i )
2

−
n∑

i=1

ri∑

k=1

[
cik −

1

2

ri∑

l=1

|dil |qil −
1

2

ri∑

l=1

|dil |qil −
1

2
|ciik |M1ik

−
1

2
|ciik |M2ik − |ciik |M1ik

]
(yik − y∗ik)

2.

Then by assumptions, V ′ is negative definite, and hence, the conclusion follows employing
standard arguments as in earlier case (e.g., [3, 19, 26]).

We shall now provide examples to illustrate these results and establish the criteria
provided in these two results are independent.

Example 3.3. Consider

(
x′

1

x′

2

)
= −

(
1.49 x1

3.79 x2

)
+

(
0.32 0.43
0.18 0.24

)(
f1(x1)
f2(x2)

)

+

(
0.25 0.53
0.85 0.95

)(
g11(x1, y11) g21(x2, y21)
g12(x1, y12) g22(x2, y22)

)
+

(
I1
I2

)
,

(
y′11
y′12

)
, = −

(
1.25 y11
1.02 y12

)
+

(
0.5 0.25
0.3 0.1

)(
h11(y11)
h12(y12)

)
+

(
J11
J12

)

−

(
0.15 g11(x1, y11)
0.05 g12(x1, y12)

)
,

(
y′21
y′22

)
= −

(
2.01 y21
1.72 y22

)
+

(
0.25 0.12
0.15 0.05

)(
h21(y21)
h22(y22)

)
+

(
J21
J22

)

−

(
0.75 g21(x2, y21)
0.53 g22(x2, y22)

)
.

Let fi(xi) = tanh(xi), hik = tanh(yik) and gik(xi, yik) = xi + yik . Then pj = qik =
M1ik = M2ik = 1. Choose Ii = 10, Jik = 10, i = 1, 2, k = 1, 2.

For the above system, the equilibrium pattern is given by (11.68, 4.33, 6.67, 9.40,
2.69, 3.89). It may be seen that all the conditions of Theorem 3.1 are satisfied, and
hence,the equilibrium pattern of the system is globally asymptotically stable by virtue
of Theorem 3.1. Also some of the parametric conditions of Theorem 3.2 are violated, it
can not be applied here.

Example 3.4. Consider

(
x′

1

x′

2

)
= −

(
2.45 x1

3.85 x2

)
+

(
0.4 0.6
0.7 1.3

)(
f1(x1)
f2(x2)

)

+

(
0.6 0.3
0.8 0.5

)(
g11(x1, y11) g21(x2, y21)
g12(x1, y12) g22(x2, y22)

)
+

(
I1
I2

)
,
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(
y′11
y′12

)
= −

(
1.4 y11
1.7 y12

)
+

(
0.2 0.4
0.4 0.6

)(
h11(y11)
h12(y12)

)
+

(
J11
J12

)

−

(
0.3 g11(x1, y11)
0.6 g12(x1, y12)

)
,

(
y′21
y′22

)
= −

(
1.65 y21
2.5 y22

)
+

(
0.2 0.4
0.4 0.6

)(
h21(y21)
h22(y22)

)
+

(
J21
J22

)

−

(
0.4 g21(x2, y21)
0.8 g22(x2, y22)

)
.

Choosing fi(xi) = tanh(xi), hik = tanh(yik) and gik(xi, yik) = xi + yik , we have
pj = qik = M1ik = M2ik = 1. Let Ii = 10, Jik = 10, i = 1, 2, k = 1, 2.

The equilibrium pattern of the above system is given by ( 6.21, 4.38, 5.51, 4.06,
4.74, 2.18). Clearly, all the conditions of Theorem 3.2 are satisfied here while some of
the parametric conditions in Theorem 3.1 are violated. Thus, the unique equilibrium
pattern of system is stable by virtue of Theorem 3.2.

It may be concluded from Examples 3.3 and 3.4 that Theorems 3.1 and 3.2 are
independent of each other. The examples are simulated using ODE23 of MATLAB and
Figures 1 and 2 picturize our theoretical conclusions. We now consider the case where all
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Figure 1: Behaviour of solutions in Example 3.3.

contribution of yik has been completely received and utilized by xi as it is. That means,
we assume that ciikgik(xi, yik) ≡ ciikgik(xi, yik) for all xi and yik . Our next result studies
the global stability of equilibrium in this case.

Theorem 3.5. Assume that the parameters of the system satisfy the following con-
ditions:

ai −

n∑

j=1

|bji|pi > 0, cik −

ri∑

l=1

|dil |qil > 0,

for all i and ik and the response functions satisfy (3)-(6). Then the equilibrium pattern
of (2) is globally asymptotically stable.

Proof. We employ the same functional as in Theorem 3.1,

V (t) =

n∑

i=1

[
|xi − x∗

i |+

ri∑

k=1

|yik − y∗ik |
]
. (12)
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Figure 2: Solutions converging to equilibrium values in Example 3.4.

Then we have

D+V (t) ≤

n∑

i=1

[
− ai|xi − x∗

i |+

n∑

j=1

|bij ||fj(xj)− fj(x
∗

j )|

+

ri∑

k=1

|ciik ||gik(xi, yik)− gik(x
∗

i , y
∗

ik
)|+

ri∑

k=1

[
− cik |yik − y∗ik |

+

ri∑

l=1

|dil ||hil(yil)− hil(y
∗

il
)| −

ri∑

k=1

|ciik ||gik(xi, yik)− gik(x
∗

i , y
∗

ik
)|
]]

≤

n∑

i=1

[
− ai|xi − x∗

i |+

n∑

j=1

|bij |pj |xj − x∗

j |

+

ri∑

k=1

[
− cik |yik − y∗ik |+

ri∑

l=1

|dil |qil |yil − y∗il |]
]]
.

Therefore,

D+V (t) ≤ −
n∑

i=1

[
[ai −

n∑

j=1

|bji|pi] |xi − x∗

i |+

ri∑

k=1

[cik −

ri∑

l=1

|dil |qil ] |yik − y∗ik |
]

Negative definiteness of D+V follows from assumptions on parameters. The rest of the
argument is similar to that of Theorem 3.1, and thus, omitted.

Remark 3.6. Two types of approaches are possible here. For system (1), where the
dynamics of subnetwork neurons yik (i.e., second equation of (1)) do not include terms
of main components xi, the subnetworks are allowed to converge first, xi waits to receive
this contribution and then starts working on its own for a convergence - as worked out in
Theorem 4.1 of [26]. Secondly, the case where xi works together with yik and interacts
continuously with them for a simultaneous convergence was discussed in Corollary 2.3
of [19]. First situation may be called as a ’serial processing’ – elongates the convergence
process but the strain on the parameters is considerably less when compared to that in
second situation which may be termed as a ’parallel processing’.
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It may be noticed from Theorem 3.5 here that the strain on parameters is very less
as compared to that of Theorem 4.1 of [26] at the same time allows interactions of yik ’s
with xi as Corollary 2.3 of [19]. Thus, influence of deactivation term gik(xi, yik) in second
equation is clear. This also indicates that when the subcomponents contribute exactly
what their main components require and the main components receive what they need
with a proper interaction with their subcomponents then the system parameters are
strained less and thus, paving way for a better performance of the system.

4 Discussion

In the present paper, we studied the influence of deactivation dynamics introduced into
the supportive subnetwork of a cooperative and supportive network system. We estab-
lished sufficient conditions for global asymptotic stability of the equilibrium pattern.
Examples are provided to establish that the criteria presented are independent of each
other. It was assumed in [26] that the subnetworks of the main group always support it.
If the subnetwork is an ancillary unit established independently of the main system (but
always supports it) and survives on its own (has independent, own dynamics – second
equation of system(1)), then main system has no burden. In case if the subnetwork is
an ancillary unit that survives only because of main network or is an integral part of the
main system which needs to be defunct as soon as the task of main network is finished
either to reduce or to avoid unnecessary use of yik ’s, then system (2) comes into play
and the study in this paper becomes very relevant and useful. A look at Theorems 3.1
and 3.2 shows that the parameters have to be strained much when the contribution from
subnetwork is not utilized as it is or is not known to be the same as that required by main
network. On the other hand, the strain on parameters is much less for systems which
utilize contributions of its subnetworks completely or equivalently, the subnetworks are
contributing exactly what their main group is expecting from them. This is what The-
orem 3.5 says. Thus, systems with perfect coordination and cooperation among groups
perform well with less strain on constituent components and resources.
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