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Abstract: In this paper, a class of nonlinear switched systems with separable nonlin-
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1 Introduction

Switched systems represent a subclass of hybrid systems and have strong engineering
background in various applications. A significant number of real systems can be modeled
as switched systems such as mechanical systems, chemical processes, vehicle control,
traffic control, automotive industry, etc. [3, 11, 18, 23, 24].

A switched system has two components: a family of subsystems and a switching signal.
Subsystems in the family are described by a set of indexed equations. The switching
signal selects an active subsystem at every instant of time, i.e., the subsystem from the
family that is currently being followed [18]. Switching signals are usually classified as
time-dependent or state-dependent. Note that qualitative behaviour of a switched system
depends not only on the behaviour of individual subsystems in the family, but also on
the switching signal [24].
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In the past decades, different methods of analysis for switched systems were devel-
oped, and many significant results were obtained (see, for instance, [2–7, 9–11, 18, 24]).
In particular, with the aid of the Lyapunov function approach, various conditions of
asymptotic stability were derived. Stability is one of the fundamental concepts, and it
plays the most important role in control systems design.

For the stability problem, the first question is whether a switched system is stable
when there are no restrictions on switching signal (stability analysis under arbitrary
switching). On the other hand, many switched systems may fail to preserve stability
under arbitrary switching, but may be stable under restricted switching signals. In the
second case, it is required to find corresponding restrictions.

Many constructive approaches were developed for the stability analysis of switched
systems, for example, the method of differential inequalities (scalar, vector or matrix) [4,
12, 20], the dwell time approach [6, 10, 11], the method of common or multiple Lyapunov
functions [6, 7, 9–11, 14, 18, 24], etc. These methods are powerful and effective tool for
the finding switching signals providing the required properties.

Stability analysis is complicated if the considered system is essentially nonlinear
or/and contains some uncertainties [1, 2, 7, 8]. Along with the asymptotic stability,
the problems of ultimate boundedness and finite-time stability are considered in many
papers [3–5, 20].

In addition to the solving the problem of stability, it is important to estimate the
attraction domain of a given equilibrium position [16]. It should be noted that the size of
the region of attraction depends, generally, on switchig law [4]. Of a particular interest
is the situation where the equilibrium position is globally asymptotically stable.

In this paper, the problem of global asymptotic stability for a class of nonlinear
switched systems with separable nonlinearities is studied. It is assumed that every sub-
system from the considered family admits globally asymptotically stable zero solution.
We will look for conditions on switching law which guarantee the preservation of global
asymptotic stability for the corresponding switched system. We will employ multiple
Lyapunov functions in our analysis. As an additional result, estimates of the conver-
gence rate of solutions to the origin will be obtained.

2 Statement of the Problem

Consider the system with separable nonlinearities

ẋ = Pσf(x). (1)

Here x = (x1, . . . , xn)
T ; f(x) = (f1(x1), . . . , fn(xn))

T
, scalar functions fi(xi) are defined

and continuous for xi ∈ (−∞,+∞) and satisfy the conditions xifi(xi) > 0 for xi 6= 0,
i = 1, . . . , n; σ = σ(t) is a piecewise constant function defining the switching law, σ(t) :

[0,+∞) → Q = {1, . . . , N}; Ps = {p(s)ij }ni,j=1 are constant matrices, s = 1, . . . , N .
Thus, at each time instant one of the subsystems

ẋ = Psf(x), s = 1, . . . , N, (2)

is active. Subsystems of the form (2) belong to well-known class of the Persidskii type sys-
tems [21]. They are widely used for modeling of various practical systems and processes,
see [2, 3, 13, 15, 17].

Let θi, i = 1, 2, . . ., be the switching times, 0 < θ1 < θ2 < . . ., and θ0 = 0. Assume
that the function σ(t) is right-continuous. Without loss of generality, we suppose that
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the interval (0,+∞) contains the infinite number of switching instants. Hereinafter, we
consider non Zeno sequences [18], i.e., sequences that switch at most a finite number of
times in any finite time interval.

From the properties of functions f1(x1), . . . , fn(xn) it follows that system (1) has the
zero solution. We will look for conditions providing global asymptotic stability of the
solution.

In [7], the problem of the existence of a common Lyapunov function for family (2)
was studied. Several approaches to the construction of such function were proposed.
It is known [18, 24] that the existence of a common Lyapunov function guarantees the
asymptotic stability of the zero solution of (1) for any switching law.

In the present contribution, we will assume that we failed to construct a common
Lyapunov function for subsystems (2). In this case, to prove stability of a switched
system, one should restrict the class of admissible switching signals [10, 11, 18, 24]. The
general approach for finding such restrictions is based on the use of multiple Lyapunov
functions [10, 11].

In what follows we will impose some additional conditions on the right-hand sides of
subsystems (2).

Assumption 2.1 For every s ∈ {1, . . . , N}, there exist positive constants

λ
(s)
1 , . . . , λ

(s)
n such that the matrixPT

s Λs+ΛsPs is negative definite. Here Λs = diag{λ(s)1 ,

. . . , λ
(s)
n }.

Remark 2.1 Conditions of the existence of required values of λ
(s)
1 , . . . , λ

(s)
n were

investigated in [5, 7, 9, 14].

Remark 2.2 If Assumption 2.1 is fulfilled, then for every s ∈ {1, . . . , N} the zero so-
lution of the s-th subsystem from (2) is asymptotically stable for any admissible functions
f1(x1), . . . , fn(xn), and for this subsystem the function

Vs(x) =

n∑

i=1

λ
(s)
i

∫ xi

0

fi(τ) dτ (3)

satisfies the requirements of the Lyapunov asymptotic stability theorem. If it is possible

to choose values of λ
(s)
1 , . . . , λ

(s)
n the same for all s = 1, . . . , N , then a common Lyapunov

function can be constructed for subsystems (2). However, conditions of the existence of
such common Lyapunov function are more conservative than those of the existence of a
partial Lyapunov function of the form (3) for every subsystem.

Assumption 2.2 Let functions fj(xj) be of the form fj(xj) = βjx
µj

j , j = 1, . . . , n,
where βj be positive constants, and µj be positive rationals with odd numerators and
denominators.

Remark 2.3 Without loss of generality, we will assume that βj = 1, j = 1, . . . , n,
and µ1 ≤ . . . ≤ µn.

Thus, under Assumption 2.2, we consider the family of subsystems

ẋi =

n∑

j=1

p
(s)
ij x

µj

j , i = 1, . . . , n, s = 1, . . . , N, (4)
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and the corresponding switched system

ẋi =

n∑

j=1

p
(σ)
ij x

µj

j , i = 1, . . . , n. (5)

Remark 2.4 System (5) can be treated as a system of the first, in the broad
sense [25], approximation for a nonlinear hybrid system.

If Assumption 2.1 is fulfilled, then for subsystems from family (4) there exist Lyapunov
functions of the form

Vs(x) =

n∑

i=1

λ
(s)
i

xµi+1
i

µi + 1
, s = 1, . . . , N, (6)

and the zero solutions of these subsystems are globally asymptotically stable.
Our goal is to find classes of switching signals for which we can guarantee the global

asymptotic stability of the zero solution of system (5).

Remark 2.5 The case where µ1 = . . . = µn was investigated in [4, 6, 11, 18].
Therefore, in the present paper we will assume that µ1 < µn.

3 Preliminary Results

Let
c = max

s,j=1,...,N
max

i=1,...,n
(λ

(s)
i /λ

(j)
i ).

Then c ≥ 1, and
Vs(x) ≤ cVj(x), s, j = 1, . . . , N, (7)

for x ∈ R
n.

Remark 3.1 If c = 1, then V1(x) ≡ . . . ≡ VN (x), i.e., for subsystems (4) a common
Lyapunov function is constructed. In this case the zero solution of (5) is globally asymp-
totically stable for any admissible switching law. Therefore, in what follows we assume
that c > 1.

Denote Ti = θi − θi−1, i = 1, 2, . . . . Construct auxiliary sequences. Let ψ1(b,m) =
χ1(m) = ϕ1(b,m) = 0,

ψk(b,m) =

k−1∑

i=1

Tm+ib
k−i, χk(m) =

1

k

k−1∑

i=1

Tm+i, ϕk(b,m) =

k−1∑

i=1

Tm+ib
−i

for k = 2, 3, . . .. Here b = const > 0; m = 1, 2, . . . .
Consider the conditions

ψk(b,m) → +∞ as k → ∞, (8)

χk(m) → +∞ as k → ∞, (9)

ϕk(b,m) → +∞ as k → ∞. (10)

It is worth mentioning that condition (8) needs to be checked only for 0 < b < 1, and
condition (10) only for b > 1.
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Lemma 3.1 If any of conditions (8)–(10) is fulfilled for m = 1, then it is fulfilled for

all m = 1, 2, . . ..

To prove the lemma, it is sufficient to note that the equalities

ψm+k−1(b, 1) = ψk(b,m) + bk
m∑

j=2

Tj b
m−j,

χm+k−1(1) =
k

m+ k − 1
χk(m) +

1

m+ k − 1

m∑

j=2

Tj ,

ϕm+k−1(b, 1) = b1−mϕk(b,m) +

m∑

j=2

Tj b
1−j

hold for m = 1, 2, . . . and k = 2, 3, . . . .

Lemma 3.2 Let 0 < b < 1. If condition (8) is fulfilled, then condition (9) is also

fulfilled. In addition, if condition (8) is fulfilled uniformly with respect to m = 1, 2, . . .,
then condition (9) is also fulfilled uniformly with respect to m = 1, 2, . . ..

Proof. The equality ψk+1(b,m) = b(ψk(b,m) + Tm+k) holds for k,m = 1, 2, . . ..
Hence,

Tm+k = b−1ψk+1(b,m)− ψk(b,m) = b−1 (ψk+1(b,m)− ψk(b,m)) + (b−1 − 1)ψk(b,m).

We obtain

χk(m) =
1

bk

k−1∑

i=1

(ψi+1(b,m)− ψi(b,m)) +
1− b

bk

k−1∑

i=1

ψi(b,m)

=
ψk(b,m)

bk
+

1− b

bk

k−1∑

i=1

ψi(b,m) ≥ 1− b

b

(
1

k

k∑

i=1

ψi(b,m)

)
.

Let condition (8) be fulfilled. Then, for any M > 0, one can choose N > 0 such that
ψk(b,m) > M for k ≥ N . Hence, χk(m) ≥ (1 − b)M/(2b) for k ≥ 2N , and condition (9)
is fulfilled.

If condition (8) is fulfilled uniformly with respect to m = 1, 2, . . ., then the value of
N can be chosen independent of m. Therefore, condition (9) is also fulfilled uniformly
with respect to m = 1, 2, . . .. This completes the proof.

Assume that the inequalities

V̇s ≤ −βV 1+ρ
s (x), s = 1, . . . , N, (11)

hold in a domain G ⊂ R
n. Here β > 0, ρ > −1, and V̇s is the derivative of the function

Vs(x) with respect to the s-th subsystem from (4), s = 1, . . . , N . Denote b = c−ρ.
Let a switching law σ(t) be given. Construct the multiple Lyapunov function Vσ(t)(x)

corresponding to the switching law. Choose t0 ≥ 0 and x0 ∈ G, and consider a solution
x(t) of system (5) starting at t = t0 from the point x0. Find a positive integer m such
that t0 ∈ [θm−1, θm).
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Assume that a number t̃ satisfies the conditions t̃ > t0 and x(t) ∈ G for t ∈ [t0, t̃].
Integrating differential inequalities (11) and taking into account formulae (7), we arrive
at the following estimates:

(i) if ρ > 0, then

V −ρ
σ(θm−1)

(x(t̃)) ≥ V −ρ
σ(θm−1)

(x0) + βρ
(
t̃− t0

)
for t̃ ∈ [t0, θm),

V −ρ
σ(θm+k−1)

(x(t̃)) ≥ bkV −ρ
σ(θm−1)

(x0) + βρ

((
t̃− θm+k−1

)

+ψk(b,m) + bk (θm − t0)

)
for t̃ ∈ [θm+k−1, θm+k), k ≥ 1;

(12)

(ii) if ρ = 0, then

Vσ(θm−1)(x(t̃)) ≤ Vσ(θm−1)(x0)e
−β(t̃−t0) for t̃ ∈ [t0, θm),

Vσ(θm+k−1)(x(t̃)) ≤ Vσ(θm−1)(x0)e
k ln c−β(t̃−t0) for t̃ ∈ [θm+k−1, θm+k), k ≥ 1;

(13)

(iii) if −1 < ρ < 0 and 0 6∈ G, then

V −ρ
σ(θm−1)

(x(t̃)) ≤ V −ρ
σ(θm−1)

(x0) + βρ
(
t̃− t0

)
for t̃ ∈ [t0, θm),

V −ρ
σ(θm+k−1)

(x(t̃)) ≤ bk
(
V −ρ
σ(θm−1)

(x0) + βρ
(
b−k

(
t̃− θm+k−1

)

+ϕk(b,m) + (θm − t0)
))

for t̃ ∈ [θm+k−1, θm+k), k ≥ 1.

(14)

4 Conditions of the Global Asymptotic Stability

Let Assumption 2.1 be fulfilled. Consider the partial Lyapunov functions (6) constructed
for subsystems (4). It is easy to show that, for any positive numbers H̄ and Ĥ, one can

find constants β̄ > 0 and β̂ > 0 such that

V̇s ≤ −β̄V 1+ρn

s (x), s = 1, . . . , N, (15)

for ‖x‖ < H̄ , and

V̇s ≤ −β̂V 1+ρ1

s (x), s = 1, . . . , N, (16)

for ‖x‖ > Ĥ . Here ρn = (µn − 1)/(µn + 1), ρ1 = (µ1 − 1)/(µ1 + 1), and ‖ · ‖ is the
Euclidean norm of a vector.

Denote b̄ = c−ρn , b̂ = c−ρ1 .

Theorem 4.1 Let 1 ≤ µ1 < µn. If

ψk(b̄, m) → +∞ as k → ∞ (17)

uniformly with respect to m = 1, 2, . . ., then the zero solution of system (5) is globally

asymptotically stable.

Proof. Choose a positive number ε, and find β̄ > 0 such that estimates (15) hold in
the domain G1 = {x ∈ R

n : ‖x‖ < ε}.
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The inequalities

ā1‖x‖µn+1 ≤ Vs(x) ≤ ā2‖x‖µ1+1, s = 1, . . . , N, (18)

are valid for x ∈ G1. Here ā1 and ā2 are positive constants.

Using estimates (12) with G = G1, β = β̄, ρ = ρn, b = b̄ and taking into account
inequalities (18), it is easy to prove (see [6]) that under the assumptions of Theorem 4.1
one can choose δ > 0 such that if t0 ≥ 0 and ‖x0‖ < δ, then for a solution x(t) of
(5) starting at t = t0 from the point x0 the condition ‖x(t)‖ < ε hold for t ≥ t0, and
‖x(t)‖ → 0 as t− t0 → +∞ uniformly with respect to t0 ≥ 0 and ‖x0‖ < δ. Hence, the
zero solution of system (5) is uniformly asymptotically stable.

Let us show that the attraction domain of the zero solution coincides with the
space R

n.

Choose an arbitrary number ε > 0, and find the corresponding value of δ > 0 accord-
ing to the definition of uniform asymptotic stability. Let Ĥ ∈ (0, δ). Then there exists

β̂ > 0 such that estimates (16) are fulfilled in the domain G2 = {x ∈ R
n : ‖x‖ > Ĥ}.

The inequalities

â1‖x‖µ1+1 ≤ Vs(x) ≤ â2‖x‖µn+1, s = 1, . . . , N, (19)

hold for x ∈ G2, where â1 and â2 are positive constants.

Consider a solution x(t) of system (5) starting at t = t0 ≥ 0 from a point x0 ∈ G2.
There exists a positive integer m such that t0 ∈ [θm−1, θm).

First, assume that µ1 > 1. Then b̂ > b̄, and ψk(b̂, m) > ψk(b̄, m) for all k,m = 1, 2, . . ..

Therefore, ψk(b̂, m) → +∞ as k → ∞ uniformly with respect to m = 1, 2, . . ..

Using estimates (12) with G = G2, β = β̂, ρ = ρ1, b = b̂ and taking into account
inequalities (19), one can find T̂ ≥ 0 such that ‖x(t0 + T̂ )‖ < δ. Hence, ‖x(t)‖ → 0 as
t→ +∞.

Next, consider the case where µ1 = 1. Applying Lemma 3.2, we obtain that χk(m) →
+∞ as k → ∞ uniformly with respect to m = 1, 2, . . .. Note that t− t0 = (t−θm+k−1)+
kχk(m) + (θm − t0)) for t ∈ [θm+k−1, θm+k), k ≥ 1.

Using estimates (13) with G = G2, β = β̂ and taking into account inequalities (19),
it is easy to show the existence of a number T̂ ≥ 0 such that ‖x(t0 + T̂ )‖ < δ. Hence,
‖x(t)‖ → 0 as t→ +∞. This completes the proof.

Remark 4.1 If 1 < µ1 < µn, then the value of T̂ in the proof of Theorem 4.1
is independent of t0 and x0. Therefore, under the assumptions of Theorem 4.1, for
any given neighborhood of the origin, one can find an estimate of the transient time
of all solutions into the neighborhood, and this estimate will be independent of initial
conditions of solutions. In the case where 1 = µ1 < µn, the value of T̂ is independent of
t0, but it depends on x0.

Corollary 4.1 Let 1 ≤ µ1 < µn. If Ti → +∞ as i → ∞, then the zero solution of

system (5) is globally asymptotically stable.

Remark 4.2 In the case where 1 ≤ µ1 < µn and condition (17) is fulfilled nonuni-
formly with respect to m = 1, 2, . . ., we can guarantee only local and nonuniform asymp-
totic stability of the zero solution of system (5).
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Theorem 4.2 Let 0 < µ1 < 1 < µn. If condition (17) is fulfilled uniformly with

respect to m = 1, 2, . . ., and

ϕk(b̂, 1) → +∞ as k → ∞, (20)

then the zero solution of system (5) is globally asymptotically stable.

Proof. In a similar way as in the proof of Theorem 4.1, we obtain that the zero
solution of system (5) is uniformly asymptotically stable.

For an arbitrary chosen ε > 0, find constant δ > 0 according to the definition of
uniform asymptotic stability. Let Ĥ ∈ (0, δ). Then there exists a constant β̂ > 0 such
that estimates (16) hold in the domain G = {x ∈ R

n : ‖x‖ > Ĥ}.
Consider a solution x(t) of system (5) starting at t = t0 ≥ 0 from a point x0 ∈ G.

Find positive integer m such that t0 ∈ [θm−1, θm).
Assume that x(t) ∈ G for all t ≥ t0. Then, for any t̃ > t0, estimates (14) are valid

with the following specialization of parameters: β = β̂, ρ = ρ1, b = b̂.
According to Lemma 3.1, condition (20) implies that ϕk(b̂, m) → +∞ as k → ∞

for any m = 1, 2, . . .. Hence, from (14) it follows that if t̃ is sufficiently large, then
V −ρ1

σ(θm+k−1)
(x(t̃)) < 0. Thus, we arrive at the contradiction.

Therefore, there exists T̂ ≥ 0 such that ‖x(t0 + T̂ )‖ < δ, and ‖x(t)‖ → 0 as t→ +∞.
This completes the proof.

Remark 4.3 The value of T̂ in the proof of Theorem 4.2 depends on x0, and if
ϕk(b̂, m) → +∞ as k → ∞ nonuniformly with respect to m = 1, 2, . . ., then it depends
on t0 as well. Thus, the proof of Theorem 4.2 permits us to obtain an estimate of
transient time of all solutions into a given neighborhood of the origin. However, this
estimate depends on initial conditions of solutions.

Remark 4.4 If 0 < µ1 < 1 < µn, then 0 < b̄ < 1 and b̂ > 1. In this case the ful-
fillment of condition (17), generally, does not guarantee the fulfillment of condition (20).

Really, let Tj = b̂j/2, j = 1, 2, . . .. Then, for any 0 < b̄ < 1, condition (17) is fulfilled
uniformly with respect to m = 1, 2, . . ., whereas condition (20) is not fulfilled. Thus,
condition (20) of Theorem 4.2 is not excessive one, and it can not be dropped.

Remark 4.5 In the case where µ1 = . . . = µn = 1, one can find a constant L > 0
such that if Ti ≥ L, i = 1, 2, . . ., then the zero solution of the corresponding switched
system is globally asymptotically stable [11, 18]. Theorems 4.1 and 4.2 do not permit us
to obtain a similar result for µn > 1. For instance, if Ti = L = const > 0, i = 1, 2, . . .,
then the conditions of Theorems 4.1 and 4.2 are not fulfilled for any value of L.

Theorem 4.3 Let 0 < µ1 < µn = 1. If condition (20) is fulfilled, and condition (9)
is fulfilled uniformly with respect to m = 1, 2, . . ., then the zero solution of system (5) is

globally asymptotically stable.

The proof of Theorem 4.3 is similar to those of Theorems 4.1 and 4.2.

Theorem 4.4 Let 0 < µ1 < µn < 1. Then the zero solution of system (5) is

asymptotically stable for any admissible switching law. Furthermore, if condition (20)
is fulfilled, and there exist a constant ϕ∗ > 0 and a positive integer k̄ > 0 such that

ϕk(b̄, m) ≥ ϕ∗ for k ≥ k̄, m = 1, 2, . . ., then the zero solution of system (5) is globally

asymptotically stable.
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Proof. Let an admissible switching law and a positive number ε be given. Find
β̄ > 0 such that inequalities (15) hold in the domain G = {x ∈ R

n : 0 < ‖x‖ < ε}.
Using estimates (14) with the following specialization of parameters: β = β̄, ρ = ρn,

b = b̄, it is easy to prove that, for any t0 ≥ 0, one can choose numbers δ > 0 and T̃ > 0
such that if 0 < ‖x0‖ < δ, then ‖x(t)‖ = 0 for t ≥ t0 + T̃ . Here x(t) is a solution
of (5) starting at t = t0 from the point x0. Hence, the zero solution of system (5) is
asymptotically stable.

Next, assume that condition (20) is fulfilled, and there exist a constant ϕ∗ > 0 and
a positive integer k̄ > 0 such that ϕk(b̄, m) ≥ ϕ∗ for k ≥ k̄, m = 1, 2, . . .. In this case,
δ and T̃ can be chosen independent of t0. Thus, the zero solution of (5) is uniformly
asymptotically stable. The subsequent proof is similar to those of Theorems 4.1–4.3.

Corollary 4.2 Let 0 < µ1 < µn < 1. If ϕk(b̂, m) → +∞ as k → ∞ uniformly with

respect to m = 1, 2, . . ., then the zero solution of system (5) is globally asymptotically

stable.

To prove the corollary, it is sufficient to note that if 0 < µ1 < µn < 1, then ϕk(b̄, m) ≥
ϕk(b̂, m) for k,m = 1, 2, . . . .

Remark 4.6 Theorem 4.4 does not guarantee the existence of a constant L > 0 such
that if Ti ≥ L, i = 1, 2, . . ., then the zero solution of system (5) is globally asymptotically
stable. However, for an arbitrary given bounded subset of Rn, an appropriate choice of
L permits us to guarantee that the subset is contained in the attraction domain of the
zero solution.

Corollary 4.3 Let 0 < µ1 < µn < 1. For any ∆ > 0, one can find a constant L > 0
such that if Ti ≥ L, i = 1, 2, . . ., then the set {x0 ∈ R

n : ‖x0‖ < ∆} is contained in the

attraction domain of the zero solution of system (5) for all t0 ≥ 0.

Example 4.1 Consider the switched indirect control system

ẏ1 = a
(σ)
1 y1 + b

(σ)
1 η3,

ẏ2 = a
(σ)
2 y2 + b

(σ)
2 η3,

η̇ = d
(σ)
1 y1 + d

(σ)
2 y2 + b

(σ)
3 η3

(21)

and the corresponding family of subsystems

ẏ1 = a
(s)
1 y1 + b

(s)
1 η3,

ẏ2 = a
(σ)
2 y2 + b

(s)
2 η3,

η̇ = d
(s)
1 y1 + d

(s)
2 y2 + b

(s)
3 η3,

s = 1, 2. (22)

Thus, σ(t) : [0,+∞) → Q = {1, 2}. Let a
(1)
1 = −7, a

(1)
2 = −3, b

(1)
1 = 1, b

(1)
2 = 2,

b
(1)
3 = −4, d

(1)
1 = 4, d

(1)
2 = 5, a

(2)
2 = −6, a

(2)
2 = −3, b

(2)
1 = 6, b

(2)
2 = 1, b

(2)
3 = −5,

d
(2)
1 = 2, d

(2)
2 = 7.
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System (21) is a special case of system (1). Here n = 3, N = 2, x1 = y1, x2 = y2,
x3 = η, f1(x1) = x1, f2(x2) = x2, f3(x3) = x33, µ1 = µ2 = 1, µ3 = 3,

P1 =




−7 0 1
0 −3 2
4 5 −4



 , P2 =




−6 0 6
0 −3 1
2 7 −5



 .

Let

Λ1 =




3 0 0
0 2 0
0 0 1



 , Λ2 =




1 0 0
0 6 0
0 0 2



 .

Then the matrices PT
s Λs+ΛsPs, s = 1, 2, are negative definite. Hence, partial Lyapunov

functions for subsystems (22) can be chosen in the form

V1 =
3y21
2

+ y22 +
η4

4
, V2 =

y21
2

+ 3y22 +
η4

2
. (23)

At the same time, there is no a positive definite diagonal matrix Λ = diag{λ1, λ2, λ3}
for which matrices

PT
s Λ + ΛPs, s = 1, 2, (24)

are negative definite.
Really, without loss of generality, we may assume that λ3 = 1. Then for the negative

definiteness of matrices (24), it is necessary and sufficient the fulfilment of the conditions

48

λ1
+ 3λ1 +

175

λ2
+ 28λ2 < 172,

2

λ1
+ 18λ1 +

49

λ2
+ λ2 < 34.

Adding corresponding sides of these inequalities, we arrive at

50

λ1
+ 21λ1 +

224

λ2
+ 29λ2 < 206.

However,
50

λ1
+ 21λ1 ≥ 10

√
42,

224

λ2
+ 29λ2 ≥ 8

√
406

for all λ1 > 0, λ2 > 0.
Thus, we can not construct a common Lyapunov function for family (22) in the form

V = λ1y
2
1 + λ2y

2
2 + λ3

η4

2
.

For Lyapunov functions (23), the estimates Vi ≤ 3Vj , i, j = 1, 2, holds for y1, y2, η ∈
(−∞,+∞). Hence, in this case, c = 3, b̄ = 1/

√
3. Applying Theorem 4.1, we obtain that

if
k−1∑

i=1

3(i−k)/2Tm+i → +∞ as k → ∞

uniformly with respect to m = 1, 2, . . ., then the zero solution of system (21) is globally
asymptotically stable.
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Figure 1: The state response of system (21).

The results of a computer simulation are presented in Figure 1. It is assumed that
Ti = i for i = 1, 3, 5, . . ., and Ti = 1 for i = 2, 4, 6, . . .. In this case,

k−1∑

i=1

3(i−k)/2Tm+i > (Tm+k−2 + Tm+k−1)/3 ≥ (k − 1)/3 → +∞ as k → ∞

uniformly with respect to m = 1, 2, . . . .
We consider the solution of (21) starting at t = 0 from the point (y1, y2, η)

T =
(0.1, 0.7, 0.8)T . In Fig. 1, the dependence of components of the solution on time is
presented.

Finally in this section, consider the case where Assumption 2.2 is replaced by the
following one.

Assumption 4.1 Functions fj(xj) in system (1) can be represented in the form
fj(xj) = βjx

µj

j + hj(xj), where βj are positive constants, µj are positive rationals with
odd numerators and denominators, functions hj(xj) are continuous for xj ∈ (−∞,+∞)
and satisfy the condition hj(xj)/x

µj

j → 0 as xj → 0, j = 1, . . . , n.

Remark 4.7 As well as for Assumption 2.2, we will suppose that βj = 1, j =
1, . . . , n, and µ1 ≤ . . . ≤ µn.

Theorem 4.5 Let Assumptions 1.1 and 4.1 be fulfilled. Then under the conditions

of any of Theorems 4.1–4.4 the zero solution of system (1) is asymptotically stable.

Remark 4.8 Theorem 4.5 guarantees only local asymptotic stability. However, if the
estimates |hj(xj)| ≤ ηj |xj |µj hold for xj ∈ (−∞,+∞), where ηj are positive constants,
j = 1, . . . , n, then, for sufficiently small values of ηj , the fulfilment of conditions of any of
Theorems 4.1–4.4 provides global asymptotic stability of the zero solution of system (1).
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5 An Optimization of the Choice of Lyapunov Functions

Conditions of the global asymptotic stability obtained in the previous section depend on
the value of constant c in inequalities (7). The smaller the value of c, the less conservative
are restrictions on switching law determined in Theorems 4.1–4.4. Therefore, the problem
of finding Lyapunov functions for which value of c is smallest is actual.

Let Lyapunov functions V1(x), . . ., VN (x) of the form (6) be constructed for subsys-
tems (4). Then the estimates

Vs(x) ≤ csjVj(x), s, j = 1, . . . , N,

hold for x ∈ R
n, where csj = max

i=1,...,n
(λ

(s)
i /λ

(j)
i ). Hence, the value of constant c in

inequalities (7) is defined by the formula c = max
s,j=1,...,N

csj .

It should be noted that, for arbitrary positive constants b1, . . . , bN , functions Ṽs(x) =
bsVs(x), s = 1, . . . , N , are also Lyapunov functions for the considered subsystems. For
these functions estimates (7) take the form

Ṽs(x) ≤ c̃ Ṽj(x), s, j = 1, . . . , N,

where c̃ = max
s,j=1,...,N

(csjbs)/bj. As a result, we arrive at the optimization problem: it is

required to choose positive constants b1, . . . , bN for which value of c̃ is minimal. This
problem can be reduced to the following nonlinear programming problem [19]:

Minimize : c̃,

subject to :
csjbs
bj

≤ c̃, s, j = 1, . . . , N. (25)

Conditions of the existence of positive constants b1, . . . , bN satisfying inequalities of
the form (25) were investigated in [22]. According to the results of this paper, system (25)
admits a positive solution if and only if, for any set of indices i1, . . . , ik (im ∈ {1, . . . , N},
im 6= il for m 6= l; m, l = 1, . . . , k, 1 ≤ k ≤ N), the condition ci1i2ci2i3 . . . ciki1 ≤ c̃k is
fulfilled. Hence, min c̃ = max(ci1i2ci2i3 . . . ciki1 )

1/k, where the maximum is calculated on
all pointed out sets of indices i1, . . . , ik.

It is worth mentioning that in [22] a constructive procedure for finding required
constants b1, . . . , bN was proposed.

Example 5.1 Let family (4) consist of three subsystems of the second order. Hence,
N = 3 and n = 2. Assume that the following Lyapunov functions

V1(x) =
xµ1+1
1

µ1 + 1
+
xµ2+1
2

µ2 + 1
, V2(x) =

xµ1+1
1

µ1 + 1
+2

xµ2+1
2

µ2 + 1
, V3(x) =

xµ1+1
1

µ1 + 1
+3

xµ2+1
2

µ2 + 1
(26)

are constructed for these subsystems.
The estimates

V1(x) ≤ V2(x), V1(x) ≤ V3(x),

V2(x) ≤ 2V1(x), V2(x) ≤ V3(x),

V3(x) ≤ 3V1(x), V3(x) ≤
3

2
V2(x)
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are valid for x ∈ R
2. Therefore, c = 3.

Applying the proposed approach, we obtain

min c̃ = max

{
√
2;

√
3;

√
3

2
;

3
√
3

}
=

√
3.

In this case inequalities (25) take the form

b1
b2

≤
√
3,

b1
b3

≤
√
3,

2b2
b1

≤
√
3,

b2
b3

≤
√
3,

3b3
b1

≤
√
3,

(3/2)b3
b2

≤
√
3.

Choose, for instance, b1 =
√
3, b2 = b3 = 1. As a result, we find the Lyapunov

functions

Ṽ1(x) =
√
3V1(x), Ṽ2(x) = V2(x), Ṽ3(x) = V3(x).

With the aid of these functions, one can derive less conservative stability conditions than
those which can be obtained with the use of functions (26).

6 Conclusion

In this paper, the problem of global asymptotic stability for a class of nonlinear switched
systems with separable nonlinearities was investigated. Sufficient conditions on the
switching law which garantee the required property for the given equilibrium position
are obtained.

It is worth mentioning that the approaches proposed in the paper can be used as well
for the analysis of hybrid models of population dynamics and neutral networks. This will
be our future work.
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