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Abstract: We discuss global existence of weak solutions to a one dimensional pe-
riodical fractional Landau-Lifshitz-Gilbert equation. A Faedo-Galerkin/penalization
method is employed to get approximate solutions and a fractional calculus inequality
is used to deal with the convergence of nonlinear terms. We also study the asymptotic
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1 Introduction

In the last decades the study of magnetization processes in magnetic materials has been
the focus of considerable research for its application to magnetic recording technology.
In fact, the design of currently widespread magnetic storage devices, such as the hard-
disks, requires the knowledge of the microscopic phenomena occurring within magnetic
media. In this respect, it is known that ferromagnetic materials present spontaneous
magnetization which is the result of spontaneous alignment of the elementary magnetic
moments that constitute the medium. The magnetic recording technology exploits the
magnetization of ferromagnetic media to store information. The first example of mag-
netic storage device was the magnetic core memory prototype, realized by IBM in 1952.
After magnetic core memories, magnetic tapes have been used, but the most widespread
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magnetic storage device is certainly the hard-disk. The progress made by research activ-
ity performed worldwide in this subject has led to exponential decay of magnetic device
dimensions. For more details, we refer for example to [10,13].

The Landau-Lifshitz (LL) equation [I4] and its modification, the Landau-Lifshitz-
Gilbert (LLG) equation [g], are the basic equations for studying the magnetization dy-
namics in ferromagnetic materials. Though these equations are equivalent from the
mathematical point of view [7] (specifically, the LL equation reduces to the LLG one
by a simple rescaling of the gyromagnetic ratio and damping parameter), the latter is
more preferable from the physical point of view and widely used for studying the non-
linear effects in the magnetization dynamics, regimes of forced precession, magnetization
switching, etc.

In this paper, we study the following one-dimensional fractional Landau-Lifshitz-
Gilbert equation
om =ym x Om + (1 +v*)m x Heg(m). (1)

The unknown m, the magnetization vector, is an application of @ = (0,7) x Q (T > 0
and (2 is a bounded set of R) into S? (the unit sphere of R?), 9;m denotes its derivative
with respect to time, Heg(m) is the effective field,“x” is the three dimensional cross
product and the magnitude of magnetization (which is constant in space and time) has
been scaled to one

m(t,a)| = 1. (2)

In (), the positive constant ~ is the damping coefficient, and

o€

Henlm) = =5

(3)
is the opposite of the functional derivative of the free energy £. Typical expressions for £
that are usually used in practice take into account several different physical phenomena,
and can be found in [I0] for instance. In this work, we will focus on the case where
Hem(m) is given by

Her(m) = aA**m + b m x A**m, (4)

when a € (3,1) and a,b > 0. The operator A = (=A)z denotes the square root of
the Laplacian and called also Zygmund operator which can be defined for example via
Fourier transformation [21].

Equation () has broad connections with other well-known equations appearing in
mathematics and physics. When a@ = 1 and b = 0, equation () becomes a standard
LLG equation and global existence of weak solutions and nonuniqueness is proved in [IJ.
When o € (3,1) and b = 0, the existence of weak solutions for () is obtained using
Faedo-Galerkin/penalization (FGP) method and fractional calculus for the convergence
of nonlinear terms, see [I8]. When aw = 1 and b > 0, Eq. (D) becomes a standard LLG

equation with vertical spin stiffness and global existence of weak solutions is proved in [3].

The equation () is subject to the periodic boundary and initial conditions
m(0,.) =myg, |mg|=1 in . (5)

A simplified model can be obtained by assuming that 2 is a subset of R. Specifically, we
consider one dimensional domain 2 = (—7, ) and assume periodic boundary conditions.
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Throughout this paper, for k € N*, L*(Q) = (L*(Q))* and HF(Q) = (H*(Q2))® are
the usual Hilbert-type Lebesgue and Sobolev spaces, respectively. H(2) denotes the

homogenous Sobolev-Slobodetskii space and H(Q2) denotes the inhomogeneous one.

Lemma 1.1 If m is a regular solution of the problem ())-(&) then we have for all
t € (0,7) the following energy estimate

//|(’)tm|2d dt+6+7A/|Aa t)|? dz </3+“/|Aa o? dz,

where 3 = a(1 + %) at A = b(1 +~2).

Proof. Using the saturation constraint |m| = 1, the LLG equation () can be written
in the following form

YOym +m x Oym + BAZ*m + Am x A**m — B(m - A**m)m = 0. (6)
Taking the inner product of (6) by d;m and A2*m respectively, we get
5 dt

'y/ |Oym|? dz + / |[A“m|? dx + /\/ m x A**m - 9;m dz =0 (7)
Q

and
5 dt/ |[A“m|? dx +/ m x Oym - A**m dz +ﬂ/ |A*m|? dz

_ .A2a 2 —0.
B/Q(m m)° dz =0

(8)

Adding () and () multiplied by A, we obtain

7/ 9ym? da + ﬂ*;” d / IACm? do + /\ﬂ/ A% m)? da
Q

= )\ﬁ/ﬂ(m - A**m)? dz.

Since
/(m -A**m)? dx < / |A?*m|? dz,
Q Q

and integrating from 0 to ¢, we obtain

//|8tm|2d dt+ﬂ+7>\/|Aa )] dz <ﬂ+7>\/|AO‘ of? dz

forallt € (0,7). O
In this work, we are mainly interested in studying the global existence of weak solu-
tions for (@)-(El). To this end, we first give the definition of weak solutions.

Definition 1.1 Let m € H*(Q2) with |myg| = 1 a.e., we say that a three dimensional
vector m is a weak solution of the problem (II)-(&) if

o forall T >0, m e L>®(0,T,H*(Q)) and dym € L?(Q) with |m|=1 a.e;
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e For all ¢ € C>(Q), such that ¢(0,.) = (T, .)

/8tm~qbdzdtf’y/mx8tm~qbdzdt
= —5/ A*m - A%(m x @) dadt — )\/ (m x A**m) - (m x ¢) dadt.
Q Q

e m(0,2) = mo(z) in the trace sense.

e Forallt e (0,7)

t A A
7/ / Oym? dadt + 217 / Aem(t)? do < 27 / A%my|? dz. (10)
0 Q 2 Q 2 Q

Remark 1.1 We will show in subsect 2.2 that m x A2“m makes sense in L?(Q), and
for this reason, it will be clear that (@) makes sense.

The rest of the paper is organized as follows. In the next section, we prove a global
existence of weak solutions result by using Faedo-Galerkin/penalization method. Section
3 is devoted to revealing the relationships between the fractional LLG equation we have
studied in this paper, and the classical fractional LLG equation (i.e., in the case b = 0).
The last section concludes the paper and provides future directions for this work.

2 Global Existence of Weak Solutions

The purpose of the present section is to prove the following result

Theorem 2.1 Let my € H*(Q) with |[myg| = 1 a.e., then there exists a weak solution
of the problem ([I))-(&) in the sense of Definition [

To prove Theorem 211 we proceed as in [I15,18]23].

2.1 The penalty problem

Let € > 0. We introduce the following penalty problem. For an initial datum mgy €
H*(Q2), and for each positive number T, find a vector field m. such as to satisfy the
equation

¥0ymE +m® x oyme + BA**m® + Am® x A**me + é(|m,5|2 —1)m® =0. (11)
subject to the periodic boundary and initial conditions

m®(0,.) =mg, |mo/=1 in Q. (12)

The last term of equation () was introduced at the end to represent the constraint

|m| = 1.
We have the following result.
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Proposition 2.1 For each fized positive €, there is a weak solution mc of problem

(I1)-({12) such that

7/ om?® - o dxdt + / (m® x 9ym®) - ¢ dadt + ﬁ/ AYm® - A%p dzdt
Q Q Q

1
—)\/ Am® - A%(m® x ) dadt + E/ (Jme|> = 1)m® - ¢ dadt =0
Q Q

for any ¢ in L2(0, T,H*(Q)). Moreover, the following energy estimate holds

! A
7/ / |0yme)? dadt + p 4_27 / |A“mE (t)]? dadt
Q Q

")/)\/ 2 2 ﬂ+7>‘/ [eY 2
+—(1+ — me|* —1)°(¢) dz < A%myl” dx
205 [ (me - 120 2 [ A

for allt € (0,T).

Proof. We show the existence of solutions for the penalty problem by using Faedo-
Galerkin method. Let {x;}ien be a complete orthonormal basis of L?(2) consisting of
eigenfunctions of A%

A% = Niya, i=1,2,... (13)

under periodic boundary conditions. The existence of such a basis can be proved as in
Temam [22]. For fixed € > 0, we seek approximate solutions m*® for equation (1] of

the form
N

meN (t2) = 3~ ai(t)i(w)

i=1

where a;(t) are R3-valued vectors. We obtain the following approached problem

yOmEN + mSN x 9mSN + AT mEY 4 AmSN x A2oms N

+l(|m5,N|2 _ 1)ma,N -0 (14)
€

with the following initial conditions
m>N(0,.) = mN(0,.) in

and

mN(O’ Jxi da = / mo(0,.)x; da.
Q Q

Multiplying the equation (I4)) by x; and integrating over 2, we get an ordinary
differential system.

Note that
YOmSN + msY x oomSN = A(mSN)omsY
where

Y e,N
N 7N s i N

87 —_ 81 87

A(m™") = mg 0 —my

e,N e,N
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We can write equation (I4]) in the form

1
A(ma,N)atma,N _ —6A2am8’N _ )\ms,N % A2ama,N _ _(lma,N|2 _ 1)mE’N.
€

Since A(m®%) is invertible, then the resulting system is locally Lipschitz.

There

exists a unique local solution for the approximate problem that can extend on [0,T]
using a priori estimate. To get bounds on the solutions, we multiply equation (I4]) by

O;m="N and A2*m>?" respectively and integrate over §2. We obtain

o 5,N2d __/Aa 8N2d
7 [ fome R e B4 :

+)\/m€7N><A2“ N 8m5Ndz+——/(|m€N|2 1)? de =0,
o de dt

and

/ms,N X atms,N .AQOLmE,N d$+ﬂ/ |A2ams,N|2 dzx
Q
+__/ |Aa 5N|2 dl‘-i— /(lma’N|2—1)'A2amE’N dz = 0.
2 dt 0
Multiplying (I6) by A and make the sum with ({I3]), we obtain

1d
/|amsN|2 dz+2dt/|Aa 5N|2 dSC+ (|mE’N|271)2dx

de dt
Ay d
+Aﬂ/|A2a 5N|2d 4 ;dt/|Aama,N|2 dx
Q
= _g/(|m871\f|2 —1)m=N - A2mSN dg.
Q

On the other hand, Young’s inequality gives

A
__/(|ma,N|2 _ 1)ma,N -A2amE’N dz
Q

€
Ad
/(|ms,N|2 . 1)2|ms,N|2 dSC+ _/ |A2ams,N|2 dx
Q 2 Jo

<
— 2dge?

for any constant d > 0.

(15)

(16)

(17)

We multiply equation ([Id) by (|m®¥|? — 1)m*" and integrate over €2, we obtain

v d
ﬂ/ (|ms,N|2 o l)ms,N .A2a e,N dzx + e (|ms,N|2 o 1)2 dz
0 4dt

1
+= / (jm&N 12 = 1)2m&N |2 dz = 0.
€ Ja
Hence

__/(|ma,N|2 _ 1)ma,N -A2am8’N dz
Q

A d A
— L_/('ms,N|2 _ 1)2 dz + @/(lms,Nﬁ _ 1)2|ms,N|2 dz.
Q
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Therefore
YA d e,N |2 2 A / e,N |2 2, e,N|2
a2 < N2 )2 qp g 2 N2 1)2maN 2 g
Lo L me P =1 o 2 [ (gm0 me N da
A /(|m5,N|2 ~1)2meN? dx—i—&/ IA2m=N 2 d.
- 2d€2 Q 2 0
That is

A d e,N |2 2 Al 1 / e,N |2 20, &,N |2
a2 < N2 )2 dz+ S (2 — — N2 1)2ms N2 g
I Lm0 s 55 5o [ (e - 0 me P

< &/ |A2ama,N|2 dz.
2 Ja
So for d > g

A
2d652 /Q(|ms,N|2 o 1)2|ms,N|2 dx
Y A d

20, ,N |2 _ il e,N12 _ 2
S2(21175)/52“& m=7[ de 46(2d — B) dt/Q(lm " =1)" dz

Therefore from (I8])

A
__/(|ma,N|2 _ 1)ma,N -A2am8’N dz
Q

Ad B YA d
<221 A2a 5,N2d7 _/ E’N2712d.
=5 +2d—/3>/9| m e - e I D) de
Then from (I7)

Ad
7/ |0;mSN|? da + frard |A“mN |2 de
Q 2 dt Jq
YA d

1
AQa 5,N2d ~- (1
) [ aemeVE e 04 )

2

TAB - T

Choose d = 3, we get B — % = 0 and therefore

Ad
7/Q|0tm8’N|2 dz + 54‘27 E/Q|/\O‘Tr1,£’N|2 dz
1 YA, d

—(1+ 5= SN2 _1)2 dz < 0.
2+ 5 [ (me P =12 ds <0

We integrate from 0 to ¢t and we get

t A
'y/o 5 |<9tm5’N|2 dzdt + p 27 /Q |Ao‘m€’N(t)|2 dz
1 A A
+—(1+ l) / (|m,5’N|2 — 1)2(15) dz < ptn / |A0‘mN|2(O) dz
de B Ja 2 Q

1 A mN2 —1)2 r
120+ ) [ (m P =170 a.

127

e,N |2 2
— m® —1)*dz <0.
dt/g(' Fodrs

(19)
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The right-hand side is uniformly bounded. Indeed H®(2) — L*(2) with continuous
embedding, therefore

msV 12— 1)2 T m” 4 dz — m” 2 dz + meas
/Q<| 2 - 1%0) d /Q| 0)[* d 2/Q| (0)[2 dz + meas(Q)
[ (0)][t4 g + meas(®)

C1[|m™ (0)[[fga () + Ca,

IN

IN

where C; and Cy are two constants independent of ¢ and N. Furthermore, note that
m=Y(0) = m™(0), and since m*™ (0) has the same components as my in the basis {x; }ien
and my € H*(Q), we have ||[my||ge(o) < C3 with C3 being a constant independent of ¢
and N. Hence

[m™ ()| () < Cs.

Therefore,
HAamN (O) ||L2(Q) < 03.

Thus for ¢ fixed, we have
(Jm=Y|? — 1)y is bounded in L>(0, T, L*()),

(A“m=™) y is bounded in L>(0, T,L?(Q)).
By Young’s inequality

[V ar <ot [ (mep 12 d,
Q Q
with C being a constant which does not depend on N. Therefore,
(m>N)y is bounded in L>(0, T, H*(Q)),
(0ym&N)y is bounded in L?(0,T,L%(Q)) := L*(Q),
and we will need a compactness lemma due to Simon [20].

Lemma 2.1 Assume By, B, By are three Banach spaces and satisfy By C B C By
with compact embedding By — B. Let W be bounded in L>(0,T; By) and Wy := {w; w €
W} be bounded in L1(0,T; By) where ¢ > 1. Then W is relatively compact in C([0,T]; B).

The proof can be found in Simon [20]. Then we have the following convergences to a
subsequence further notes that m®¥ for any (1 < p < o)

m>Y —~ m® weakly in LP(0,T,HY()), (20)

mY — m® strongly in C([0,T],H’(Q)) and a.e for 0 < § < a, (21)
Hm=N — 9ym? weakly in L?(Q), (22)

|m=N|? — 1 — ¢ weakly in LP(0,7,1L%(Q2)). (23)

The convergence (2I]) is a consequence of ([20) and by compactness embedding of
L2(0,T,H*()) in L2(0,T,1L?(2)). On the other hand ¢ = |m?®|?> — 1. This is provided
by the following lemma.
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Lemma 2.2 Let © be a bounded open subset of RE x Ry, hy, and h are functions of
LY(©) with 1 < q < oo such as ||hy|re@) < C, hn = h a.e in © then h, — h weakly in
L1(©).

The proof of Lemma 2.2] can be found in [15]. In our case © = @, hy = [m>V|? — 1,
h=|mf? -1 and ¢ = 2 and from @I)) [m*Y|?> — 1 — |mf|> — 1 a.e, and we have in
particular [m*"|> — 1 € L?(0), [mf|? — 1 € L*(©) and |||m*|* — 1HL2(®) <C.

Now, we pass to the limit as N — co. Multiplying the equation (I4) by ¢ € C™(Q)
and integrating on @ yield

7/ omsN . dxdt—i—/ msY x g;msN . <pdxdt+ﬁ/ AmSN A% dadt
Q Q 1 Q (24)
—)\/ AmSN A (mEN x ) daedt + - / (jm=N > = 1)m=N - @ dzdt = 0.
Q Q

We have
m&Y — me strongly in L%(Q).
Furthermore
om=N — 9ym? weakly in L2(Q).
Thus

/ (MmN x 9ymsN) - ¢ dadt — / (m® x 9,m?) - ¢ dudt.
Q Q

On the other hand
AmE N s A¥mnE weakly in L2(Q)'

Therefore
/ AmSN A% dzdt — / A“m® - A%p dadt,
Q Q

and
/ omsN . dadt — / om® - p dadt.
Q Q

Taking into account (23)), we obtain
/ (Im=N P = 1)m="N - ¢ dzdt — / (Jm®> — 1)m*® - ¢ dxdt.
Q Q
For the third term of (24 we set
Dy = / (moY x A**m®N) . p dzdt and D = / (m€ x A**m?) - ¢ dadt.
Q Q

‘We have

Dy = —/ A *m&N - (mSN x @) dedt = —/ AmSN A (MmN X @) dadt.
Q Q

Then we define the commutator
[A%, p]lm = A%(p X m) — p X A“m.

Since A® is a nonlocal operator, the following fractional calculus inequality will play a
critical role in the convergence of approximate solutions, see [6] for the proof.
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Lemma 2.3 Suppose that s >0 and p € (1,+00). Then

1A°(fg) — fA%glle < CUIV FllLeallgll gra=roa + [l igems 19l Lra)
and
IA°(F)llee < CUSF e llgl roms + [1F 1 grops gl Lra)
with pa,p3 € (1,+00) such that

1 1 1 1 1

p pP1 D2 p3 p47

and f,g are such that the right-hand side terms make sense.

We have

2 glme )

L2(Q)

< C(|V‘P|LP1(Q)||mE’N - m5||Wa,1,p2(Q) + H‘PHmes(sz)HmE’N - m8|L”4(9))'

We choose p; = ﬁ, D2 = % and p3,ps € (2,400). This is justified by the fact that
Wk*p(—>quor0§k<%and%:%f§, inour case n = 1 and k = 1 — a and we
want W*P < L2, Therefore it is sufficient that 1= 1—17 — (1 — «) that is % =3 _a= pi*

2

— (Wok’p)/ s W—kP2_ Thus for

’

where - + L =1 and therefore Wg’p; — L? = (L?)
P2 P

_ 1 1 1

e

L2(Q)
<C HV<P||1LP1(Q)Hm€’N = m® L) + HSDHWa,ps(Q)ng’N —mSgs ()

N

< O( IV oy I —m[Raay + 1013 o I — 2

Therefore,

0 pllme )

< c(nwwm(O,T,m))nm&vN —m¥aa
L2(Q)

T B

The right-hand side of the last inequality tends to 0 due to strong convergence of m®& —
m* in L%(Q) and in L?(0,T,H°(Q)). Moreover by the preceding lemma [A%, @]m? €
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L2(Q). Thus

|Dn — D| = ‘/ A“mSN A plm SN dedt —/ Am?® - [A%, plm® dxdt’
Q

‘/ ACmSN LAY o] (mEY — m®) d:z:dt—i—/ A®(mSN —me) - [AY, p]m® dxdt’
Q
‘/ ACmSN C[AY o] (mE N — m®) dzdt‘ + ‘/ A% (MmN — mf) - [AY, plm® dxdt‘
Q
< |A*me ||L2<Q>H[Aa, Plm=N —m?)
L2(Q)
+ / A®(mSN —mf) - [AY, plm® dxdt
Q
< ¥ 2y [ [A%, el (= = )
L2(Q)
+ / A(mSN —me) - [AY, p]m® dadt|.
Q

Since [|m=N|| 120,710 (0)) < C and

— 0,
L2(Q)

’/ A(mSN —me) - [AY, plm® dxdt‘ — 0,
Q

|2 pllme )

this implies that
Dy — D. (25)

Using the previous convergences and passing to the limit (N — oo) in (24]), we get

7/ om® - dadt —|—/ m® x oym® - p dadt + ﬁ/ A“m® - A%p dadt

Q Q ) Q (26)

_)\/ A%mE - Aoz(m& X Lp) dxdt + E/ (|m5|2 _ l)mf - dxdt =0
Q Q

for all  in L2(0, T, H%(Q2)) by density of C*(Q) in L2(0, T, H*(2)).
Now back to ([9) and taking into account the previous convergences in N and using
Fatou lemma, we get

//|at P2 dzdt+ﬂ” /|AO‘ (6))? dedt
(27)

+j€<1+g>/9<|m8|2— 12(0) do <ﬁ+“/|A“ of dr

forallt € (0,7).0
We are now in a position to prove Theorem 2]

2.2 Convergence of the approximate solutions

To pass to the limit in ¢ (¢ — 0), we need estimate (I9) and the following result
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Lemma 2.4 If m® satisfies 28) then |m°| <1 a.e. on Q.

Proof. We choose ¢ = ¢pm® with B = {|m®| > 1} and ¢ is the indicator function
of the set B. We have ¢ in L?(0,T, H*(f2)), and replacing ¢ by ¥pm? in (26)), we obtain

¢ ¢ 1t
'y/ / om® - m® dzdt + ﬂ/ / |A“me|? dadt + —/ / (|m®]* —1)|m*|? dadt = 0.
o JB o JB €Jo JB

Then
i K d €12 ! a, €12
= [ = [ (Im°-1) dedt + 8 [A“mF|* dadt
+—/ / (jms|> = 1)|m*|? dzdt = 0.
€Jo JB
Hence

b d
1/ —/ (jm®]* — 1) dadt < 0.

We integrate from 0 to ¢, we get

/B(|m5(t)| Y dxg/ (jm=(O) — 1) dz = 0.

B

Hence l[m¢| <1l a.e. on@. O
Now we will look for an estimate of the term m® x A2*me.
@) by m® x 9ym* and integrating over {2 we obtain

Multiplying equation

/ | m® x 9ym® |? dx—l—ﬁ/ A?*mE - me x 9ym° dx

¢ ¢ (28)

—l—)\/ m® x A**mf - m? x ;m° dz = 0.
Q

Multiply this time equation (1) by m® x A2*m? and integrating over €, we get

v | m® x A**m . 9ym® dz +/ me x A**m® - m® x 9;m°® dz
Q Q (29)
+A A | m® x A**m® |* dz = 0.

Multiplying equation ([29) by A and making the sum with (28]), we get
/ | m® x Oym® |2 da + (B8 +7)\)/ A?me - m? x OymS dx
Q Q
7/\2/ | m® x A**m® |* dz = 0.
Q

Then
)\2/ | m® x A**m® |2 do= [ |m® x9om®|? da
Q Q (30)

+(B +7)\)/ A**mE - m® x ym° du.
Q
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Multiplying () by 0;m¢, integrating over Q, replacing / A%*me - mf x ;m® dz by
Q
its value in (B0) and using Lemma [2:4] we obtain

)\2 |m€ xA2ams|2 d:C:/ |ms % atms|2 derM/ |atms|2 dx
Q Q Q

B(B+A) d 2 (ﬂJF’Y)\)d/ 2 2
PRIV C [ pame)? dg 4 LIV C 2 1)24
A we il AU B v el AL BV

S/ |ma|2|atma|2 dz+7(ﬂ+7/\)/|atma|2 derﬂ(ﬂJFV/\)i/ |Aozma|2 dz
% A % dt Jo

2A
(54‘7)‘)(1/ c12 2
WA < 1
e @ )T D e

A A)d
SO"'@)/{J&:WLEF dx_,_M&/QlAama'Q dz

2\
(54‘7)‘)(1/ c12 2
WA < ~1)? da.
e @ ) Dde

We integrate from 0 to ¢, and using the previous lemma, we get

t
)\2/ / | m® x A**m® | dxdt < C, (31)
0o Ja
where C' is a constant independent of €. Hence
(m® x A**mF). is bounded in L%(Q). (32)
Consequently,
m® x A>*m® — & weakly in L?(Q). (33)

By ([21)), we have
(9ym®). is bounded in L?(Q),

(| mE |2 _1)5 iS bounded in LOO(O’T’LQ(Q))’
(m)e s bounded in. L(0, 7 H*(2).

Then we have the following convergences to a subsequence further notes that (m¢). for
(1<p<oo):
m® — m weakly in LP(0,T;H*(Q2)),

dym® — 9ym weakly in L*(Q),
| m®|? =1 = 0 strongly in L*(0,T;L*(Q)) and |m |=1 a.e.
By compactness embedding of H(Q) into L*(Q), we have
m® — m strongly in L*(Q). (34)
In the following, we show that
m x A**m = d € L*(Q). (35)
Let ¢ € H*(£2). We have

/ m® x A**m*® . ¢ dodt = —/ A“m® - A%(m® X ) dzdt.
Q Q
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On the other hand, using commutator estimate together with the same reasonings that
lead to (2H), we have

/ A*m® - A%(m® X @) dedt — / Am - A%(m x ) dadt
Q Q

= 7/ (m x A**m) - ¢ dxdt,
Q

and therefore (B3] is proved. In particular, we have

m® x A**m° — m x A**m weakly in L3(Q).

Now back to [26]) and taking ¢ = m® x ¢ with ¢ € C*(Q), we have

7/ om* - mf x¢dzdt+/ m® x Oym® - m® x ¢ dxdt

Q Q (36)

+ﬂ/ Am® - A%(m x ¢) dadt + /\/ m® x A**m® - m® x ¢ dzdt = 0.
Q Q

For the first term of ([B8]), we set O, = / m® x Oym® - m° x ¢ dzdt.
Q

We have
O = / | m® > Oym® - ¢ dadt — / (m® - p)m® - Oym® dadt.
Q Q

On the one hand
/ |me|?0yme - ¢ dadt = / (jm®? — 1)9;m* - ¢ dadt +/ oyme - ¢ dadt
Q Q Q

— / orm - ¢ dxdt.
Q

On the other hand
1
/(m6~¢)m6~8tm8 dedt = —/ (| m® |2 —1)m* - ¢ dadt
Q 2Jq
1

T

_ - €12 _ € .
= 2[/Q(|m,| 1)m d)dxo

1

—§/Q(| me |2 —1)0)(m* - ¢) dudt.

Now choose ¢ so that  =0int=0and ¢t =7. Then
T

[/Q(| m® |2 —1)m? - ¢ dx] =0.
0
Therefore,
/ (m®-@p)m® - Oym® dadt = 7% / (| m® |* —1)0y(m* - ¢) dadt
Q Q
_ —1/(|mf 2 _1)0,m* - ¢ dadt
2Jq
1

- / (| m® |2 —1)m? - 9;¢p dxdt — 0.
Q
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Hence
0. — / oyrm - ¢ dxdt.
Q

For the second term of (3]
ﬂ/ A%m® - A%(m® x ¢) dedt — ﬂ/ A%m - A%(m X ¢) dxdt.
Q Q
For the third term of (30)
A/ m® x A**m® - m? xgbdxdt%/\/ m x A**m - m x ¢ dzdt.
Q Q
For the last term of (3]
7/ om® -m’ X¢d$dt—>7/ om -m x ¢ dxdt.
Q Q
Let £ tends to 0 in (B6]), we obtain

/8tm~qbdzdtf’y/mx8tm~qbdzdt
Q Q

+ﬁ/A°‘m~A”‘(qu§) dzdt+/\/mxA20‘m~mx¢dxdt:0
Q Q

for all ¢ € C>°(Q). Furthermore, the inequality (I0)) follows from (Z1) and we finish the
proof of Theorem 211

3 The Limit as b — 0

The main purpose of this section is to reveal to relationships between the fractional LLG
equation we have studied in this paper, and the classical fractional LLG equation (i.e.,
in the case b = 0). We will prove the following result.

Proposition 3.1 Let b — 0. The weak solution mP obtained in section [A weakly
converges, up to a subsequence, to a solution of the classical fractional LLG equation in
the following sense.

For all ¢ € C*(Q) with ¢(0,.) = ¢(T,.) =0,
/ 8tm~¢dxdt7'y/ mxatmwbdxdt:fﬂ/ A%m - A%(m x ¢) dadt.
Q Q Q

Proof. Using the fact that [m?| =1 a.e in Q and estimate (I0), we deduce that
(m®);, is bounded in L°°(0, T, H*(£)),

and
(9ym?®), is bounded in L%(Q).
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Hence, up to a subsequence, we have
m® = m weakly in L?(0,T,H*(Q)) for 1< p < oo,
m® — m strongly in C([0, 7], H(£2)) and a.e for 0 < § < a,
oymb — 9ym weakly in L%(Q).
Then |[m| =1 a.e in Q. On the other hand, we have
y0ymb + mP x 9;mb + BAZ mb + dm® x A2*mP — B(A?*m’ - mP)mb =0 ae. in Q.

Multiplying this equation by d;m® and m® x A?*m?® respectively and integrating over
Q, we get

7/ | Oym® | dx + /|AO‘ b2 dx—l—)\/m X A**mP . oymP dz =0 (37)
Q

55
/|m x A2*mP? dx—|—2 dt/'Aa b2 dx——v/m x A**m? . oym?® dx. (38)

The equalities (37)), (B])) allow to get

Ay d
)\2/ |m® x A2*mb|? dz = 72/ |0:m®|? da + ( 62 / |A“mb|? da.
Q Q

We integrate from 0 to ¢ to get

t
- A
)\2/ / |m? x A2*mb|? dadt + (76 )/ |A“my|? da
0 Jo 2 Q

! - A
= 72/ / |0ym?®|? dadt + (76 )/ |A“m®? dz
0 Jo 2 )

B =a(l+~%) and A = b(1 ++?).

Since b is small enough, we assume that b < ay i.e., A < yf. Using estimate (I0), we

have
/ |A“m?? dz < / |A“mg|? dx
Q Q

t 1 2
72/ / |atmb|2 dxdtﬁ M/ |Aam0|2 dz.
0 Ja 2 Q

Then, ([B9) implies that

t
b2/ /|mbe2amb|2 dadt < %/ |Aam0|2 dz.
0 JQ Q

(b m? x A**m?), is bounded in L%(Q).

(39)

for all t € (0,T).
Recall that

and

Hence
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Therefore,
bmP x A>*m® — ¢ weakly in L2(Q).

Let ¢ € H*(Q). We have

/ bmP x A2*m?® - 4p dzdt = —b/ A*mb - A%(mb x ¢) dadt,
Q Q

which tends to zero as b goes to zero. We conclude that & = 0.
Now, we can pass to the limit as b — 0 in the weak formulation

/atmb-d)dxdt—v/mbxatmb-gbdxdt
Q Q

= fﬂ/ A“mP - AY(mb x ¢) dzdt — (1 +a2)/ bmb x A**m® . m® x ¢ dxdt.
Q Q

We obtain
/ 8tm~¢dxdtfo¢/ mxatmwbdxdt:fﬂ/ A%m - A%(m x ¢) dzdt.
Q Q Q

Then Proposition B.1lis proved. O

4 Concluding Remarks

In this paper, global existence of weak solutions to a modified fractional LLG equation
is proved. The modification lies in the presence in the effective field of the term b m x
A%2%m describing fractional vertical spin stiffness. Due to nonlocal nonlinearities in the
model, special structures of the equation, the commutator estimate and some calculus
inequalities of fractional order are exploited to get the convergence of the approximating
solutions. The relationship between the model and the classical fractional LLG equation
is also revealed by discussing the limit of the obtained solutions when the vertical spin
stiffness parameter b tends to zero.

Let us mention that important progress has been made in the design of schemes con-
structing weak solutions to classical LLG equation. Several schemes were proposed, and
their convergence to weak solutions was proved (see for examples [2[4]). An interesting
direction of future research is to propose numerical scheme for the fractional LLG equa-
tion. This will be helpful to give a strategy for efficient computer implementation which
may reflect the true nature of the augmentation of the LLG model considered in this

paper.
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