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1 Introduction

Let π(t, .) be a flow generated by solutions of autonomous differential equation. M.T.
Mizukoshi et al. showed in [13] that the family of applications π̂(t, .), indexed by R,
obtained by Zadeh’s extension(see [17]) on initial condition of the flow π(t, .), satisfies
conditions that characterize π̂(t, .) as a dynamical system in the metric space En. In [14],
authors discuss conditions for existence of equilibrium points for π̂(t, .) and the nature
of the stability of such equilibrium points. New results about equilibrium points are
presented in [2].

In [1], M. S. Cecconello discusses results obtained in [4] on invariant sets and stability
of such fuzzy sets for fuzzy dynamical systems.

The fuzzy dynamical systems we consider here are obtained by Zadeh’s extension of
dynamical systems defined on subsets of Rn.

In this paper we discuss relationships between fuzzy semigroups and fuzzy dynamical
systems and consider results obtained in [1] on invariant sets and stability of such fuzzy
sets, but in this case for fuzzy semigroups.

∗ Corresponding author: mailto:saidmelliani@gmail.com

c© 2017 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 60

mailto: saidmelliani@gmail.com
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 17(1) (2017) 60–69 61

2 Preliminary Notes

Let PK(Rn) denote the family of all nonempty compact convex subsets of Rn and define
the addition and scalar multiplication in PK(Rn) as usual. Let A and B be two nonempty
bounded subsets of Rn. The distance between A and B is defined by the Hausdorf metric

d(A,B) = max
(
ρ(A,B), ρ(B,A)

)
,

where ρ(A,B) = sup
a∈A

inf
b∈B

‖a− b‖ and ‖ ‖ denotes the usual Euclidean norm in R
n. Then

it is clear that (PK(Rn), d) becomes a complete and separable metric space (see [16] ).
Denote

En =
{
u : Rn −→ [0, 1] | u satisfies (i)-(iv) below

}
,

where

(i) u is normal i.e there exists an x0 ∈ R
n such that u(x0) = 1,

(ii) u is fuzzy convex,

(iii) u is upper semicontinuous,

(iv) [u]0 = cl{x ∈ R
n : u(x) > 0} is compact.

For 0 < α ≤ 1, denote [u]
α
= {t ∈ R

n / u(t) ≥ α}. Then from (i)-(iv), it follows that the
α-level set [u]α ∈ PK(Rn) for all 0 ≤ α ≤ 1.

According to Zadeh’s extension principle, we have addition and scalar multiplication
in fuzzy number space En as follows:

[u+ v]α = [u]α + [v]α, [ku]α = k[u]α,

where u, v ∈ En, k ∈ R
n and 0 ≤ α ≤ 1. Define D : En × En → R

+ by the equation

D(u, v) = sup
0≤α≤1

d
(
[u]α , [v]α

)
,

where d is the Hausdorff metric for non-empty compact sets in R
n.Then it is easy to see

that D is a metric in En. Using the results in ( [16]), we know that
(1) (En, D) is a complete metric space;
(2) D(u+ w, v + w) = D(u, v) for all u, v, x ∈ En;
(3) D(k u, k v) = |k| D(u, v) for all u, v ∈ En and k ∈ R

n.

On En, we can define the substraction ⊖, called the H-difference (see [5]) as follows:
u⊖ v has sense if there exists w ∈ En such that u = v + w.

Nguyens theorem provides an important relationship between α-levels of image of
fuzzy subsets and the image of their α-levels by a function f : X × Y −→ Z. According
to [12], if X ⊆ R

n, Y ⊆ R
m and f : X −→ Y is continuous, then Zadehs extension

f̂ : F(X) −→ F(Y ) is well defined and
[
f̂(u)

]α
= f ([u]α) , ∀u ∈ F(X), ∀α ∈ [0, 1]. (1)

Theorem 2.1 (see [17]) Let f : R
n −→ R

n be a function. Then the following
conditions are equivalents:

(i) f is continuous;

(ii) f̂ : (En;D) −→ (En;D) is continuous.
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2.1 Fuzzy strongly continuous semigroups.

We give here a definition of a fuzzy semigroup.

Definition 2.1 A family {T (t), t ≥ 0} of operators from En into itself is a fuzzy
strongly continuous semigroup if

(i) T (0) = IEn , the identity mapping on En,

(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0,

(iii) the function g : [0,∞[→ En, defined by g(t) = T (t)x is continuous at t = 0 for all
x ∈ En i.e

lim
t→0+

T (t)x = x,

(iv) There exist two constants M > 0 and ω such that

D
(
T (t)x, T (t)y

)
≤ M eωt D(x, y), for t ≥ 0, x, y ∈ En.

In particular if M = 1 and ω = 0, we say that {T (t), t ≥ 0} is a contraction fuzzy
semigroup.

Remark 2.1 The condition (iii) implies that the function t −→ T (t)(x) is continuous
on [0,∞[ for all x ∈ En.

Definition 2.2 Let {T (t), t ≥ 0} be a fuzzy strongly continuous semigroup on En

and x ∈ En. If for h > 0 sufficiently small, the Hukuhara difference T (h)x⊖ x exits, we
define

Ax = lim
h→0+

T (h)x⊖ x

h

whenever this limit exists in the metric space (En, D). Then the operator A defined on

D(A) =

{
x ∈ En : lim

h→0+

T (h)x⊖ x

h
exists

}
⊂ En

is called the infinitesimal generator of the fuzzy semigroup {T (t), t ≥ 0}.

Lemma 2.1 Let A be the generator of a fuzzy semigroup {T (t), t ≥ 0} on En, then
for all x ∈ En such that T (t)x ∈ D(A) for all t ≥ 0, the mapping t → T (t)x is differen-
tiable and

d

dt

(
T (t)x

)
= AT (t)x, ∀t ≥ 0.

2.2 Fuzzy dynamical systems.

Definition 2.3 We say that a family of continuous maps, defined on the complete
metric space (X,H),

π : R+ ×X −→ X

(t, x0) 7−→ π (t, x0)

is a dynamical system, or semiflow, if π(t, .) satisfies



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 17(1) (2017) 60–69 63

1. π (0, x0) = x0;

2. π (t, π(s, x0)) = π (t+ s, x0)

for all t, s ∈ R+ and x0 ∈ X .
The set X is called phase space of the dynamical system. In the case of X ⊂ R

2, X is
said to be phase plane.

In dynamical systems context, an orbit (positive) of a point xo ∈ X is the subset of
the phase space defined by

θ(x0) =
⋃

t∈R+

π (t, x0) = {π(t, x0), t ∈ R+} ,

and for each subset B ⊂ X we have θ(B) =
⋃

x0∈B

θ(x0).

The set θ(x0) is called periodic orbit if there exists τ > 0 such that
π (t+ τ, x0) = π (t, x0). The smallest number τ > 0 for which this property is satisfied
is called period of the orbit [6].

The ω-limit of a subset B ⊂ X is defined as

W (B) =
⋂

s≥0

⋃

t≥s

π (t, B).

Remark 2.2 Let x0 ∈ X , we have

W (x0) =

{
y, ∃tn −→ +∞, lim

n→+∞
π(tn, x0) = y

}
.

A set S ⊂ U is called invariant if θ (x0) ⊂ S for all x0 ∈ S. It follows that S is
invariant if and only if π(t, S) = S for all t ∈ R+.

Example : The orbits and ω-limit are examples of invariant sets.

Definition 2.4 We say that a set M ⊂ X attracts a set B ⊂ R
n, by flow π(t, .), if

ρ (π(t, B),M) −→ 0 when t → +∞. In other words, we say that ”a set M attracts a set
B” is equivalent to saying that M attracts uniformly all orbits with initial condition in
B, that is,

lim
t→+∞

sup {ρ(π(t, x0),M) : x0 ∈ B} = 0.

The basin of attraction of a set M is the set A(M) defined by

A(M) = {x0 ∈ U : ρ (π(t, x0),M) −→ 0, t → +∞} .

The set M is called attractor if there exists an open subset V ⊃ M such that V ⊂ A(M).
If M is an attractor and attracts compacts subsets of A(M), then M is a uniform
attractor.

Definition 2.5 Let x̄ ∈ X , x̄ is an equilibrium point if π(t, x̄) = x̄ for all t ∈ R+.

Definition of stability for invariant sets is similar to definition of stability for equilib-
rium points. That is, an invariant set S is stable if for every neighborhood V of S, there
exists a neighborhood V ′ of S such that π (t, V ′) ⊂ V for all t ∈ R+. When S is stable
and moreover there exists a neighborhood W such that S attracts points of W then S is
an asymptotically stable set.
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Theorem 2.2 ( [1]) Let M be compact and invariant. Then M is asymptotically
stable if and only if M is a uniform attractor.

Let π(t, .) be a dynamical system defined in a subset U ⊂ R
n, that we will call

deterministic dynamical system.

Theorem 2.3 (see [13]) Let π(t, .) : U −→ U be a deterministic dynamical system.
Then π̂(t, .) defined by Zadeh’s extension applied in π(t, .) has the following properties:

1. π̂ (0, x0) = x0, ∀x0 ∈ F(U);

2. π̂ (t+ s, x0) = π̂(t, π̂(s, x0)), ∀x0 ∈ F(U), t, s ≥ 0.

Thus, the Zadeh’s extension π̂(t, .) : F(U) −→ F(U), of deterministic dynamical
system π(t, .) : U −→ U , is a dynamical system in F(U) and we will call it fuzzy
dynamical system. Then concepts of stability and asymptotic stability for invariant sets
in F(U) follow definitions given previously to general metric spaces.

3 Main Results

3.1 Relation between fuzzy semigroups and fuzzy dynamical systems.

Let (π(t, .))t≥0 be a dynamical system on R
n, i.e for all t ≥ 0

π(t, .) : R
n −→ R

n

x 7−→ π(t, x)

satisfies

1. π(0, x) = x, ∀x ∈ R
n;

2. π(t+ s, x) = π(t, π(s, x)), ∀t, s ≥ 0, x ∈ R
n;

3. t −→ π(t, x) is continuous for all x ∈ R
n.

We consider the family {T (t), t ≥ 0} given by

T : R+ × R
n −→ R

n

(t, x) 7−→ T (t)x = π(t, x).

Then the family of continuous maps T (t) verifies

1. T (0) = I;

2. T (t+ s) = T (t)T (s), ∀t, s ≥ 0.

Then the family {T (t), t ≥ 0} defines a strongly continuous semigroup on R
n.

By Zadeh’s extension, we can define a fuzzy dynamical system π̂(t, .).

Define a mapping
{
T̂ (t), t ≥ 0

}
as follows

T̂ : R+ × R
n −→ R

n

(t, x) 7−→ T̂ (t)x = π̂(t, x).

From Theorem 2.3, we have
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1. T̂ (0)x = x, ∀x ∈ F(Rn);

2. T̂ (t+ s)x = T̂ (t) ◦ T̂ (s)x, ∀x ∈ F(Rn), t, s ≥ 0.

Theorem 3.1 Let {T (t), t ≥ 0} be a strongly continuous semigroup on R
n which

satisfies
‖T (t)x‖ ≤ Mewt‖x‖, ∀x ∈ R

n, t ≥ 0.

Then
D

(
T̂ (t)x, T̂ (t)y

)
≤ MewtD(x, y), ∀x, y ∈ En, t ≥ 0.

Proof. Let x, y ∈ En, α ∈ [0, 1], we have

ρ(T (t)[x]α, T (t)[y]α) = sup
a∈[x]α

inf
b∈[y]α

‖T (t)a− T (t)b‖

≤ Mewt sup
a∈[x]α

inf
b∈[y]α

‖a− b‖

≤ Mewtρ([x]α, [y]α)

≤ Mewtmax {ρ([x]α, [y]α), ρ([y]α, [x]α)} ,

and

ρ(T (t)[y]α, T (t)[x]α) = sup
a∈[y]α

inf
b∈[x]α

‖T (t)a− T (t)b‖

≤ Mewt sup
a∈[y]α

inf
b∈[x]α

‖a− b‖

≤ Mewtρ([y]α, [x]α)

≤ Mewtmax {ρ([x]α, [y]α), ρ([y]α, [x]α)} .

This implies

d
(
[T̂ (t)x]α, [T̂ (t)y]α

)
= d (T (t)[x]α, T (t)[y]α)

= max {ρ(T (t)[x]α, T (t)[y]α), ρ(T (t)[y]α, T (t)[x]α)}

≤ Mewtmax {ρ([x]α, [y]α), ρ([y]α, [x]α)}

= Mewtd ([x]α, [y]α) .

Hence, we conclude that

D
(
T̂ (t)x, T̂ (t)y

)
≤ MewtD(x, y).

✷

Corollary 3.1
{
T̂ (t), t ≥ 0

}
is a fuzzy strongly continous semigroup on En.

Proof. (i) and (ii) are immediate consequences of Theorem 2.3.
Theorem 2.1 ensures (iii).
(iv) follows immediately from Theorem 3.1.

✷

Now, we can conclude that from fuzzy dynamical systems, we can define fuzzy strongly
continuous semigroups.
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Example. We define on R the family of operator (π(t, .))t≥0 by

π(t, x) = eatx, a ∈ R.

(π(t, .))t≥0 is a dynamical system on R. We consider the family {T (t), t ≥ 0} given by

T (t)x = π(t, x).

{T (t), t ≥ 0} is a strongly continuous semigroup on R, and the linear operator A defined
by Ax = ax is the infinitesimal generator of this semigroup. Then the family of continu-

ous maps
{
T̂ (t), t ≥ 0

}
defined by T̂ (t)x = π̂(t, x), where (π̂(t, .) is the fuzzy dynamical

system obtained by Zadeh’s extension applied in π(t, .)) defines fuzzy strongly continuous
semigroups on E1.

3.2 Invariant and attractor sets for fuzzy strongly continuous semigroups.

In this section, we give the results obtained by M. S. Cecconello, J. Leite , R. C. Bassanezi,
A. J. V. Brando (see [1]), but in this case for a fuzzy semigroups.

Let {T (t), t ≥ 0} be a strongly continuous semigroup on En and
{
T̂ (t), t ≥ 0

}
be

the fuzzy strongly continuous semigroup obtained by Zadeh’s extension applied in
{T (t), t ≥ 0}.

Proposition 3.1 x̄ is an equilibrium point of T (t)(T (t)x̄ = x̄) if, and only if χ{x̄} is

an equilibrium point of T̂ (t), where T̂ (t) is the characteristic function of x̄.

Proof. We have

x̄ = T (t)
(
[χ{x̄}]

α
)
⇔

[
χ{x̄}

]α
=

[
T̂ (t)(χ{x̄})

]α
.

✷

To prove the following results it is suffcient to denote π̂(t, x) = T̂ (t)x in [1].

Theorem 3.2 Let S ⊂ U ⊂ R
n and consider SF ∈ F(U) defined by

SF = {x ∈ En : [x]α ⊂ S} .

S is invariant by T (t) if and only if SF is invariant by T̂ (t).

The ω-limit of a subset B ⊂ U is defined as

ω(B) =
⋂

s≥0

⋃

t≥s

T (t)(B).

Consider the set ωF (B) ⊂ F(U) defined by

ωF(B) = {x ∈ F(U) : [x0]
α ⊂ ω(B)} .

Corollary 3.2 The set ω(B) is invariant by T (t) if and only if the set ωF (B) is

invariant by T̂ (t).
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Theorem 3.3 Let C ⊂ U be an invariant set by T (t) and consider the set CF ⊂
F(U) defined by

CF =
{
x ∈ F(U) : [x]0 ⊂ C

}
.

Then we have:

1. C is stable for T (t) if and only if CF is stable for T̂ (t);

2. C is asymptotically stable for T (t) if and only if CF is asymptotically stable for

T̂ (t).

By the previous theorem we can establish the following result.

Corollary 3.3 Let x̄ ∈ U be an equilibrium point of T (t). Then

1. x̄ is stable for T (t) if and only if χ{x̄} is stable for T̂ (t);

2. x̄ is asymptotically stable for T (t) if and only if χ{x̄} is asymptotically stable for

T̂ (t).

An orbit (positive) of a point x0 is the subset of the phase space defined by

θ(x0) =
⋃

t∈R+

T (t)x0 = {T (t)x0, t ∈ R+} .

Similarly, if θ is a periodic orbit for T (t) then θ is invariant. By Theorem 4.2, the set θ

is invariant for T̂ (t) and we have:

Corollary 3.4 Let θ be a periodic orbit for T (t) with period τ > 0 and θF be the
fuzzy periodic set defined by

θF =
{
x ∈ F(U) : [x]0 ⊂ θ

}
.

Then

1. θ is stable for T (t) if and only if θF is stable for T̂ (t);

2. θ is asymptotically stable for T (t) if and only if θF is asymptotically stable for T̂ (t).

Let A, B ⊂ R
n and AF , BF ⊂ En be defined, respectively, by

AF =
{
x ∈ En : [x]0 ⊂ A

}
and BF =

{
x ∈ En : [x]0 ⊂ B

}
.

Theorem 3.4 Set A attracts B by T (t) if and only if AF attracts BF by T̂ (t).

So we have the following result for ω(B) and the set ωF(B):

Corollary 3.5 The set ω(B) attracts B ⊂ U by T (t) if and only if ωF(B) attracts

AF =
{
x ∈ F(U) : [x0]

0 ⊂ A
}
by T̂ (t).
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3.3 Some examples

Example: Given the classic initial value problem

(2)

{
x′ = −kx,
x(0) = x0,

we can verify that its solution is given by T (t)x0 = e−ktx0 and that the origin is an
asymptotically stable equilibrium point for k > 0. By Proposition 4.1, we have that χ{0}

is an equilibrium point of T̂ (t), since x̄ = 0 is an equilibrium point of (2).
Moreover, χ{0} is asymptotically stable.

Example: Let us consider the deterministic Verhulst model

(3)

{
x

′

= ax(1 − x),
x(0) = x0,

whose solution is given by

T (t)x0 =
x0

x0 + (1− x0)e−at
.

The equilibrium points of (3) are 0 and 1. The first one is unstable while the latter is
asymptotically stable.

So, χ{0} and χ{1} are equilibrium points of T̂ (t) being the fuzzy strongly semigroup
obtained by Zadeh’s extension of T (t) and the first one is unstable equilibrium point while
the latter is asymptotically stable. Some other details for this example are presented
in [1].
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