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1 Introduction

Fractional differential equations have various applications in widespread fields of science,
such as engineering [6], chemistry [7, 14, 15], physics [1, 2, 8], and others [9, 10]. Despite
the number of existence theorems for nonlinear fractional differential equations this does
not necessarily imply that calculating a solution explicitly will be possible. Therefore, it
may be necessary to employ an iterative technique to numerically approximate a needed
solution. In this paper we construct such a method.

Specifically, we construct a technique to approximate solutions to the nonlinear
Riemann-Liouville (R-L) fractional differential multi-order 2-system. A multi-order sys-
tem is a fractional differential system where each component is of unique order. That is,
a fractional system of the type

Dq1x1 = f1(t, x1, x2),

Dq2x2 = f2(t, x1, x2).

This is a generalization of normal R-L systems and yields a type of hybrid system of
a fractional type. We note that various complications arise from systems of this type
as many known properties used in the study of fractional differential equations require
modification, but at the same time multi-order systems present far more possibilities
for applications. For example, consider allowing each species in a population model to
have their own order of derivative. Though we will consider a numerical example for
this study, it will not be a specific physical application, we hope this will add to the
groundwork of future studies.

The iterative technique we construct will be a generalization of the monotone method
for multi-order R-L 2-systems of order q1, q2, where 0 < q1, q2 < 1. The monotone
method, in broad terms, is a technique in which unique solutions of linear differential
equations are used to construct sequences that converge uniformly and monotonically,
from above and below, to maximal and minimal solutions of the nonlinear equation. If
the nonlinear DE considered has a unique solution then both sequences will converge
uniformly and monotonically to that unique solution. The advantage of the monotone
method is that it allows us to approximate solutions to nonlinear DEs using linear DEs.
Further, the sequences are constructed initially using upper and lower solutions of the
original DE, which guarantees the interval of existence. For more information on the
monotone method for ordinary DEs see [11].

One notable complication when developing the monotone method for multi-order
systems is that, unlike in the integer order case, the initially constructed sequences,
{vn}, {wn} do not converge uniformly on their own. Instead, the weighted sequences
{t1−qivni

}, {t1−qiwni
} converge uniformly to t1−qivi and t1−qiwi respectively, where

i ∈ {1, 2} and v, w are maximal and minimal solutions of the original equation. We note
that there are other complications that derive from multi-order systems, but many of
these were previously resolved in [3].

For our main method we consider the generalization of the monotone method where
the nonlinear function can be split into two functions f(t, x)+g(t, x) where f is increasing
in x and g is decreasing in x. This generalization allows for various constructions utilizing
different types of lower and upper solutions that we will detail in Section 3. Finally, in
Section 4 we will develop a numerical application to exemplify our results. We note that
the standard monotone method has been established for multi-order fractional systems
in [3].
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2 Preliminary Results

In this section, we will first consider basic results regarding scalar Riemann-Liouville
differential equations of order q, 0 < q < 1. We will recall basic definitions and results
in this case for simplicity, and we note that many of these results carry over naturally to
the multi-order case. Then we will consider existence and comparison results for multi-
order systems of order 0 < q1, q2 < 1 which will be used in our main result. In the
next section, we will apply these preliminary results to develop the monotone method
for these multi-order R-L systems. Note, for simplicity we only consider results on the
interval J = (0, T ], where T > 0. Further, we will let J0 = [0, T ], that is J0 = J̄ .

Definition 2.1 Let p = 1−q, a function φ(t) ∈ C(J,R) is a Cp continuous function if
tpφ(t) ∈ C(J0,R). The set of Cp functions is denoted Cp(J,R). Further, given a function
φ(t) ∈ Cp(J,R) we call the function tpφ(t) the continuous extension of φ(t).

Now we define the R-L integral and derivative of order q on the interval J .

Definition 2.2 Let φ ∈ Cp(J,R), then Dq
tφ(t) is the q-th R-L derivative of φ with

respect to t ∈ J defined as

Dq
tφ(t) =

1

Γ(1− q)

d

dt

∫ t

0

(t− s)−qφ(s)ds,

and Iqt φ(t) is the q-th R-L integral of φ with respect to t ∈ J defined as

Iqt φ(t) =
1

Γ(q)

∫ t

0

(t− s)q−1φ(s)ds.

Note that in cases where the initial value may be different or ambiguous, we will write
out the definition explicitly. The next definition is related to the solution of linear R-L
fractional differential equations and is also of great importance in the study of the R-L
derivative.

Definition 2.3 The Mittag-Leffler function with parameters α, β ∈ R, denoted Eα,β ,
is defined as

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
,

which is entire for α, β > 0.

Of particular importance to the Riemann-Liouville derivative is the weighted Mittag-
Leffler function of order q,

E = tq−1Eq,q(λt
q) =

∞
∑

k=0

λktqk+q−1

Γ(qk + q)
,

where λ is a constant. E has the following properties which we present in the following
remark.

Remark 2.1 We note that the weighted Mittag-Leffler function E is strictly positive,
converges uniformly on compacta of J , and DqE = λE .



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (3) (2016) 246–259 249

The next result gives us that the q-th R-L integral of a Cp continuous function is also
a Cp continuous function. This result will give us that the solutions of R-L differential
equations are also Cp continuous.

Lemma 2.1 Let f ∈ Cp(J,R), then Iqt f(t) ∈ Cp(J,R), i.e. the q-th integral of a Cp

continuous function is Cp continuous.

Note the proof of this theorem for q ∈ R+ can be found in [5]. Now we consider
results for the nonhomogeneous linear R-L differential equation,

Dq
tx(t) = λx(t) + z(t), (1)

with initial condition
tpx(t)

∣

∣

t=0
= x0,

where x0 is a constant, y ∈ C(J0,R), and z ∈ Cp(J,R), which has unique solution

x(t) = Γ(q)x0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t − s)q)z(s) ds.

For more details see [12].
Now, we will turn our attention to results for the nonlinear R-L fractional multi-order

systems, and in doing so we must discuss any changes. First, we will consider systems
of orders q1 and q2, 0 ≤ q1, q2 < 1. For simplicity we will let q = (q1, q2), and when
we write inequalities x ≤ y, we mean it is true for both components. Further, from
this point on, we will use the subscript i which we will always assume is in {1, 2}. For
defining Cp continuity for multi-order systems we define pi = 1− qi and for simplicity of
notation we will define the function xp such that xpi(t) = tpixi(t) for t ∈ J0. We also
note that at times it will be convenient to ephasize the product of tp, therefore we will
define tpx(t) = xp(t) for t ∈ J0. Now, we define the set of Cp continuous functions as

Cp(J,R
2) = {x ∈ C(J,R2) |xp ∈ C(J0,R

2)}.

For the rest of our results we will be considering the nonlinear R-L fractional multi-order
system

Dqixi = fi(t, x), (2)

xpi(0) = x0
i ,

where f ∈ C(J0 × R
2,R2), and x0 is a constant. Note that just as in the scalar case, a

solution x ∈ Cp(J,R
2) of (2) also satisfies the equivalent R-L integral equation

xi(t) = x0
i t

qi−1 +
1

Γ(qi)

∫ t

0

(t− s)qi−1fi(s, x(s))ds. (3)

Thus, if f ∈ C(J0 × R
2,R2) then (2) is equivalent to (3). See [9, 12] for details.

The following comparison theorem is utilized throughout the construction of the
monotone method. This theorem gives conditions for when lower and upper solutions
v, w behave in an expected manner, that is v ≤ w. This theorem is of great importance
to the monotone method since it is used to prove that the constructed sequences in the
method are actually monotone.
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Theorem 2.1 Let v, w ∈ Cp(J,R
2) be lower and upper solutions of the nonlinear

multiorder 2-system, i.e.

Dqivi ≤ fi(t, v), vpi(0) = v0i ≤ x0
i , (4)

Dqiwi ≥ fi(t, w), wpi(0) = w0
i ≥ x0

i .

If f is quasimonotone nondecreasing and satisfies the following Lipschitz condition for
i = 1, 2,

fi(t, x)− fi(t, y) ≤ Li

[

(x1 − y1) + (x2 − y2)
]

, (5)

for x ≥ y, then v(t) ≤ w(t) on J provided v0 ≤ w0.

We note that the proof of this theorem can be found in [3]. In the development of
the monotone methods we will use a specific corollary from this theorem, which we give
below.

Corollary 2.1 Let m ∈ Cp(J,R
2) be such that

Dqimi(t) ≤ 0, mpi(0) = 0.

Then we have from Theorem 2.1 that

m(t) ≤ 0,

for t ∈ J .

Now, if we know of the existence of lower and upper solutions v and w such that
v ≤ w, we can prove the existence of a solution in the set

Ω = {(t, y) : v(t) ≤ y ≤ w(t), t ∈ J}.

We consider this result in the following theorem.

Theorem 2.2 Let v, w ∈ Cp(J,R
2) be lower and upper solutions of (2) such that

v(t) ≤ w(t) on J and let f ∈ C(Ω,R), where Ω is defined as above. Then there exists a
solution x ∈ Cp(J,R

2) of (2) such that v(t) ≤ x(t) ≤ w(t) on J .

This theorem is proved in the same way as seen in [5], with only minor additions to
apply it to multi-order 2-systems.

For our main results we will be considering the following generalized form of (2)

Dqixi = fi(t, x) + gi(t, x), xpi(0) = x0
i , (6)

where f, g ∈ C(J0 × R
2,R2) such that f is increasing in x and g is decreasing in x.

We will be constructing the generalized monotone methods for this nonlinear fractional
differential equation. This generalization also allows us to consider various different types
of lower and upper solutions given in the following definition.

Definition 2.4 Let v, w ∈ Cp(J,R
2) with vpi(0) = v0i ≤ x0

i and wpi(0) = w0
i ≥ x0

i .

• v, w are natural lower and upper solutions of (6) if

Dqivi ≤ fi(t, v) + gi(t, v), Dqiwi ≥ fi(t, w) + gi(t, w).
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• v, w are Type I lower and upper solutions of (6) if

Dqivi ≤ fi(t, v) + gi(t, w), Dqiwi ≥ fi(t, w) + gi(t, v).

• v, w are Type II lower and upper solutions of (6) if

Dqivi ≤ fi(t, w) + gi(t, v), Dqiwi ≥ fi(t, v) + gi(t, w).

• v, w are unnatural lower and upper solutions of (6) if

Dqivi ≤ fi(t, w) + gi(t, w), Dqiwi ≥ fi(t, v) + gi(t, v).

Further we can define coupled quasisolutions of these types by incorporating equalities
in the previous expressions. We give the two we use in our main results in the following
definition.

Definition 2.5 Let v, w ∈ Cp(J,R
2) with vpi(0) = wpi(0) = x0

i .

• v, w are Type I coupled quasisolutions of (6) if

Dqivi = fi(t, v) + gi(t, w), Dqiwi = fi(t, w) + gi(t, v).

• v, w are Type II coupled quasisolutions of (6) if

Dqivi = fi(t, w) + gi(t, v), Dqiwi = fi(t, v) + gi(t, w).

We can extend Theorem 2.2 to incorporate these coupled types of lower and upper
solutions. We will only look at the cases for Type I and II since those will be the form
we use in our monotone method constructions. We note that the proof of the following
theorem is constructed in the same manner as Theorem 2.2, needing only very minor
alterations.

Theorem 2.3 Let v, w ∈ Cp(J,R
2) be Type I or Type II coupled lower and upper

solutions such that v(t) ≤ w(t) on J and let f + g ∈ C(Ω,R), where Ω is defined as
above. Then there exists a solution x ∈ Cp(J,R

2) of (6) such that v(t) ≤ x(t) ≤ w(t) on
J .

3 Monotone Method

In this section we develop the generalized monotone method for fractional system (6).
The first method we will construct is developed from Type I lower and upper solutions.
The sequences are constructed as linear equations in a recursive manner resembling Type
I quasisolutions.

Theorem 3.1 Suppose that

(A1) v0, w0 ∈ Cp(J,R
2) are coupled lower and upper solutions of Type I for (6) with

v0 ≤ w0 on J .

(A2) f, g ∈ C(J0 × R
2,R2), where f(t, x) is increasing in x and g(t, x) is decreasing in

x.



252 Z. DENTON AND J.D. RAMÍREZ

Then the sequences defined by

Dqivn+1i = fi(t, vn) + gi(t, wn), vn+1pi
(0) = x0

i , (7)

Dqiwn+1i = fi(t, wn) + gi(t, vn), wn+1pi
(0) = x0

i , (8)

are such that

tpvn → tpv, tpwn → tpw

uniformly and monotonically on J0, where v, w are Type I coupled minimal and maximal
quasisolutions of (6) respectively, that is, if x is a solution of (6) such that that v0 ≤ x ≤
w0, then v ≤ x ≤ w.

Proof. We begin by considering v1 and w1. We note that both exist and are unique
since both are linear in v1 and w1 respectively. Now letting m = v0 − v1, we get that
mpi(0) = 0 and

Dqimi ≤ 0,

implying by Corollary 2.1 that mi ≤ 0 for each i. Therefore v0 ≤ v1, and similarly we
can show that w1 ≤ w0. Now using a similar process by letting m = v1−w1, we get that
mpi(0) = 0 and

Dqimi = fi(t, v0)− fi(t, w0) + gi(t, w0)− gi(t, v0) ≤ 0.

Thus, by Corollary 2.1 we have that mi ≤ 0 for each i, giving us that v0 ≤ v1 ≤ w1 ≤
w0. Using these same arguments we can inductively show that

vn−1 ≤ vn ≤ wn ≤ wn−1

on J for all n ≥ 1, giving us that {vn} and {wn} are monotonic.
Now we will show that the weighted sequences {tpvn} and {tpwn} converge uniformly

on J0. To do so we will use the Arzela-Ascoli theorem. First we will show that these
sequences are uniformly bounded on J0. To do so, for each n and each i note that

|tpivni| ≤ |tpi(vni − v0i)|+ |tpiv0i| ≤ |tpi(w0i − v0i)|+ |tpiv0i|.

Therefore we can choose an M ∈ R2
+ such that |tpivni| ≤ Mi for each n and each i,

implying that {tpvn} is uniformly bounded. Similarly we can prove the same result for
{tpwn}.

Now we will show that the weighted sequences are equicontinuous. For simplicity, let
Fn be defined as Fn = f(t, vn)+ g(t, wn) for each n ≥ 0. Since f, g are continuous on J0,
and since each vn, wn are Cp continuous then there exist continuous functions f̃ , g̃ such
that

f(t, vn) + g(t, wn) = f̃(t, tpvn) + g̃(t, tpwn).

Given this, and that the weighted sequences are uniformly bounded we can choose an
N ∈ R2

+ such that |Fni| ≤ Ni for each i.
Now, choose t, τ such that 0 < t ≤ τ ≤ T . In the following proof of equicontinuity

we use the fact that

τp1 (τ − s)q1−1 − tp1(t− s)q1−1 ≤ 0
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for 0 < s < t. To show why this is true, consider the function φ(t) = tp1(t − s)q1−1 =
tp1(t− s)−p1 and note that

d
dtφ(t) = p1t

p1−1(t− s)−p1 − p1t
p1(t− s)−p1−1

= −tp1−1(t− s)−p1−1p1s ≤ 0.

This implies that φ is nonincreasing, therefore φ(τ) − φ(t) ≤ 0. Now consider,

|τpivni(τ)− tpivni(t)| ≤
τp1

Γ(qi)

∫ τ

t

(τ − s)qi−1|Fn−1i|ds+
1

Γ(qi)

∫ t

0

|φ(τ) − φ(t)||Fn−1i|ds

≤ Niτ
pi

Γ(qi)

∫ τ

t

(τ − s)qi−1ds+
Ni

Γ(qi)

∫ t

0

[

φ(t) − φ(τ)
]

ds

=
Ni

Γ(qi)

[τpi

qi
(τ − t)qi + tpi

∫ t

0

(t− s)qi−1ds− τpi

∫ t

0

(τ − s)qi−1ds
]

=
Ni

qiΓ(qi)

[

2τpi(τ − t)qi + t− τ
]

≤ 2NiT
pi

Γ(qi + 1)
(τ − t)qi .

In the case when t = 0, we note that

|τpivni(τ) − x0
i /Γ(qi)| ≤

NiT
pi

Γ(qi)

∫ τ

0

(τ − s)qi−1ds =
NiT

pi

Γ(qi + 1)
τqi .

This result is not dependent on n or i, therefore if we define K ≥ 0 such that

K = max
i∈{1,2}

{ 2NiT
pi

Γ(qi + 1)

}

,

then we have that

|τpivni(τ) − tpivni(t)| ≤ K|τ − t|qi ,

for 0 ≤ t ≤ τ ≤ T , for each i and for all n ≥ 1. With this, it is now routine to
show that {tpvn} is equicontinuous. Likewise, {tpwn} is also equicontinuous. So by the
Arzela-Ascoli theorem there exist subsequences of both weighted sequences that converge
uniformly, but since both sequences are monotone we have that both {tpvn} and {tpwn}
converge uniformly on J0. Let tpv and tpw be the uniform limits of these weighted
sequences respectively. We wish to show that v and w are Type 1 coupled minimal and
maximal quasisolutions of (6). To do so, first note that for each i and n ≥ 1 we have

tpivni = x0
i +

tpi

Γ(qi)

∫ t

0

(t− s)qi−1
[

fi(s, vn−1) + gi(s, wn−1)
]

ds.

Now, since the weighted sequences {tpvn}, {tpwn} converge uniformly on J0 we have
that the non-weighted sequences converge pointwise on J . Therefore, by the continuity
of f, g the above expression converges uniformly to

tpivi = x0
i +

tpi

Γ(qi)

∫ t

0

(t− s)qi−1
[

fi(s, v) + gi(s, w)
]

ds
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on J0. Thus

vi = x0
i t

qi−1 +
1

Γ(qi)

∫ t

0

(t− s)qi−1
[

fi(s, v) + gi(s, w)
]

ds,

implying that v is a Type 1 coupled quasisolution of (6), similarly w is as well.
Now, to show that v and w are minimal and maximal, we let x be a solution of (6)

such that xp(0) = 0 and v0 ≤ x ≤ w0. We know such a solution exists thanks to Theorem
2.3. Now letting m = v1 − x, M = x−w1 and using the same method as we used above
we have that v0 ≤ v1 ≤ x ≤ w1 ≤ w0. Further, as before, we can inductively prove that
vn ≤ x ≤ wn on J for all n ≥ 1, therefore v ≤ x ≤ w implying that v, w are minimal
and maximal Type 1 coupled quasisolutions. This completes the proof. We note that if
f +g possesses an adequate condition for uniqueness then v = w = x which is the unique
solution. Now we will present more variations of the generalized monotone method,
specifically incorporating Type II solutions. First, in the following theorem we construct
the sequences in a manner resembling Type II coupled quasisolutions, but still beginning
with Type I lower and upper solutions. In this case we get alternating sequences which
are described in the statement of the theorem.

Theorem 3.2 Suppose that conditions (A1) and (A2) of Theorem 3.1 are true. Then
the sequences given by

Dqivn+1i = fi(t, wn) + gi(t, vn), vn+1pi
(0) = x0

i , (9)

Dqiwn+1i = fi(t, vn) + gi(t, wn), wn+1pi
(0) = x0

i , (10)

yield alternating monotone sequences {v2n, w2n+1} and {v2n+1, w2n} that satisfy

v2n ≤ w2n+1 ≤ x ≤ v2n+1 ≤ w2n,

for each n ≥ 0 on J , provided v0 ≤ x ≤ w0. Further, the weighted sequences

tpv2n, t
pw2n+1 → tpρ, tpv2n+1, t

pw2n → tpr

uniformly and monotonically on J0, where ρ, r are Type 1 coupled minimal and maximal
quasisolutions of (6).

We note that the proof of this theorem follows in much the same way as that of
Theorem 3.1, as do the proofs of the remaining monotone method proofs, therefore we
will not show these proofs directly.

For the next form of the generalized monotone method we switch the initial lower and
upper solutions to Type II, and the sequences are also constructed like Type II coupled
quasisolutions, i.e. in the manner found in Theorem 3.2, and also yield alternating
sequences. For this case to work we must further assume that v0 ≤ w1 and v1 ≤ w0.

Theorem 3.3 Suppose that condition (A2) of Theorem 3.1 is true. Further suppose
that

(B1) v0, w0 are coupled lower and upper solutions of Type II for (6) such that v0 ≤ w0.

Then the sequences defined by (9) and (10) yield alternating sequences {v2n, w2n+1} and
{v2n+1, w2n} satisfying

v2n ≤ w2n+1 ≤ x ≤ v2n+1 ≤ w2n,
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for each n ≥ 0 on J , provided that v0 ≤ w1 ≤ x ≤ v1 ≤ w0. Further, the weighted
sequences

tpv2n, t
pw2n+1 → tpρ, tpv2n+1, t

pw2n → tpr

uniformly and monotonically on J0, where ρ, r are Type 1 coupled minimal and maximal
quasisolutions of (6).

For our final construction of the monotone method we will also consider the case where
we begin with Type II lower and upper solutions, but construct the sequences as Type
I quasisolutions, i.e. in the manner found in Theorem 3.1. We do not get alternating
sequences in this case, but for it to work we must further assume that v0 ≤ v1 and
w1 ≤ w0.

Theorem 3.4 Suppose that conditions (B1) and (A2) of Theorems 3.3 and 3.1 are
true. Then the sequences defined by (7) and (8) are such that

tpvn → tpv, tpwn → w

uniformly and monotonically on J0 provided that v0 ≤ v1 ≤ x ≤ w1 ≤ w0, where v, w are
Type I coupled minimal and maximal quasisolutions of (6) respectively.

4 Numerical Example

In this section we present an example that illustrates the result of Theorem 3.1.

Example 4.1 Consider the fractional system of the form (6) with q1 = 1

2
and q2 = 1

3
,

D
1

2x1(t) = 1

2
+ 5

8
t+ 1

16

(

x1(t)
2 − 1

4
x2(t)

)

, xp1
(0) = 0,

D
1

3x2(t) = 1

6
+ 1

2
t+ 1

20
(x1(t)− x2(t)) , xp2

(0) = 0,
(11)

where p1 = 1

2
, p2 = 2

3
and call

f1(t, x1(t), x2(t)) =
1

2
+

5

8
t+

1

16
x1(t)

2, f2(t, x1(t), x2(t)) =
1

6
+

1

2
t+

1

20
x1(t),

g1(t, x1(t), x2(t)) = − 1

16

(

1

4
x2(t)

)

= − 1

64
x2(t), g2(t, x1(t), x2(t)) = − 1

20
x2(t).

If J = (0, 1] and J0 = [0, 1] then f(t, x) and g(t, x) satisfy condition (A2) in Theorem
3.1. Now let

v01 =
√
t/2, v02 = 0,

w01 = 3, w02 = 3− t.

We will illustrate graphically in Figures 1–4 that v0(t) and w0(t) satisfy (A1). We
have that

v0pi(0) = w0pi
(0) = 0.

Since D1/2v01(t) =
√
π
4
, then

D1/2v01(t) =

√
π

4
≤ 1

2
+

5

8
t+

1

16

(

v01(t)
2 − 1

4
w02(t)

)

= f1(t, v01(t), v02(t)) + g1(t, w01(t), w02(t)).
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Similarly,

D1/2w01(t) =
3√
πt

≥ 1

2
+

5

8
t+

1

16

(

w01(t)
2 − 1

4
v02(t)

)

= f1(t, w01(t), w02(t)) + g1(t, v01(t), v02(t)),

D1/3v02(t) = 0 ≤ 1

6
+

1

2
t+

1

20
(v01(t)− w02(t))

= f2(t, v01(t), v02(t)) + g2(t, w01(t), w02(t)),

and

D1/3w02(t) =
6− 3t

2 3
√
tΓ

(

2

3

) ≥ 1

6
+

1

2
t+

1

20
(w01(t)− v02(t))

= f2(t, w01(t), w02(t)) + g2(t, v01(t), v02(t)).

We show the graphs below.

Figure 1: Solid: D1/2v01(t), Dashed: f1(t, v01(t), v02(t)) + g1(t, w01(t), w02(t)).

Figure 2: Solid: D1/2w01(t), Dashed: f1(t,w01(t), w02(t)) + g1(t, v01(t), v02(t)).
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Figure 3: Solid: D1/3v02(t), Dashed: f2(t, v01(t), v02(t)) + g2(t, w01(t), w02(t)).

Figure 4: Solid: D1/3w02(t), Dashed: f2(t,w01(t), w02(t)) + g2(t, v01(t), v02(t)).

After verifying that we have indeed coupled lower and upper solutions of Type I
we computed four iterates of {t1/2vn1(t)} and {t1/2wn1(t)}, as well as four iterates of
{t1/3vn2(t)} and {t1/3wn2(t)} according to Theorem 3.1 for t ∈ J0 = [0, 1].

Figure 5: Solid:
{

t1/2vn1(t)
}

, Dashed:
{

t1/2wn1(t)
}

, 0 ≤ n ≤ 4.
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Figure 6: Solid:
{

t1/3vn2(t)
}

, Dashed:
{

t1/3wn2(t)
}

, 0 ≤ n ≤ 4.

Finally we show a table of ten values of {tpiv4i(t)} and {tpiw4i(t)} on the interval
[0, 1].

t t1/2v4,1(t) t1/2w4,1(t) t1/3v4,2(t) t1/3w4,2(t)
0 0 0 0 0
0.1 0.0610930 0.0610933 0.0310197 0.0310208
0.2 0.1318091 0.1318108 0.0790014 0.0790066
0.3 0.2122992 0.2123045 0.1437895 0.1438034
0.4 0.3027222 0.3027352 0.2253221 0.2253509
0.5 0.4032596 0.4032874 0.3235653 0.3236175
0.6 0.5141177 0.5141722 0.4384997 0.4385866
0.7 0.6355296 0.6356297 0.5701140 0.5702515
0.8 0.7677574 0.7679318 0.7184090 0.7186130
0.9 0.9110939 0.9113858 0.8833827 0.8836781
1.0 1.0658661 1.0663374 1.0650431 1.0654591

We have developed a monotone iterative technique for multi-order 2-systems of Riemann-
Liouville fractional differential equations with initial condition and presented an example
that illustrates one of the main theorems. An advantage of this method is that the linear
iterates do not require the computation of the Mittag-Leffler function. In our example
the iterates appear to converge to a unique solution, we plan to work on establishing
conditions for uniqueness in the near future. In the future we would also like to expand
this method to N -systems as well as consider further generalizations of the monotone
method. One such expansion would be the quasilinearization method, where the hy-
potheses are strengthened yet the convergence becomes quadratic, for more information
see [4, 13]. And ultimately we hope that these results help further the study of R-L
fractional multi-order systems.
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