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Abstract: This paper investigates the problem of adaptive tracking control by out-
put feedback for a class of uncertain nonlinear systems. These nonlinear systems are
subjected to various structured and unstructured uncertainty due essentially to mod-
elling errors, parameter variations and unmodelled dynamics. With the help of error
signals generated by the simple linear observer, a radial basis function neural network
(RBF NN) is established to approximately compensate on line for these uncertainties.
In this note, the neural network operates over system input/output signals without
time delay. The stability analysis and tracking performance of the closed-loop system
are confirmed through Lyapunov stability theory. The potential of the theoretical re-
sults is demonstrated through computer simulations of both nonlinear systems, Van
der Pol and tunnel diode circuit.
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1 Introduction

In practical engineering, a large range of physical systems and devices, such as electro-
magnetism, mechanical actuators, electronic relay circuits and chaotic systems possess
nonlinear and uncertain characteristics [8, 18]. On the other hand, the magnitude of
control signal is always limited due to the poorly modelled dynamics of these systems,
i.e., for most practical processes, obtaining an exact model is a difficult task or is not
possible at all [6]. Therefore, modelling errors, unmodelled dynamics and uncertain pa-
rameter variations should be explicitly considered in the control design to enhance robust
control performance. If these uncertainties (referred to as inversion errors) are ignored
in the control design, the closed-loop control performance will be strongly damaged, and
instability may occur. Thus, it is very important to develop powerful robust control
techniques for nonlinear systems subjected to high uncertainty.

In recent years, there has been growing attention paid to the control problems of
uncertain systems [5,8,26]. As is well known, various adaptive state feedback and output
feedback controls have been known as efficient algorithms for designing feedback con-
trollers for a large class of nonlinear systems in the presence of uncertainties [1–3,6,16,20].
These algorithms are expected to exhibit more excellent performance in order to have its
outputs track given reference signals. In the same area, [20] discusses backstepping-based
approaches to adaptive output feedback control of uncertain systems that are linear with
respect to unknown parameters. For systems in which nonlinearities depend only upon
the available measurement, [23] and [16] give a solution to the output feedback stabiliza-
tion problem. In brief, the controller designs and stability analysis of highly uncertain
nonlinear dynamic systems have been an important research topic. Unfortunately, the
majority of the existing references are deterministic since the exact models are not avail-
able and/or their parameters are not precisely known, which prevent the error signals
from tending to zero [6].

Recent years have witnessed advances in approximation of high nonlinearity by in-
corporating neural networks (NNs) and fuzzy logic systems (FLSs) in the control de-
sign to achieve excellent tracking performances. Taking advantage of this fact, these
intelligent techniques have been widely employed for nonlinear control and identifica-
tion since they can approximate any nonlinear functions without a priori knowledge
of system dynamics [6]. With the help of FLSs and NNs, many approximator based
adaptive control approaches were proposed for uncertain nonlinear systems; see, for ex-
ample, [10, 19, 21, 22, 25, 26] and references therein. In [21, 22, 25], adaptive fuzzy or NN
state feedback control schemes for a class of single-input single-output (SISO) nonlinear
systems without or with time delays are developed; in [10,19], adaptive output feedback
controllers for SISO nonlinear systems are developed without unmeasured states, while
the adaptive fuzzy or NN decentralized output feedback stabilization problem for a class
of nonlinear systems is discussed in [26]. [20] proposes a robust adaptive output-feedback
controller based on the small-gain theorem in order to overcome the effect of the un-
modelled dynamics involved in the considered uncertain systems, whereas a RBF NN
augmented backstepping controller for the nonlinear system dynamics is applied in [4]
to gain from the approximation ability of NNs and ensure the stability of the closed
loop system by an augmented Lyapunov function. Thus, authors in [1, 2, 5] augment
adaptive output feedback linearization control using single hidden layer NNs in order to
overcome the effect of uncertain parameter and unmodelled dynamics for highly uncer-
tain nonlinear systems, and excellent tracking performances were achieved. With the aid
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of NN techniques, [27] presents a novel robust adaptive trajectory linearization control
(RATLC) method for a class of uncertain nonlinear systems, in which RBF NNs are
introduced to approximate the uncertainties online from available measurements. In [3],
first, an adaptive neural network (NN) state-feedback controller for a class of nonlinear
systems with mismatched uncertainties is proposed. Then, a bound of unknown nonlin-
ear functions is approximated using RBFNNs so that no information about the upper
bound of mismatched uncertainties is required.

Moreover, in most real cases, the state variables are unavailable for direct online
measurements, and merely input and output of the system are measurable. Therefore,
estimating the state variables by observers plays an important role in the control of
processes to achieve better performances. During the past several decades, many non-
linear observers have been developed to obtain the estimated states. Thus, [24] and [17]
present an output feedback control using a high-gain observer that is applied to estimate
the unmeasurable states of the nonlinear systems. A sliding mode observer is proposed
in [9] for a class of nonlinear systems to achieve finite time convergence for all error
states. Notice that this previous observer makes use of fractional powers to reduce other
non-output errors to zero in finite time. For a special class of single-output nonlinear
systems, [15] has developed a sliding mode high-gain observer for state and unknown
input estimations, so that the disturbance can be estimated from the sliding surface by
ensuring the observability of the unknown input with respect to the output. However,
these conventional nonlinear observers, such as high-gain observers [17, 24], and sliding
mode observers [9, 15] are only applicable to systems with specific model structures.

Recently, observer-based adaptive fuzzy-neural control schemes are proposed for a
large class of uncertain nonlinear dynamical systems. [11] proposes an indirect adaptive
fuzzy neural network controller with state observer and supervisory controller for a class
of uncertain nonlinear dynamic time-delay systems, in which the free parameters of the
indirect adaptive fuzzy controller can be tuned on-line by observer based output feedback
control law and adaptive laws by means of Lyapunov stability criterion. A novel state
and output feedback control law that are developed for the tracking control of a class
of multi-input-multi-output (MIMO) continuous time nonlinear systems with unknown
dynamics and disturbance input can be found in [23], in which a high-gain observer
is utilized to estimate the unmeasurable system states and an output feedback based
controller is designed.

In the present paper, we contribute to design only one robust adaptive output feed-
back controller augmented using a RBF NN to handle uncertainties that exist in two
switched SISO nonlinear systems. In the simple strategy followed in this work, first,
we involve feedback linearization. Then, we design the adaptive control signal coupled
with the robustifying term to compensate adaptively for inversion errors. A vector, that
contains a linear combination of the tracking error generated by the linear observer and
the compensator states, is exploited in the adaptation laws for the NN parameters. Fur-
thermore, input/output data of the considered systems (without time-delay) is employed
as a teaching signal for the NN. Consequently, the obtained robust control scheme not
only guarantees the stability of the closed-loop system, but also has strong robustness
to uncertainties existing in both nonlinear systems. Computer simulations of switched
nonlinear systems, Van der Pol example having fourth-order nonlinear system of rela-
tive degree two and tunnel diode circuit model having full relative degree, are used to
demonstrate the effectiveness of the proposed approach.

The rest of this paper is organized as follows. First, the system description and
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control problem are introduced in the next section. Then, the control structure is well
detailed in Section 3. Section 4 develops a robust adaptive controller, in which NN aug-
mentation is discussed. In Section 5, faithful stability analysis is elaborated to guarantee
the boundedness of the tracking error signals. The efficiency of the proposed control
approach is revealed throughout computer simulation in Section 6.

2 Problem Formulation

Let the dynamics of an observable uncertain SISO system be given as follows

ẋ = f(x, u),

y = h(x),
(1)

where x ∈ R
n is the state of the plant, u ∈ R, and y ∈ R are the control and measure-

ment, respectively.

Assumption 1. The functions f : Rn+1 −→ R
n and h : Rn −→ R are partially

known, and the dynamical system of (1) satisfies the output feedback linearization con-
ditions [14] with relative degree r for all (x, u) ∈ Ω × R where Ω ⊂ R

n. Moreover, n
need not to be known. Therefore, there exists a mapping that transforms the system in
(1) into the so-called normal form [12]:

ξ̇i = ξi+1, i = 1, ..., r − 1,

ξ̇r = h(ξ, u),

ξ1 = y,

(2)

where h(ξ, u) = L
(r)
f h are the Lie derivatives, and ξ = [ξ1 ... ξr]

T .

The key objective is to design a robust neural output feedback tracking control that
utilizes the available measurement y, so that y(t) tracks a reference trajectory yref (t)
with bounded error.

3 Controller Design

3.1 Feedback linearization

Approximate feedback linearization is performed by defining the following control input
signal:

v = ĥ−1(y, u), (3)

where v is a pseudo-control. The function ĥ(y, u) represents the best available approxi-
mation of h(y, u). Then, the system dynamics can be formulated as

y(r) = v + ϑ, (4)

where

ϑ(ξ, v) = h(ξ1, ĥ
−1(ξ1, v)) − ĥ(ξ1, ĥ

−1(ξ1, v)) (5)
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is the inversion error. Note that the pseudo-control mentioned in (4) is chosen to have
the form

v = y
(r)
ref + Lc

d − V s
c +Rt, (6)

where y
(r)
ref is the rth derivative of the input signal yref generated by a stable command

filter, Lc
d is the output of a linear dynamic compensator, V s

c and Rt, namely adaptive
control signal and robustifying term, are designed to overcome ϑ.

With (6), the dynamics in (4) will be expressed as follows

y(r) = y
(r)
ref + Lc

d − V s
c +Rt + ϑ. (7)

From (5), notice that ϑ depends on V s
c and Rt through v, whereas V s

c −Rt has been
designed to approximately cancel ϑ.

3.2 Linear Dynamic Compensator Design and Tracking Error Dynamics

The output tracking error is defined as e = yref − y. Then the dynamics in (7) can be
rewritten as

e(r) = −Lc
d + V s

c −Rt − ϑ. (8)

Note that the adaptive term coupled with the robustifying term V s
c − Rt are not

required when ϑ = 0. Consequently, the error dynamics in (8) reduces to

e(r) = −Lc
d. (9)

The following linear compensator is introduced to stabilize the dynamics in (9):

{
λ̇ = Aqλ+ bqe,

Lc
d = cqλ+ dqe, λ ∈ R

r−1.
(10)

Note that λ needs to be at least of dimension (r − 1) [7]. This follows from the fact
that (9) corresponds to error dynamics that has r poles at the origin. One could elect to
design a compensator of dimension ≥ r as well. In the future, we will assume that the
minimum dimension is chosen.

Returning to (8), notice that the vector er = [e ė ... e(r−1)]T mutually with
the compensator state λ will obey the following dynamics, referred to as tracking error
dynamics: {

Ė = AkE + bk[V
s
c −Rt − ϑ],

z = CkE,
(11)

where z is the vector of available measurements.
Remind that

Ak =

[
A− dqbc −bcq

bqc Aq

]
, bk =

[
b
0

]
, ck =

[
c 0
0 I

]
(12)

and a new vector

Ed =
[
eTr λT

]T
, (13)
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where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

. . .
...

0 0
. . . · · · 1

0 0 0 · · · 0




, b =




0
0
...
1


 , c =




1
0
...
0




T

.

Note that Aq, bq, cq and dq in (10) should be designed such that Ak is Hurwitz.

3.3 Observer Design for the Error Dynamics

Lyapunov-like stability analysis of the error dynamics results in update laws for the
adaptive control parameters in terms of (E) for the full-state feedback application [2,5].
In [12] and [13], adaptive state observers are used to provide the necessary estimates in
the adaptation terms. In the present paper, we propose a simple linear observer for the
tracking error dynamics in (11), and confirm through Lyapunov’s direct method that the
adaptive part of the control signal coupled with the robustifying term (V s

c −Rt) cancels
successfully the inversion error (ϑ), if the output of this observer is introduced as an error
signal for the adaptive laws. Moreover, a minimal-order observer of dimension (r − 1)
may be designed for the dynamics in (11).

In what follows, we consider the case of a full-order observer of dimension (2r−1) [12].
To this end, consider the following simple linear observer for the tracking error dynamics
in (11): { ˙̂

E = AkÊ +K(z − ẑ),

ẑ = CkÊ,
(14)

where K is a gain matrix, and z that is defined in (11) should be chosen such that
(Ak −KCk) is asymptotically stable.

Let

Ã = Ak −KCk, Ẽ = Ê − E, z̃ = ẑ − z. (15)

Then, the observer error dynamics can be written as

{ ˙̃
E = ÃẼ − bk[V

s
c −Rt − ϑ],

z̃ = ckẼ.
(16)

4 RBF NN Augmented Controller

4.1 NN approximation

Following [12], given a compact set D ⊂ Rn+1 and ǫ∗ > 0, the model inversion error
ϑ(ξ, v) can be approximated over D by a radial basis function neural network (RBF NN)

ϑ(ξ, v) = MTφ(̺) + ǫ(d, ̺), |ǫ| < ǫ∗, (17)

using the input vector

̺(t) = [v y]T ∈ D, ‖̺‖ ≤ ̺∗, ̺∗ > 0. (18)
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The adaptive signal is designed as follows

V s
c = M̂Tφ(̺̂), (19)

where M̂ is the estimate of M that is updated according to the following adaptation law:

˙̂
M = −βM [2φ(̺̂)ÊTPbk + αM (M̂ −M0)] (20)

in which M0 is the initial value of M , P is the solution of the Lyapunov equation

AT
k P + PAk = −Q (21)

for some Q > 0, k > 0, βM is the adaptation gain matrix, and ̺̂ is an implementable
input vector to the NN on the compact set Ω̺̂, defined as ̺̂ = [vT (t) ŷT (t)]T ∈ Ω̺̂,

ŷi = Êi + y
(i−1)
ref , i = 1, ..., r − 1.

Notice that in (19), there is an algebraic loop, since ̺̂, by definition, depends upon V s
c

through v, see (18). However, with bounded squashing functions, this algebraic loop has
at least one fixed-point solution as long as φ(.) is made up of bounded basis functions.

The robustifying term is designed as follows

Rt = Ψ̂sgn(2ÊTPbk), (22)

where the adaptive gain Ψ̂ is updated according to the following adaptation law

˙̂
Ψ = −βΨ[2Ê

TPbksgn(2Ê
TPbk) + αΨ(Ψ̂−Ψ0)]. (23)

in which Ψ0 is an initial value of Ψ̂, βΨ > 0, αΨ > 0.

Using (17) and (19), we can write the mismatch between the adaptive signal and the
real NN as:

V s
c − ϑ = M̂Tφ(̺̂)−MTφ(̺)− ǫ = M̃T φ̂+MT φ̃− ǫ, (24)

where M̃ = M̂ −M, φ̂ = φ(̺̂), φ̃ = φ(̺̂)− φ(̺).

Using (24), the error dynamics in (11) and the observer error dynamics in (16) can
be reformulated as

Ė = AkE + bk[M̃
T φ̂+MT φ̃− ǫ − Ψ̂sgn(2ÊTPbk)], (25)

˙̃
E = ÃẼ + bk[M̃

T φ̂+MT φ̃− ǫ− Ψ̂sgn(2ÊTPbk)]. (26)

Notice that for radial basis function and many other activation functions that satisfy
|φi| ≤ 1, i = 1, ..., N , there exists an upper bound over the set D

‖φ(̺)‖ ≤ ̟, ̟ = max
̺∈D

‖φ(̺)‖, (27)

where ̟ remains of the order one, even if N is large. With this, we have the following
upper bound:

|MT φ̃| ≤ 2‖M‖̟. (28)
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5 Stability Analysis

We confirm through Lyapunov’s direct method that if the initial errors of the variables
ET , ẼT , Ẽ, M̂T and Ψ̃ belong to a presented compact set, then the composite error

vector ζ =
[
ET ẼT M̂T Ψ̃

]T
is ultimately bounded, where Ψ̃ = Ψ̂ − Ψ and Ψ =

ǫ∗ + 2̟‖M‖. Notice that ζ can be viewed as a function of the state variables y, λ, Ê, Ẑ,
the command vector yref , and a constant vector Z

ζ = F
(
y, λ, Ê, Ẑ, yref , Z

)
, (29)

where Ẑ = [M̂T Ψ̂]T , Z = [MT Ψ]T . The relation in(29) represents a mapping from
the original domains of the arguments to the space of the error variables

F : Ωy × Ωyref
× Ωλ × ΩÊ × ΩẐ × ΩZ −→ Ωζ . (30)

Recall that (18) introduces the compact set D over which the NN approximation is valid.
From (18), it follows that

̺ ∈ D ⇐⇒ y ∈ Ωy, v ∈ Ωv. (31)

Also, notice that, since the observer in(14) is driven by the output tracking error e =
yref − y and compensator state λ, having y ∈ Ωy, yref ∈ Ωyref

, λ ∈ Ωλ, implies that

Ê ∈ ΩÊ , the latter being a compact set. According to (6)

v = Fv

(
λ, Ê, Ẑ, yref

)
, (32)

where Fv : Ωλ × ΩÊ × ΩẐ × Ωyref
−→ Ωv.

Thus, (29), (31) and (32) ensure that Ωζ is a bound set. Introduce the largest ball,
which is included in Ωζ in the error space

LB =
{
|ζ|‖ζ‖ ≤ R

}
, R > 0. (33)

For every ζ ∈ LB, we have ̺ ∈ D, Z ∈ ΩZ , where both D and ΩZ are bounded sets.

Assumption 2. Assume

R > γ

√
TM

Tm
≥ γ. (34)

where TM and Tm are the maximum and minimum eigenvalues of the following matrix

T = 1
2




2P 0 0 0
0 2P 0 0
0 0 β−1

M I 0
0 0 0 β−1

Ψ


 (35)

and

γ = max(
√

4(ΘΨ)2+Z
αmin(Q)−2 ,

√
4(ΘΨ)2+Z

αmin(Q̃)−2
,
√

4(ΘΨ)2+Z
ρ , where Z = αM

2 ‖M − M0‖
2 + αΨ

2 |Ψ −

Ψ0|
2,Θ = ‖Pbk‖ + ‖P̃ bk‖, ρ = α− Θ2(̟ + 1)2 > 0, α = 1

2 min(αM , αΨ) and P̃ satisfies

ÃT P̃ + P̃ Ã = −Q̃ for some Q̃ > 0 with minimum eigenvalues αmin(Q̃) > 2.
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Theorem 1. Let the assumption (1) hold, and let αmin(Q) > 2 for Q introduced in
(21). Then, if the initial errors belong to the set Ωα defined in (37), the feedback control
laws given by (3) and (6), along with adaptation laws (20) and (23) ensure that the error

signals E, Ẽ, M̃ and Ψ̃ in the closed-loop system are ultimately bounded.
Proof. Take into account the following Lyapunov function:

V = ETPE + ẼT P̃ Ẽ +
1

2
M̃Tβ−1

M M̃ +
1

2
Ψ̃Tβ−1

Ψ Ψ̃. (36)

The derivative of V along the tracking error dynamics(25), the observer error dynamics
(26), NN weight and adaptive gain adaptation laws (20) and (23) can be formulated as

V̇ = −ETPE − ẼT Q̃Ẽ − 2ẼT (P̃ + P )bk[M̃
T φ̂+MT φ̃− ǫ− Ψ̂sgn(2ÊTPbk)]

− 2ẼTPbk[ǫ−MT φ̃+Ψsgn(2ÊTPbk)]− [αMM̃T (M̂ −M0)]− Ψ̃αΨ(Ψ̂−Ψ0),

where Ẽ = Ê−E, Ψ̂ = Ψ+Ψ̃. Using the following property for vectors [M̃T (M̂−M0)] =
1
2‖M̃‖2 + 1

2‖M̂ −M0‖
2 − 1

2‖M −M0‖
2 , and with (28), the upper bound becomes [13]

V̇ ≤ −[αmin(Q)− 2]‖Ẽ‖2 − [αmin(Q̃)− 2]‖E‖2 − [α−Θ2(̟ + 1)2]‖Z̃‖2 + Z + 4(ΘΨ)2.

Either of the following conditions:

‖Ẽ‖ >
√

4(ΘΨ)2+Z
αmin(Q)−2 , ‖E‖ >

√
4(ΘΨ)2+Z

αmin(Q̃)−2
, ‖Z̃‖ >

√
4(ΘΨ)2+Z

ρ will render V̇ < 0 outside a

compact set: Bγ =
{
ζ ∈ LB, ‖ζ‖ ≤ γ

}
.

Note from (34) that Bγ ⊂ LB. Then, consider the Lyapunov function candidate
in (36) and write it as: V = ζTTζ. Let Υ be the maximum value of the Lyapunov
function V on the edge of Bγ : Υ = max‖ζ‖=γ V = γ2TM . Introduce the level set
Ωγ = {ζV ≤ Υ}. Let αv be the minimum value of the Lyapunov function V on the edge
of LB: αv = min‖ζ‖=R V = R2Tm. Define the level set

Ωα =
{
ζ ∈ LB, V = αv

}
. (37)

Consequently, the condition in (34) guarantees that Ωγ ⊂ Ωα, and thus ultimate bound-
edness of ζ.

6 Application

This paper addresses the design of a robust adaptive controller augmented using a NN to
handle the uncertainty of two switched nonlinear systems: Van der Pol model having a
fourth-order nonlinear system of relative degree two and the tunnel diode circuit example
with full relative degree. This part is devoted to illustrating the performance of the
proposed approach. First, we present the dynamics of the considered uncertain systems:

6.1 Tunnel diode circuit model





ẋ1 =
1

C
x2 −

1

C
h(x1),

ẋ2 = −
R

L
x2 −

1

L
x1 +

u

L
,

(38)
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where x1 the voltage across the capacitor C and x2 is the current through the inductor L.
The initial conditions were set as x1(0) = 0.1, x2(0) = 0.0005, and the element values of
the circuit are R = 1.5kΩ, L = 1nH , and C = 2pF . Notice that the function h : R −→ R

represents the characteristic curve of the tunnel diode, h(x1) = x1 +2x2
1+x3

1 −x4
1− 2x5

1.
We assume that the output y has a full relative degree of n = r = 2.

6.2 Van der Pol model





ẋ1 = x2,

ẋ2 = −0.2(x2
1 − 1)x2 − 0.2x3 +

u√
|u|+ 0.1

,

ẋ3 = x4,

ẋ4 = −0.2x4 − x2 + x1,

(39)

with initial conditions x1(0) = 0.5, x2(0) = 1.5, x3(0) = 0 and x4(0) = 0. The output y
has a relative degree of r = 2.

The command signals yref and y
(2)
ref are generated through a second -order command

filter with natural frequency of 1rad/s and damping of 0.7. The following dynamic
compensator: {

λ̇ = −6.4λ+ 4e,

Lc
d = −18.2λ+ 13.04e,

(40)

places the poles of the closed-loop error dynamics in (9) of both nonlinear systems at
−3.6,−1.4 ± j. The observer dynamics in (16) was designed so that its poles are four
times faster than those of the error dynamics. A radial basis function NN with five
neurons was used in the adaptive control. The functional form for each RBF neuron was
defined by

φi(̺) = e−(̺−κci
)T (̺−κci

)/σ2

, σ = 1, i = 1, 6. (41)

The centers κci , i = 1, 6, were arbitrarily selected over a grid of possible values for
the vector ̺. The adaptation gains were set to βM = 1.2, with sigma modification gain
αM = 0.001. The other parameters are : αΨ = 0.012, βΨ = 0.0015.

In this paper, we contribute to design one robust adaptive control scheme augmented
using a RBF NN in order to make up adaptively for the nonlinearities that exist in
both uncertain systems (Van der Pol and tunnel diode circuit model). Therefore, the
designed controller forces the system response to track a given reference trajectory with
bounded errors. First, set the output y = x1 for each system. Then, we employ feedback
linearization, coupled with an on-line NN to handle the inversion errors, according to
the equation (7). The dynamic compensator, described in (10) and (40), is designed to
stabilize the linearized systems [1,2]. A signal, constituted of a linear combination of the
measured tracking error and the compensator states is used to adapt the control laws,
such as presented in (20), (22) and (23).

Figure 1 compares the system measurement y without NN augmentation (dashed line)
with the reference model output yref (solid line), clearly demonstrating the almost un-
stable oscillatory behavior caused by the nonlinear elements (ϑ) in the Van der Pol model
in the first half time (0 to 50 seconds) and the nonlinearities of the tunnel diode equation
in the last half time (50 to 100 seconds). Meanwhile, with the aid of NN augmentation,
Figure 2 shows that the effect of these nonlinearities is successfully eliminated. This is
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Figure 1: Tracking without RBF NN.
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Figure 2: Tracking with the aid of RBF NN.

due essentially to the excellent identification of the model inversion error (ϑ) (dashed
line) by adaptive control signal and robustifying term (V s

c − Rt) (solid line), which is
illustrated in Figure 3.

Figure 4 compares the control efforts (yref−y) without and with adaptation, in which
the NN based robust adaptive controller exhibits a steady state tracking error.

As expected, the RBF NN improves the tracking performance due to its ability to
”model” nonlinearities. Consequently, simulation results show that the NNs augmented
robust adaptive output feedback controller compensates successfully for the uncertainties
existing in two different nonlinear systems.
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Figure 4: Control effort without and with RBF NN.

7 Conclusion

In this paper, one robust adaptive output feedback control augmented via RBF NN has
been designed to overcome the effect of nonlinearities for both highly uncertain nonlinear
systems: Van der Pol and Tunnel Diode Circuit. The derivatives of the tracking error are
estimated by the simple linear observer. These estimates are used in the adaptation laws
for the NN parameters. Ultimate boundedness of the tracking and observation errors are
proven using Lyapunov’s direct method. The methodology is applicable for observable
and stabilizable systems of unknown but bounded dimension when the relative degree is
known. Through Lyapunov-based theoretical analysis and computer simulation, we were
able to demonstrate that the proposed RBF NN-based robust adaptive output feedback
controller was robust to modeling inaccuracies, and excellent tracking performance was
succeeded.
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Abstract: In this paper, we will be concerned with the existence of solutions for
strongly nonlinear degenerated elliptic unilateral problems associated with the equa-
tion A(u)+ g(x,u,∇u)+H(x,∇u) = f, where A is Leray-Lions operator acting from
W

1,p

0
(Ω, w) to its dual. On the nonlinear term g(x, s, ξ), we assume growth condition

on ξ and without assuming the sign condition on s, while the function H(x, ξ), which
induces a convection term, is only growing at most as |ξ|p−1. The right-hand side f

belongs to L1(Ω).

Keywords: weighted Sobolev spaces; quasilinear degenerated unilateral problems;

non-variational inequalities.
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1 Introduction

Let Ω be a bounded open subset of RN (N ≥ 2), 1 < p < ∞ and w = {wi(x), i =
0, . . . , N} be a vector of weight functions on Ω, i.e. each wi(x) is a measurable strictly
positive function on Ω, satisfying some integrability conditions. Let X = W 1,p

0 (Ω, w)
be the weighted Sobolev space associated with the vector w. Consider the following
non-linear Dirichlet problem

{
A(u) + g(x, u,∇u) +H(x,∇u) = f in D

′(Ω),

u ∈ W 1,p
0 (Ω, w), g(x, u,∇u) ∈ L1(Ω), H(x,∇u) ∈ L1(Ω),

(1)
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where A(u) = −div(a(x, u,∇u)) is a Leray-Lions operator acting from X into its dual X∗

and g(x, u,∇u) is a nonlinear lower-order term that grows at most like |∇u|p satisfying

the coercivity condition |g(x, s, ξ)| ≥ β
∑N

i=1 wi(x) |ξi|
p for |s| sufficiently large, while the

function H(x,∇u) is only growing at most as |∇u|p−1. We study the problem (1) in the
non-variational case where the right-hand side f belongs to L1(Ω).

Our main goal, in this paper, is to prove an existence result for degenerated unilateral
problems associated with (1) in the non-variational case where the source term f belongs
to L1(Ω) and without assuming the sign condition g(x, s, ξ)s ≥ 0. More precisely, we
prove the existence of solutions for the following nonlinear Dirichlet problem






u ∈ T 1,p
0 (Ω, w), u ≥ ψ a.e. in Ω,

〈A(u), Tk(u− v)〉 +

∫

Ω

(g(x, u,∇u) +H(x,∇u))Tk(u− v) dx

≤

∫

Ω

f Tk(u− v) dx, ∀v ∈ Kψ ∩ L∞(Ω), ∀k > 0.

Note that T 1,p
0 (Ω, w) is the set of measurable functions u : Ω → R such that, for all

k ≥ 0, we have Tk(u) ∈ W 1,p
0 (Ω, w), where Tk : R → R is the truncation at height k

defined by Tk(s) = max(−k,min(k, s)) for all s ∈ R. Kψ is the convex set defined by

Kψ = {u ∈ W 1,p
0 (Ω, w) : u ≥ ψ almost everywhere (a.e.) in Ω} for an obstacle function

ψ : Ω → R such that ψ+ ∈ W 1,p
0 (Ω, w) ∩ L∞(Ω).

For H ≡ 0 and in the variational case (i.e. the source term f belongs to
W−1,p′(Ω, w∗)), an existence theorem for degenerated unilateral problem related to the
equation (1), was proved in [4] where the authors have used the approach based on
the strong convergence of the positive part u+ε (respectively negative part u−ε ). In the
non-variational case where f ∈ L1(Ω), the authors of [9] give an existence result for
degenerated unilateral problems associated with (1) by another approach based on the
strong convergence of truncation. All previous works have used the sign condition for the
lower-order nonlinear term g, for those who don’t use it one can cite that of Porretta [17]
and that of Aharouch and Akdim [1] in the classical Sobolev space W 1,p

0 (Ω) and that of
Aharouch et al. [2] in the weighted case.

When H is not necessarily the null function and in the non weighted case (i.e. w ≡ 1),
Del Vecchio has solved in [10] the problem (1) where g depends only on x and u. If g
depends also on ∇u, an existence result for the problem (1) was first proved in [16] by
Monetti and Randazzo in the case of equation and secondly in [18] by Youssfi et al. in
the case of obstacle problems. Recently in [6], Akdim et al. give an existence result that
can be seen as a generalization of [18] in the weighted case.

This paper is organized as follows, Section 2 contains some preliminaries, basic as-
sumptions and some technical lemmas, Section 3 is concerned with main results and
their proofs, Section 4 gives an example of equations to which the present result can be
applied. Finally, we end with a conclusion and the bibliography adopted in this work.

2 Preliminaries

2.1 Weighted Sobolev spaces.

Let Ω be a bounded open subset of RN (N ≥ 2) and p be a real number such that
1 < p <∞. For a measurable function γ which is strictly positive a.e. in Ω we define the
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weighted space with weight γ in Ω as Lp(Ω, γ) =
{
u : Ω → R : u γ

1
p ∈ Lp(Ω)

}
, which is

endowed with the norm ‖u‖p,γ =
(∫

Ω
|u(x)|p γ(x) dx

) 1
p .

Let w = {wi(x); i = 0, 1, . . . , N} be a vector of weight functions. We suppose in all

our considerations that for 0 ≤ i ≤ N , wi ∈ L1
loc(Ω) and w

− 1
p−1

i ∈ L1
loc(Ω). We denote by

W 1,p(Ω, w) the weighted Sobolev space of all real-valued functions u ∈ Lp(Ω, w0) such
that the derivatives in the sense of distributions satisfy ∂u

∂xi
∈ Lp(Ω, wi), ∀i = 1, . . . , N.

This set of functions forms a Banach space under the norm

‖u‖1,p,w =

(∫

Ω

|u(x)|p w0 dx+

N∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
p

wi(x) dx

) 1
p

. (2)

To deal with the Dirichlet problem, we use the space X = W 1,p
0 (Ω, w), defined as the

closure of C∞
0 (Ω) with respect to the norm (2). Note that C∞

0 (Ω) is dense in W 1,p
0 (Ω, w)

and (X, ‖.‖1,p,w) is a reflexive Banach space.

We recall that the dual space of the weighted Sobolev spacesW 1,p
0 (Ω, w) is equivalent

to W−1,p′(Ω, w∗), where w∗ =
{
w∗
i = w1−p′

i ; i = 0, 1, . . . , N
}

and p′ is the conjugate of

p, that is p′ = p/(p− 1). For more details we refer the reader to [11–14].

2.2 Basic assumptions and some technical lemmas.

We state the following assumptions.
Assumption (H1):

• The expression

‖|u‖|X =

(
N∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
p

wi(x) dx

) 1
p

(3)

is a norm defined on X and it is equivalent to the norm (2).

• There exists a weight function σ on Ω such that σ ∈ L1(Ω) and σ1−q′ ∈ L1
loc(Ω)

for some parameter 1 < q < p+ p′, (q′ = q
q−1 ), such that the Hardy inequality

(∫

Ω

|u(x)|q σ dx

) 1
q

≤ c

(
N∑

i=1

∫

Ω

∣∣∣∣
∂u

∂xi

∣∣∣∣
p

wi(x) dx

) 1
p

(4)

holds for every u ∈ X with a constant c > 0 independent of u. Moreover, the
imbedding

W 1,p
0 (Ω, w) →֒ Lq(Ω, σ), (5)

determined by the inequality (4) is compact.

Note that (X, ‖|u‖|X) is a uniformly convex and thus reflexive Banach space.

Lemma 2.1 [3] Let ̺ ∈ Lr(Ω, γ) and ̺n ∈ Lr(Ω, γ) such that ‖̺n‖r,γ ≤ c, where
1 < r < ∞ and γ is a weight function on Ω. If ̺n(x) → ̺(x) a.e. in Ω, then ̺n ⇀ ̺
weakly in Lr(Ω, γ).

Lemma 2.2 [3] Assume that (H1) holds. Let u ∈ W 1,p
0 (Ω, w), then Tk(u) ∈

W 1,p
0 (Ω, w). Moreover, we have Tk(u) → u strongly in W 1,p

0 (Ω, w).

Lemma 2.3 [5] Assume that (H1) holds. Let (un) be a sequence of W 1,p
0 (Ω, w)

such that un ⇀ u weakly in W 1,p
0 (Ω, w). Then Tk(un)⇀ Tk(u) weakly in W 1,p

0 (Ω, w).
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3 Main Results

Let Ω be a bounded open subset of RN (N ≥ 2) and p be a real number such that
1 < p < ∞. Let A be the nonlinear elliptic differential operator in divergence form,
defined from W 1,p

0 (Ω, w) into its dual W−1,p′(Ω, w∗) by A(u) = −diva(x, u,∇u), where
a : Ω×R×R

N → R
N is a Carathéodory function satisfying, for a.e. x ∈ Ω, for all s ∈ R

and all ξ, ξ∗ ∈ R
N (ξ 6= ξ∗), the following assumption.

Assumption (H2): [(6), (7), (8)]

|ai(x, s, ξ)| ≤ α1w
1
p

i (x) [δ(x) + σ
1

p′ |s|
q

p′ +

N∑

j=1

w
1

p′

j (x) |ξj |
p−1], for i = 1, . . . , N, (6)

[a(x, s, ξ)− a(x, s, ξ∗)].[ξ − ξ∗] > 0, (7)

a(x, s, ξ).ξ ≥ α2

N∑

i=1

wi(x) |ξi|
p, (8)

where δ(x) is a positive function in Lp
′

(Ω) and α1, α2 are positive constants.

Lemma 3.1 [3] Assume that (H1) and (H2) are satisfied. Let (un) be a sequence
of W 1,p

0 (Ω, w) such that un ⇀ u weakly in W 1,p
0 (Ω, w) and

∫

Ω

[a(x, un,∇un)− a(x, un,∇u)].[∇un −∇u] dx→ 0. Then un → u in W 1,p
0 (Ω, w).

Furthermore, let g : Ω × R × R
N → R and H : Ω × R

N → R be two Carathéodory
functions satisfying, for a.e. x ∈ Ω and for all s ∈ R, ξ ∈ R

N , the following assumption.
Assumption (H3): [(9), (10), (11)]

|g(x, s, ξ)| ≤ c(x) + b(s)

N∑

i=1

wi(x) |ξi|
p, (9)

|g(x, s, ξ)| ≥ β

N∑

i=1

wi(x) |ξi|
p for |s| > ρ, (10)

|H(x, ξ)| ≤ h(x)

N∑

i=1

w
1

p′

i (x) |ξi|
p−1, (11)

where β > 0, ρ > 0, b : R → R
+ is a continuous positive function that belongs to L1(R),

c ∈ L1(Ω) and h ∈ Lr(Ω) with r > max(N, p).
Finally, we assume that

f ∈ L1(Ω). (12)

Consider the convex set Kψ = {u ∈ W 1,p
0 (Ω, w) : u ≥ ψ a.e. in Ω} for an obstacle

function ψ : Ω → R such that

ψ+ ∈W 1,p
0 (Ω, w) ∩ L∞(Ω). (13)
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Definition 3.1 Assume that (H1) – (H3), (12) and (13) hold true. A function u is
an entropy solution of problem (1) if





u ∈ T 1,p
0 (Ω, w), u ≥ ψ a.e. in Ω,

〈A(u), Tk(u− v)〉+

∫

Ω

(g(x, u,∇u) +H(x,∇u))Tk(u− v) dx

≤

∫

Ω

f Tk(u − v) dx, ∀v ∈ Kψ ∩ L∞(Ω), ∀k > 0.

(14)

For the nonlinear Dirichlet boundary value problem (1), we state our main result as
follows.

Theorem 3.1 Under the assumptions (H1) – (H3), (12) and (13), there exists at
least one entropy solution of problem (1) (in the sense of Definition 3.1).

Proof of Theorem 3.1.

Step 1: A priori estimates. Let Ωn be a sequence of compact subsets of Ω such

that Ωn is increasing to Ω as n → ∞. Let us define Hn(x, ξ) = H(x,ξ)

1+ 1
n
|H(x,ξ)|

χΩn
where

χΩn
is the characteristic function of Ωn. Consider the sequence of approximate problems





un ∈ Kψ,

〈A(un), un − v〉+

∫

Ω

(g(x, un,∇un) +Hn(x,∇un)) (un − v) dx

≤

∫

Ω

fn (un − v) dx, ∀v ∈ Kψ,

(15)

where (fn) is a sequence of smooth functions which converges strongly to f in L1(Ω)
with ‖fn‖L1(Ω) ≤ Cf . Note that Hn(x, ξ) satisfies the conditions

|Hn(x, ξ)| ≤ |H(x, ξ)| and |Hn(x, ξ)| ≤ n.

We define the operator Gn :W 1,p
0 (Ω, w) →W−1,p′(Ω, w∗) by

〈Gnu, v〉 =

∫

Ω

(g(x, u,∇u) +Hn(x,∇u)) v dx.

Thanks to the classical result, that is Theorem 8.2 of [15], the following lemma which
can be proved in the same way as Lemma 4.2 of [4], shows that the problem (15) has at
least one solution un.

Lemma 3.2 The operator Bn = A+Gn from Kψ intoW−1,p′(Ω, w∗) is pseudomono-
tone. Moreover, Bn is coercive in the following sense

〈Bnv, v − v0〉

‖v‖
→ +∞ if ‖v‖ → +∞, v ∈ Kψ, where v0 ∈ Kψ.

Take v ∈ Kψ and choose h ≥ ‖ψ+‖∞ so as ṽ = Th(un − Tk(un − v)) ∈ Kψ ∩ L∞(Ω).
We can use in (15) the test function ṽ and by letting h→ +∞ we obtain

〈A(un), Tk(un − v)〉+

∫

Ω

[g(x, un,∇un) +Hn(x,∇un)]Tk(un − v) dx

≤

∫

Ω

fn Tk(un − v) dx, for all v ∈ Kψ and for all k > 0. (16)
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For k ≥ ρ + ‖ψ+‖∞, where ρ is defined in (10), taking v = ψ+ as the test function in
(16) we get

〈A(un), Tk(un − ψ+)〉+

∫

Ω

[g(x, un,∇un) +Hn(x,∇un)]Tk(un − ψ+) dx

≤

∫

Ω

fn Tk(un − ψ+) dx (17)

which implies by using (11) and Young’s inequality

∫

Ω

a(x, un,∇un).∇Tk(un − ψ+) dx+

∫

Ω

g(x, un,∇un)Tk(un − ψ+) dx

≤ k Cf + k

N∑

i=1

∫

Ω

h(x)w
1

p′

i (x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p−1

dx

≤ k Cf + C(k, p,N, β)

∫

Ω

|h(x)|p dx+
β

k

N∑

i=1

∫

Ω

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

≤ Ck +
β

k

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx+
β

k

N∑

i=1

∫

{|un−ψ+|>k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx,

where Ck is a constant not depending on n, which may be different from line to line.

We use (10) and the fact that |un| ≥ k − ‖ψ+‖∞ ≥ ρ on the set {|un − ψ+| > k},
then

β

k

N∑

i=1

∫

{|un−ψ+|>k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx ≤
1

k

∫

{|un−ψ+|>k}

|g(x, un,∇un)| dx

=
1

k2

∫

{|un−ψ+|>k}

g(x, un,∇un)Tk(un − ψ+) dx

≤

∫

Ω

g(x, un,∇un)Tk(un − ψ+) dx.

Consequently, we have

∫

Ω

a(x, un,∇un).∇Tk(un − ψ+) dx ≤ Ck +
β

k

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

which implies that

∫

{|un−ψ+|≤k}

a(x, un,∇un).∇un dx ≤ Ck +
β

k

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

+

∫

{|un−ψ+|≤k}

∣∣a(x, un,∇un).∇ψ+
∣∣ dx
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and by using Young’s inequality we obtain for a positive constant λ

∫

{|un−ψ+|≤k}

a(x, un,∇un).∇un dx ≤ Ck +
β

k

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

+

N∑

i=1

∫

{|un−ψ+|≤k}

λp
′

p′
|ai(x, un,∇un)|

p′ w1−p′

i (x) dx

+

N∑

i=1

∫

{|un−ψ+|≤k}

1

p λp
wi(x)

∣∣∣∣
∂ψ+

∂xi

∣∣∣∣
p

dx.

By virtue of (6), we get

∫

{|un−ψ+|≤k}

a(x, un,∇un).∇un dx ≤ Ck +
β

k

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

+
λp

′

p′
αp

′

1 N

∫

Ω

δp
′

(x) dx +
λp

′

p′
αp

′

1 N

∫

{|un−ψ+|≤k}

σ(x)|un|
q dx

+
λp

′

p′
αp

′

1 N

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

≤ Ck +
β

k

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

+
λp

′

p′
αp

′

1 N

∫

{|un|≤k+‖ψ+‖∞}

σ(x)|un|
q dx

+
λp

′

p′
αp

′

1 N
N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

≤ Ck +

(
β

k
+
λp

′

p′
αp

′

1 N

)
N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx.

Consequently, by using the coercivity condition (8) we obtain

α2

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

≤ Ck +

(
β

k
+
λp

′

p′
αp

′

1 N

)
N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx.

We can choose λ > 0 small enough such that α2 >
β
k
+ λp′

p′
αp

′

1 N for k > β
α2

, then

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx ≤ C1. (18)
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On the other hand, from (17) we have
∫

Ω

g(x, un,∇un)Tk(un − ψ+) dx ≤ k Cf + k

∫

Ω

|Hn(x,∇un)| dx

−

∫

{|un−ψ+|≤k}

a(x, un,∇un).∇(un − ψ+) dx

which implies by using (11), (8) and Young’s inequality

∫

Ω

g(x, un,∇un)Tk(un − ψ+) dx

≤ k Cf + k

N∑

i=1

∫

Ω

h(x)w
1

p′

i (x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p−1

dx+

∫

{|un−ψ+|≤k}

a(x, un,∇un).∇ψ
+ dx

−

∫

{|un−ψ+|≤k}

a(x, un,∇un).∇un dx

≤ k Cf + C(k, p,N, β, λ)

∫

Ω

|h(x)|p dx+ λβ
N∑

i=1

∫

Ω

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

+

∫

{|un−ψ+|≤k}

|a(x, un,∇un).∇ψ
+| dx. (19)

In view of (18), the last term of the right-hand side of (19) is bounded uniformly in n,
then
∫

Ω

g(x, un,∇un)Tk(un − ψ+) dx ≤ Ck + λβ

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

+λβ

N∑

i=1

∫

{|un−ψ+|>k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx.

By using (10) we have for k > ρ+ ‖ψ+‖∞

k β

N∑

i=1

∫

{|un−ψ+|>k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx ≤ k

∫

Ω

|g(x, un,∇un)| dx

≤

∫

Ω

g(x, un,∇un)Tk(un − ψ+) dx.

Therefore, we obtain

(k−λ)β

N∑

i=1

∫

{|un−ψ+|>k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx ≤ Ck+λβ

N∑

i=1

∫

{|un−ψ+|≤k}

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

dx

≤ Ck + λβ C1.

So that
‖|un‖|X ≤ C, (20)

where C is a constant not depending on n. The boundedness of the sequence (un) in
X with (5) imply the existence of a function u in W 1,p

0 (Ω, w) and a subsequence, still
denoted by (un), such that

un ⇀ u weakly in W 1,p
0 (Ω, w), strongly in Lq(Ω, σ) and a.e. in Ω. (21)
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Step 2: Almost everywhere convergence of the gradients.

We will show successively the following results

lim
j→∞

lim
n→∞

∫

{j≤|un|≤j+1}

a(x, un,∇un).∇un dx = 0, (22)

lim
j→∞

lim
n→∞

∫

Ω

a(x, Tk(un),∇Tk(un)).∇Tk(un) (1− ϕj(un)) dx = 0, (23)

lim
j→∞

lim
n→∞

∫

Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)))

.(∇Tk(un)−∇Tk(u))ϕj(un) dx = 0, (24)

and
Tk(un) → Tk(u) strongly in W 1,p

0 (Ω, w), (25)

where the function ϕj will be defined below (see (31)).
For (22), consider the function v = un − η exp(B(un))T1(un − Tj(un))

+, where η is

a real positive and B(s) =
∫ s
0
b(t)
α2

dt (note that the function b is the one that appeared

in (9) and the real positive α2 is the one that appeared in (8)). We have v ∈ W 1,p
0 (Ω, w)

and for j large enough and η small enough, we can deduce that v ≥ ψ, thus v is an
admissible test function in (15) and we obtain

∫

Ω

a(x, un,∇un).∇
(
exp(B(un))T1(un − Tj(un))

+
)
dx

+

∫

Ω

g(x, un,∇un) exp(B(un))T1(un − Tj(un))
+ dx

+

∫

Ω

Hn(x,∇un) exp(B(un))T1(un − Tj(un))
+ dx

≤

∫

Ω

fn exp(B(un))T1(un − Tj(un))
+ dx. (26)

By Lebesgue’s theorem the right-hand side goes to zero as n and j tend to infinity. For
the last term of the left-hand side, by using (11) we have

∫

Ω

∣∣Hn(x,∇un) exp(B(un))T1(un − Tj(un))
+
∣∣ dx

≤

∫

Ω

∣∣h(x) exp(B(un))T1(un − Tj(un))
+
∣∣
N∑

i=1

w
1

p′

i (x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p−1

dx

≤ ‖h exp(B(un))T1(un − Tj(un))
+‖Lp(Ω) ‖|un‖|

p−1
X .

Therefore, passing to the limit firstly in j and secondly in n, we obtain

h(x) exp(B(un))T1(un − Tj(un))
+ → 0 strongly in Lp(Ω)

and from (20) we conclude that
∫

Ω

|Hn(x,∇un) exp(B(un))T1(un − Tj(un))
+| dx→ 0, as n and j → ∞. (27)
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Thus we can write (26) as follows

∫

Ω

a(x, un,∇un).∇
(
exp(B(un))T1(un − Tj(un))

+
)
dx

+

∫

Ω

g(x, un,∇un) exp(B(un))T1(un − Tj(un))
+ dx ≤ ε1(j, n)

where εi(j, n), (i = 1, 2, . . . ), denote various sequences of real numbers which converge
to zero when n and j tend to ∞. In view of (9) we deduce that

∫

Ω

a(x, un,∇un).∇un
b(un)

α2
exp(B(un))T1(un − Tj(un))

+ dx

+

∫

Ω

a(x, un,∇un).∇T1(un − Tj(un))
+ exp(B(un)) dx

≤

∫

Ω

c(x) exp(B(un))T1(un − Tj(un))
+ dx

+

∫

Ω

b(un)
N∑

i=1

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

exp(B(un))T1(un − Tj(un))
+ dx+ ε1(j, n),

and by using (8) we obtain

∫

Ω

a(x, un,∇un).∇T1(un − Tj(un))
+ exp(B(un)) dx

≤

∫

Ω

c(x) exp(B(un))T1(un − Tj(un))
+ dx+ ε1(j, n).

We use in the first term of the right-hand side the Lebesgue’s theorem and we pass to
the limit in n and j to obtain

lim
j→∞

lim
n→∞

∫

{j≤un≤j+1}

a(x, un,∇un).∇un dx = 0. (28)

On the other hand, the function v = un+ η exp(−B(un))T1(un− Tj(un))
− is an admis-

sible test function in the inequality (15) then

∫

Ω

a(x, un,∇un).∇
(
− exp(−B(un))T1(un − Tj(un))

−
)
dx

+

∫

Ω

g(x, un,∇un) (− exp(−B(un))T1(un − Tj(un))
−) dx

+

∫

Ω

Hn(x,∇un) (− exp(−B(un))T1(un − Tj(un))
−) dx

≤

∫

Ω

fn (− exp(−B(un))T1(un − Tj(un))
−) dx. (29)

Similarly as above, we have

∫

Ω

|Hn(x,∇un) (− exp(−B(un))T1(un − Tj(un))
−)| dx→ 0 and
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∫

Ω

fn (− exp(−B(un))T1(un − Tj(un))
−) dx→ 0, as n and j → ∞.

So, (29) yields

∫

Ω

a(x, un,∇un).∇
(
− exp(−B(un))T1(un − Tj(un))

−
)
dx

+

∫

Ω

g(x, un,∇un) (− exp(−B(un))T1(un − Tj(un))
−) dx ≤ ε2(j, n).

As above, we use (9) and then (8) to obtain

−

∫

Ω

a(x, un,∇un).∇T1(un − Tj(un))
− exp(−B(un)) dx

≤

∫

Ω

c(x) exp(−B(un))T1(un − Tj(un))
− dx+ ε2(j, n),

which gives as above

lim
j→∞

lim
n→∞

∫

{−j−1≤un≤−j}

a(x, un,∇un).∇un dx = 0. (30)

Therefore, (22) follows from (28) and (30).

Now, we pass to claim (23). For a nonnegative real parameter j define a function ϕj
as 





ϕj(s) = 1, if |s| ≤ j,
ϕj(s) = 0, if |s| ≥ j + 1,
ϕj(s) = j + 1− |s|, if j ≤ |s| ≤ j + 1.

(31)

On one hand, the function v = un− η exp(B(un))Tk(u
+
n −ψ+) (1−ϕj(un)) is an admis-

sible test function in the inequality (15), then

∫

Ω

a(x, un,∇un).∇
(
exp(B(un))Tk(u

+
n − ψ+) (1− ϕj(un))

)
dx

+

∫

Ω

g(x, un,∇un) exp(B(un))Tk(u
+
n − ψ+) (1− ϕj(un)) dx

+

∫

Ω

Hn(x,∇un) exp(B(un))Tk(u
+
n − ψ+) (1 − ϕj(un)) dx

≤

∫

Ω

fn exp(B(un))Tk(u
+
n − ψ+) (1 − ϕj(un)) dx. (32)

As in (27) and by Lebesgue’s theorem we have

∫

Ω

|Hn(x,∇un) exp(B(un))Tk(u
+
n − ψ+) (1− ϕj(un))| dx→ 0 and

∫

Ω

fn exp(B(un))Tk(u
+
n − ψ+) (1 − ϕj(un)) dx→ 0, as n and j → ∞.
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Then (32) gives

∫

Ω

a(x, un,∇un).∇
(
exp(B(un))Tk(u

+
n − ψ+) (1− ϕj(un))

)
dx

+

∫

Ω

g(x, un,∇un) exp(B(un))Tk(u
+
n − ψ+) (1− ϕj(un)) dx ≤ ε3(j, n).

In view of (9) we have

∫

Ω

a(x, un,∇un).∇un
b(un)

α2
exp(B(un))Tk(u

+
n − ψ+) (1− ϕj(un)) dx

+

∫

Ω

a(x, un,∇un).∇Tk(u
+
n − ψ+) exp(B(un)) (1− ϕj(un)) dx

+

∫

{j≤un≤j+1}

a(x, un,∇un).∇un exp(B(un))Tk(u
+
n − ψ+) dx

≤

∫

Ω

c(x) exp(B(un))Tk(u
+
n − ψ+) (1− ϕj(un)) dx

+

∫

Ω

b(un)

N∑

i=1

wi(x)

∣∣∣∣
∂un
∂xi

∣∣∣∣
p

exp(B(un))Tk(u
+
n − ψ+) (1 − ϕj(un)) dx+ ε3(j, n),

and by using (8) we get

∫

Ω

a(x, un,∇un).∇Tk(u
+
n − ψ+) exp(B(un)) (1 − ϕj(un)) dx

+

∫

{j≤un≤j+1}

a(x, un,∇un).∇un exp(B(un))Tk(u
+
n − ψ+) dx

≤

∫

Ω

c(x) exp(B(un))Tk(u
+
n − ψ+) (1 − ϕj(un)) dx + ε3(j, n). (33)

In view of (28) and the fact that exp(B(un))Tk(u
+
n − ψ+) is bounded, we conclude that

the second integral in the left hand side of the last inequality converges to zero as n and
j tend to infinity. The first integral in the right hand side of the same inequality tends
to zero when n and j tend to infinity by Lebesgue’s theorem. Then we can write the last
estimation as follows

∫

{|u+
n−ψ+|≤k}

a(x, un,∇un).∇u
+
n exp(B(un)) (1 − ϕj(un)) dx

≤

∫

{|u+
n−ψ+|≤k}

a(x, un,∇un).∇ψ
+ exp(B(un)) (1 − ϕj(un)) dx + ε4(j, n),

which gives by using the fact that exp(B(un)) is bounded

∫

{|u+
n−ψ+|≤k}

a(x, un,∇un).∇u
+
n (1− ϕj(un)) dx

≤M

∫

{|u+
n−ψ+|≤k}

a(x, un,∇un).∇ψ
+ (1− ϕj(un)) dx + ε4(j, n),
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where M is a positive constant. By the growth condition (6) and Young’s inequality, the
second integral of the last inequality converges to zero as n and j tend to infinity, then
we can deduce that∫

{|u+
n−ψ+|≤k}

a(x, un,∇un).∇u
+
n (1− ϕj(un)) dx ≤ ε5(j, n).

The fact that {|u+n | ≤ k} ⊂ {|u+n − ψ+| ≤ k + ‖ψ+‖∞} implies that
∫

{|u+
n |≤k}

a(x, un,∇un).∇un (1 − ϕj(un)) dx

≤

∫

{|u+
n−ψ+|≤k+‖ψ+‖∞}

a(x, un,∇un).∇un (1− ϕj(un)) dx ≤ ε5(j, n).

Consequently we have for all k > 0

lim
j→∞

lim
n→∞

∫

{un≥0}

a(x, Tk(un),∇Tk(un)).∇Tk(un) (1− ϕj(un)) dx = 0. (34)

On the other hand, we can use v = un+ η exp(−B(un))Tk(un)
−(1−ϕj(un)) as the test

function in (15) and we obtain
∫

Ω

a(x, un,∇un).∇
(
− exp(−B(un))Tk(un)

−(1 − ϕj(un))
)
dx

+

∫

Ω

g(x, un,∇un) (− exp(−B(un))Tk(un)
−(1− ϕj(un))) dx

+

∫

Ω

Hn(x,∇un) (− exp(−B(un))Tk(un)
−(1 − ϕj(un))) dx

≤

∫

Ω

fn (− exp(−B(un))Tk(un)
−(1 − ϕj(un))) dx. (35)

As in (27) and by Lebesgue’s theorem we have
∫

Ω

|Hn(x,∇un) (− exp(−B(un))Tk(un)
−(1− ϕj(un)))| dx→ 0 and

∫

Ω

fn (− exp(−B(un))Tk(un)
−(1− ϕj(un))) dx→ 0, as n and j → ∞.

Then we can offset the estimation (35) as follows
∫

Ω

a(x, un,∇un).∇
(
− exp(−B(un))Tk(un)

−(1 − ϕj(un))
)
dx

+

∫

Ω

g(x, un,∇un) (− exp(−B(un))Tk(un)
−(1− ϕj(un))) dx ≤ ε6(j, n).

As in (33), we use (9) and then (8) to obtain
∫

{un≤0}

a(x, un,∇un).∇Tk(un) exp(−B(un)) (1− ϕj(un)) dx

+

∫

{−j−1≤un≤−j}

a(x, un,∇un).∇un exp(−B(un))Tk(un)
− dx

≤

∫

Ω

c(x) exp(−B(un))Tk(un)
−(1− ϕj(un)) dx + ε6(j, n). (36)
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By virtue of (30) and the fact that exp(−B(un))Tk(un)
− is bounded, we conclude that

the second integral in the left hand side of (36) converges to zero as n and j tend to
infinity. The first term in the right hand side of the same inequality tends to zero when
n and j tend to infinity by Lebesgue’s theorem. Then (21) implies that

lim
j→∞

lim
n→∞

∫

{un≤0}

a(x, Tk(un),∇Tk(un)).∇Tk(un) (1− ϕj(un)) dx = 0. (37)

We arrive at (23) by combining (34) and (37).

Now we will show (24), consider the function v = un − η exp(B(un)) (Tk(un) −
Tk(u))

+ ϕj(un), we can use it as the test function in (15) for η small enough, we obtain

∫

Ω

a(x, un,∇un).∇
(
exp(B(un)) (Tk(un)− Tk(u))

+ ϕj(un)
)
dx

+

∫

Ω

g(x, un,∇un) exp(B(un)) (Tk(un)− Tk(u))
+ ϕj(un) dx

+

∫

Ω

Hn(x,∇un) exp(B(un)) (Tk(un)− Tk(u))
+ ϕj(un) dx

≤

∫

Ω

fn exp(B(un)) (Tk(un)− Tk(u))
+ ϕj(un) dx. (38)

As in (27) and by Lebesgue’s theorem we have
∫

Ω

|Hn(x,∇un) exp(B(un)) (Tk(un)− Tk(u))
+ ϕj(un)| dx→ 0 and

∫

Ω

fn exp(B(un)) (Tk(un)− Tk(u))
+ ϕj(un) dx→ 0, as n and j → ∞.

Then (38) yields

∫

Ω

a(x, un,∇un).∇
(
exp(B(un)) (Tk(un)− Tk(u))

+ ϕj(un)
)
dx

+

∫

Ω

g(x, un,∇un) exp(B(un)) (Tk(un)− Tk(u))
+ ϕj(un) dx ≤ ε7(j, n).

Similarly as above, we use (9) and (8) to get

∫

Ω

a(x, un,∇un).∇(Tk(un)− Tk(u))
+ exp(B(un))ϕj(un) dx

−

∫

{j≤un≤j+1}

a(x, un,∇un).∇un exp(B(un)) (Tk(un)− Tk(u))
+ dx

≤

∫

Ω

c(x) exp(B(un)) (Tk(un)− Tk(u))
+ ϕj(un) dx+ ε7(j, n)

which gives, by using (28) and the fact that exp(B(un)) (Tk(un)−Tk(u))
+ is bounded for

the second integral and Lebesgue’s theorem for the third integral, the following estimation
∫

{Tk(un)−Tk(u)≥0}

a(x, un,∇un).∇(Tk(un)− Tk(u)) exp(B(un))ϕj(un)dx ≤ ε8(j, n),
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that is

∫

{Tk(un)−Tk(u)≥0, |un|≤k}

a(x, Tk(un),∇Tk(un)).∇(Tk(un)−Tk(u)) exp(B(un))ϕj(un)dx

≤

∫

{Tk(un)−Tk(u)≥0, |un|>k}

a(x, un,∇un).∇Tk(u) exp(B(un))ϕj(un) dx+ ε8(j, n). (39)

By using the fact that ϕj(un) = 0 if |un| > j + 1, we have for the second integral of the
last inequality

∫

{Tk(un)−Tk(u)≥0, |un|>k}

a(x, un,∇un).∇Tk(u) exp(B(un))ϕj(un) dx

=

∫

{Tk(un)−Tk(u)≥0, |un|>k}

a(x, Tj+1(un),∇Tj+1(un)).∇Tk(u) exp(B(un))ϕj(un)dx

= ε9(j, n),

since

lim
j→∞

lim
n→∞

∫

{Tk(un)−Tk(u)≥0, |un|>k}

a(x, Tj+1(un),∇Tj+1(un)).∇Tk(u)

exp(B(un))ϕj(un) dx = lim
j→∞

∫

{|u|>k}

Λj .∇Tk(u) exp(B(u))ϕj(u) dx = 0,

where Λj is the limit of a(x, Tj+1(un),∇Tj+1(un)) in ΠNi=1L
p′(Ω, w∗

i ) as n→ ∞. There-
fore (39) becomes by adding ε9(j, n) on both sides

lim
j→∞

lim
n→∞

∫

{Tk(un)−Tk(u)≥0}

a(x, Tk(un),∇Tk(un)).∇(Tk(un)− Tk(u))

× exp(B(un))ϕj(un) dx = 0. (40)

On the other hand, by using v = un + η exp(−B(un)) (Tk(un) − Tk(u))
− ϕj(un) as

the test function in (15) and reasoning as in (40), we obtain

lim
j→∞

lim
n→∞

∫

{Tk(un)−Tk(u)≤0}

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u)))

.∇(Tk(un)− Tk(u))ϕj(un) dx = 0. (41)

Combining (40) and (41) we arrive at (24).
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We pass on to the proof of (25). We have

∫

Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))) (∇Tk(un)−∇Tk(u)) dx

=

∫

Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))) (∇Tk(un)−∇Tk(u))ϕj(un) dx

+

∫

Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))) (∇Tk(un)−∇Tk(u))

× (1 − ϕj(un)) dx.

=

∫

Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))) (∇Tk(un)−∇Tk(u))ϕj(un) dx

+

∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(un) (1 − ϕj(un)) dx

−

∫

Ω

a(x, Tk(un),∇Tk(un))∇Tk(u) (1− ϕj(un)) dx

−

∫

Ω

a(x, Tk(un),∇Tk(u))) (∇Tk(un)−∇Tk(u)) (1− ϕj(un)) dx. (42)

The results (24) and (23) respectively give that the first and second terms of the right
hand side of the last equality converge to zero as n and j tend to infinity. The third
term has the same limit because (a(x, Tk(un),∇Tk(un))) is bounded in ΠNi=1L

p′(Ω, w∗
i )

uniformly on n from (6) and (20), and ∇Tk(u) (1 − ϕj(un)) converges to zero. Finally
for this equality, we have ∇Tk(un) ⇀ ∇Tk(u)) weakly in ΠNi=1L

p(Ω, wi) then the last
integral converges to zero. Therefore (42) gives

lim
n→∞

∫

Ω

(a(x, Tk(un),∇Tk(un))− a(x, Tk(un),∇Tk(u))).(∇Tk(un)−∇Tk(u)) dx = 0

which implies (25) by using Lemma 3.1 and the fact that Tk(un) ⇀ Tk(u) weakly in
W 1,p

0 (Ω, w). So, ∇Tk(un) → ∇Tk(u) strongly in ΠNi=1L
p(Ω, wi). Consequently, there ex-

ists a subsequence still denoted by (un)n such that

∇un → ∇u a.e. in Ω. (43)

Step 3: Equi-integrability of the non-linearities g(x, un,∇un) +Hn(x,∇un).
By using Vitali’s theorem we will show that

g(x, un,∇un) +Hn(x,∇un) → g(x, u,∇u) +H(x,∇u) strongly in L1(Ω). (44)

Thanks to (21) and (43) we have g(x, un,∇un) +Hn(x,∇un) → g(x, u,∇u) +H(x,∇u)
a.e. in Ω. So it suffices to prove that g(x, un,∇un) + Hn(x,∇un) is uniformly equi-
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integrable in Ω. For any measurable subset E of Ω and any m > 0 we have

∫

E

|g(x, un,∇un) +Hn(x,∇un)| dx =

∫

E∩{|un|≤m}

|g(x, un,∇un) +Hn(x,∇un)|dx

+

∫

E∩{|un|>m}

|g(x, un,∇un) +Hn(x,∇un)|dx.

≤

∫

E

b(m)

(
c(x) +

N∑

i=1

wi(x)

∣∣∣∣
∂Tm(un)

∂xi

∣∣∣∣
p
)
dx

+

(∫

E

hp(x) dx

) 1
p

N∑

i=1

(∫

E

wi(x)

∣∣∣∣
∂Tm(un)

∂xi

∣∣∣∣
p

dx

) 1

p′

+

∫

E∩{|un|>m}

|g(x, un,∇un) +Hn(x,∇un)|dx. (45)

In view of (25) for any ε > 0 there exists µ(ε,m) > 0 such that for all E satisfying
|E| < µ(ε,m) we have

∫

E

b(m)

(
c(x) +

N∑

i=1

wi(x)

∣∣∣∣
∂Tm(un)

∂xi

∣∣∣∣
p
)
dx

+

(∫

E

hp(x) dx

) 1
p

N∑

i=1

(∫

E

wi(x)

∣∣∣∣
∂Tm(un)

∂xi

∣∣∣∣
p

dx

) 1

p′

<
ε

2
∀n. (46)

Now let us choose m large enough such that m ≥ 2 + ‖ψ+‖∞, and define a function
φm which satisfies 





φm(s) = 0, if |s| ≤ m− 1,
φ′m(s) = 1, if m− 1 ≤ |s| ≤ m,
φm(s) = s

|s| , if |s| ≥ m.

Note that un − φm(un) ∈ Kψ, then by using it as the test function in (16) we get

〈A(un), Tk(φm(un))〉+

∫

Ω

(g(x, un,∇un) +Hn(x,∇un))Tk(φm(un)) dx

≤

∫

Ω

fn Tk(φm(un)) dx

which by choosing k ≥ 1 implies

∫

Ω

a(x, un,∇un).∇un φ
′
m(un) dx+

∫

Ω

(g(x, un,∇un) +Hn(x,∇un))φm(un) dx

≤

∫

Ω

fn φm(un) dx.

Because of (8) and by using the fact that φm(un) and un have the same sign we conclude
that
∫

{|un|>m}

|g(x, un,∇un)| dx ≤

∫

{|un|>m−1}

|Hn(x,∇un)| dx +

∫

{|un|>m−1}

|fn| dx.
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The right-hand side of the last inequality converges to 0 uniformly in n when m tends
to ∞ by using (11), the Hölder inequality, fn → f strongly in L1(Ω) and the fact that
|{|un| > m}| → 0 uniformly in n when m→ ∞. Hence there exists m(ε) > 1 such that

∫

{|un|>m}

|g(x, un,∇un)| dx ≤
ε

2
∀n. (47)

Finally from (45), (46) and (47) we have

∫

E

|g(x, un,∇un) +Hn(x,∇un)| dx < ε ∀n, if |E| < µ(ε) for some µ(ε) > 0,

which gives the uniform equi-integrability in Ω of g(x, un,∇un) +Hn(x,∇un).
Step 4: Passage to the limit.

Going back to (16), we have for all v ∈ Kψ ∩ L∞(Ω) and all k > 0

∫

Ω

a(x, un,∇un).∇Tk(un − v) dx+

∫

Ω

(g(x, un,∇un) +Hn(x,∇un))Tk(un − v) dx

≤

∫

Ω

fn Tk(un − v) dx. (48)

From (6) and (20) we have a(x, un,∇un) is bounded in ΠNi=1L
p′(Ω, w∗

i ), and because of
(21) and (43) we have a(x, un,∇un) → a(x, u,∇u) a.e. in Ω. Therefore by Lemma 2.1 we

obtain a(x, un,∇un)⇀ a(x, u,∇u) weakly in ΠNi=1L
p′(Ω, w∗

i ). For all measurable subsets
E ⊂ Ω and for i = 1, . . . , N we have

∫

E

w
1
p

i (x)

∣∣∣∣
∂Tk(un − v)

∂xi

∣∣∣∣ dx =

∫

E

w
1
p

i (x)

∣∣∣∣
∂(un − v)

∂xi

∣∣∣∣ χ{|un−v|≤k} dx

≤

∫

E

w
1
p

i (x)

(∣∣∣∣
∂un
∂xi

∣∣∣∣+
∣∣∣∣
∂v

∂xi

∣∣∣∣
)
χ{|un|≤k+‖v‖∞} dx

≤

∫

E

w
1
p

i (x)

∣∣∣∣
∂v

∂xi

∣∣∣∣ dx+

∫

E

w
1
p

i (x)

∣∣∣∣
∂Tk+‖v‖∞

(un)

∂xi

∣∣∣∣ dx.

By using (21), (25) and the Vitali’s theorem we get∇Tk(un−v) → ∇Tk(u−v) strongly in
ΠNi=1L

p(Ω, wi), so that
∫
Ω
a(x, un,∇un).∇Tk(un − v) dx→

∫
Ω
a(x, u,∇u).∇Tk(u− v) dx

as n → ∞. Finally we use (44) and the fact that fn → f strongly in L1(Ω) for passing
to the limit in (48) and this completes the proof of Theorem 3.1.

4 Example

In particular, let us use the special weight functions w and σ expressed in terms of the
distance to the boundary ∂Ω. Denote d(x) = dist(x, ∂Ω) and set w(x) = dλ(x), σ(x) =
dµ(x) (see [3]). As an example of equations to which the result of this paper can be
applied, we give the following example. Consider the Carathéodory functions ai(x, s, ξ) =

wi |ξi|
p−1 sgn(ξi) for i = 1, . . . , N, g(x, s, ξ) = ρ exp(s−2)

∑N
i=1 wi |ξi|

p with ρ ∈ R and

H(x, ξ) = h(x)
∑N

i=1 w
1

p′

i (x) |ξi|
p−1, where h ∈ Lr(Ω) with r > max(N, p). We can

use the special weight functions w and σ already given previously and we shall assume
that the weight functions satisfy wi(x) = w(x) ∀i = 0, . . . , N. First, note that g(x, s, ξ)
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does not satisfy the sign condition. It is easy to show that the Carathéodory functions
ai(x, s, ξ) satisfy the growth condition (6) and the coercivity condition (8). Also the
Carathéodory function g(x, s, ξ) satisfies the conditions (9) and (10). Indeed, we have

|g(x, s, ξ)| ≤ |ρ| exp(s−2)
∑N

i=1 wi |ξi|
p = b(s)

∑N
i=1 wi |ξi|

p, where b(s) = |ρ| exp(s−2) is

a continuous positive function which belongs to L1(R) and |g(x, s, ξ)| ≥ |ρ|
∑N

i=1 wi |ξi|
p,

since exp(s−2) ≥ 1 ∀s ∈ R
∗. For the monotonicity condition, since w > 0 a.e. in Ω we

have

N∑

i=1

(ai(x, s, ξ)−ai(x, s, ξ
∗))(ξ−ξ∗) = w(x)

N∑

i=1

(|ξi|
p−1 sgn(ξi)−|ξ∗i |

p−1 sgn(ξ∗i ))(ξ−ξ
∗) > 0

for almost all x ∈ Ω and for all ξ, ξ∗ ∈ R
N with (ξ 6= ξ∗).

5 Conclusion

Through this result, we tried to answer the question of existence of solutions for some
nonlinear elliptic partial differential equations of the form A(u)+g(x, u,∇u)+H(x,∇u) =
f ∈ L1(Ω) in Ω, whose functional framework is the weighted Sobolev spaces. The major
difficulty of this work is the sign condition of the first lower order term g that we have
eliminated. To overcome this difficulty we have used a technique based on positive and
negative parts of some functions in order to choose test functions to show the strong
convergence of the truncations.
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1 Introduction

In the literature, hybrid dynamic models can represent systems for which the behav-
ior consists of continuous evolution interspersed by instantaneous jumps in the velocity.
More precisely, those systems exhibit non-smoothness or discontinuities in the dynamics
and this induces new dynamics phenomena witch are not present in smooth dynamics.
However, the field of hybrid systems is not as mature as that of the smooth ones. The
corresponding fundamental theoretical concepts have not been so developed. The most
known general textbook on hybrid systems is [46] and the book [40] contains qualitative
analysis of some classes of hybrid systems. Recently, it was gradually recognized that
a particular class of those systems exhibits many interesting phenomena because of the
specific complex structure of the state space composed of some different vector fields. In
this case, the dynamics of the system can be defined by an ordinary differential equation
in each region and the associated Poincaré map is continuous across the border but its
derivative is discontinuous. Those systems are called piecewise smooth systems (noted
p.w.s systems), they occur naturally in the description of many physical processes as
grazing, sliding, switching, friction and so on. This type of dynamics was introduced and
studied in many seminal papers [2], [3], [17], [27], [18], [31], [38], [41], [42], [50]. Many
books and monographs have been published on this topic. The analysis in [32] gen-
eralized several fundamental theories in smooth systems theory to this relevant class of
hybrid systems. [12] gave a comprehensive treatment on the theory of p.w.s systems. The
reader can also refer to recent survey paper [13] for numerous references therein. Such
class of p.w.s systems is common in the literature. Authors in [15], [16], [33] dealt with
p.w.s systems from mechanical problems, other applications were performed in control
in engineering [3], [48], [37] electromechanical systems [29] or in gene regulatory networks
and neurons in computational neuroscience and biology [45]. In those applications, it
is often essential to characterize its bifurcations. Those events , known as discontinu-
ity induced bifurcations, occur when an invariant set of the system (as an equilibrium
point or a limit cycle) crosses or hits tangentially the switching manifold in the phase
space. A pioneering work was carried out by Feigin in [23], [24], [25] who introduced
the notion of C-bifurcations and has recently re-evaluated it in [7]. Furthermore, sym-
metric bifurcations are widespread phenomena, one of the oldest known example is the
Lorenz dynamics [47] for the smooth systems and the Chua circuit [21] for the piecewise
smooth ones. This kind of symmetric non-smooth transients occurs for example in a
multicell chopper coupled with nonlinear load and may generate a chaotic behavior [22]
(see [1], [28] for mathematical definitions and characterizations of chaos in dynamical
systems). In fact, all those types of bifurcations can give rise to a chaotic behavior. Most
notably, p.w.s systems can exhibit robust chaotic behavior that has been conjectured
not to exist for smooth systems. This is due to the discontinuous dependence on initial
conditions leading to chaotic behavior. Knowing that there exist three main branches
of chaotic dynamic systems theory, namely the symbolic dynamics, ergotic theory and
bifurcation theory, we focus on the last one in this paper. Those notions can be found
in references [28], [30], [43]. Author in [32] generalized several fundamental theories in
smooth systems theory including Lyapounov exponents and Conley index of p.w.s sys-
tems. Some interesting results in [51] are dedicated to bifurcations and chaos analysis to
p.w.s systems. P. Collins gives in [19] an overview of some chaotic hybrid systems. He
proposed results on dynamics in switched arrival systems and in systems with periodic
forcing.
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Hereafter, we propose a mathematical analysis of way to chaos for bounded p.w.s
systems of dimension three subjected to symmetric non-smooth bifurcations. We restrict
our attention to bimodal p.w.s systems depending on a parameter ε. Such class of p.w.s
systems is common in the literature due to its importance in many applications [44], [49].
This work is an extension to symmetric case of the results obtained in [4] and [5] and
associated with non-symmetric and non-smooth bifurcations. The suggested procedure is
based on four main features: the first one is the Poincaré maps determination associated
with p.w.s systems subjected to symmetric non-smooth transitions. It is an extension
of the Poincaré Discontinuity Maps (P.D.M.) associated with p.w.s systems subjected to
classic non-smooth transitions given in [8], [9], [10]. The Poincaré maps computed here
are characterized by a composition of the previous Poincaré maps with some particular
maps that take into account the symmetries of the dynamics. The second feature is
the special choice of the Poincaré sections relatively to the switching manifolds. Those
Poincaré sections are perpendicular to the switching manifolds, this permits to reduce the
dimension of the Poincaré maps from two to one, this reduction being available only in
a specific neighborhood of the bifurcation points. The third feature is the application of
period doubling method based on the famous result of [35] called “period three implies
chaos”. It is important to mention here that another choice of Poincaré sections will
oblige us to be in dimension 2 and thus to use results of Marotto published in 1978 who
generalized results of Li and Yorke to discrete systems of dimension greater than one.
This result is summarized by “snap-back repealers imply chaos ” [39] and was revisited
by several authors, see for example [36], [34]. Note that a snap-back repealer is an
expanding fixed point such that for very small variations of the bifurcation parameter,
the trajectory is repelled and for more larger deviations of this parameter, the process
jumps onto the fixed point. As the determination of the snap-back repealer is difficult
in general, our purpose is to avoid the corresponding approaches by considering specific
choice of Poincaré sections. The fourth feature is the use of a simple and simultaneously
powerful mathematical tool that is the implicit function theorem. It guaranties that the
expected points for chaotifying the considered system defined on the Poincaré section
are close to the bifurcation points and vary continuously with respect to the bifurcation
parameter. This is primordial because on the one hand limitedness condition of the
trajectories is respected (knowing that if it is not the case, study of chaos has no sense)
and on the other hand, the process of period doubling occurs until the dimension of
the considered discrete map is reduced to one in the neighborhood of the bifurcation
parameter permitting us to use the result “period three implies chaos”.

The paper is structured as follows. In Section 2 some preliminaries and statements
on the characterization of symmetric non-smooth transitions are provided followed by
the determination of the corresponding Poincaré maps. A route to chaos analysis is
proposed in Section 3. Section 4 is dedicated to some simulation results: the first one
concerns an academic example subjected to symmetric sliding bifurcations and the second
one concerns Chua circuit subjected to symmetric grazing bifurcations [20]. The results
obtained for both examples highlight the efficiency of the proposed approach. Finally,
concluding remarks and some perspectives end the paper.

2 Symmetric Non-smooth Transitions and Poincaré Maps Characterization

We propose, in this section, a characterization of symmetric non-smooth transitions and
then a determination of the associated Poincaré maps.
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2.1 Characterization of p.w.s systems subjected to symmetric non smooth
transitions

Let us consider the following piecewise smooth system:

ẋ =

{

F1(x, ε), if x ∈ D1,

F2(x, ε), if x ∈ D2,
(1)

where x : I −→ D, I ⊂ R+ and D ⊃ D1 ∪D2 is an open bounded domain of R3 with

D1 = {x ∈ D : |H(x)| < E} , D2 = {x ∈ D : |H(x)| > E} ,

where E is a positive fixed real number and ε is a real parameter defined on a neigh-
borhood of 0 denoted by Vε, H : D → R is a continuous function that characterizes
the phase space boundary between two regions of smooth dynamics, H defines the two
symmetric transient sets:

Π1 := {x ∈ D : H(x) = E} , Π2 := {x ∈ D : H(x) = −E} ,

where Π1 and Π2 are termed the switching manifolds and divide respectively the phase
space into the following regions:

Π+
1 = {x ∈ D : H(x) ≥ E} , Π−

1 = {x ∈ D : H(x) < E} ,

Π+
2 = {x ∈ D : H(x) ≥ −E} , Π−

2 = {x ∈ D : H(x) < −E} ,

F1, F2 : C1(I,D)× Vε −→ Cm(I,D), m ≥ 4, where Cm(I,D) is the set of Ck functions
defined on I and having values in R3, Cm(I,D) is provided with the following norm:
‖x‖ = sup

t∈I

‖x(t)‖e + sup
t∈I

‖ẋ(t)‖e + ...+ sup
t∈I

∥

∥x(m)(t)
∥

∥

e
, ∀x ∈ Cm(I,D) .

According to [14], (Cm(I,D), ‖.‖) is a Banach space.

The vector fields F1 and F2 are defined on both sides of Πk, k = 1, 2.

Moreover, the system (1) is assumed to depend smoothly on the parameter ε such
that at ε = 0, there exists a periodic orbit x(.) that intersects the switching manifolds
Π1 and Π2 at two points x1 and x2 corresponding to t (where t is the period of time
associated with the system (1)).

The assumptions given by [11], [8], [10], [13] to characterize the sliding and grazing
non-smooth bifurcations are generalized to the symmetric non-smooth cases in the fol-
lowing subsections, notations will be more complicated because all types of grazing and
sliding bifurcations are considered here at the same time with the symmetry phenomena.

2.1.1 First case: symmetric sliding bifurcations

Symmetric sliding bifurcations occur on two transient surfaces Π1and Π2 at two sliding
points xk, k = 1, 2 at time t0 (taken for simplicity to be equal to 0) if the following

For the sake of simplicity, we denote by x the function and also the value of x at time t when the
context is without ambiguity.

x(m)(.) denotes the mth derivative of x(.) and ||.||e is a norm defined on R3.
In this paper, indexes s and g are related respectively to sliding and grazing cases.
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general sliding conditions are satisfied for each function H1 := H −E and H2 := H +E:

C
k,s
1 ) < ∇Hk(x(t)), F2(x(t), 0) − F1(x(t), 0) >∈ R∗

+ for all x(t) ∈ vks , where vks is a
bifurcation neighborhood in Πk.
C

k,s
2 ) Hk(xk) = 0 and ∇Hk(xk) 6= 0.

C
k,s
3 ) for i = 1, 2 and k = 1, 2 : < ∇Hk(xk), F

0
ki >= 0, where F 0

ki := Fi(Φi(xk, 0), 0), i =
1, 2, and Φi is the flow associated with Fi.

Moreover, each type of the four symmetric sliding bifurcations is characterized by
specific assumptions marked as Ak,s

i ), i = 1, 2, 3, 4 and k = 1, 2:

Ak,s
1 )

〈

∇Hk(x̄k),
∂F1(x̄k,0)

∂x
F 0
k1

〉

> 0,

Ak,s
2 )

〈

∇Hk(x̄k),
∂F2(x̄k,0)

∂x
F 0
k2

〉

> 0,

Ak,s
3 )

〈

∇Hk(x̄k),
∂F1(x̄k,0)

∂x
F 0
k1

〉

< 0,

Ak,s
4 )

〈

∇Hk(x̄k), (
∂F1(x̄k,0)

∂x
)2F 0

k1

〉

< 0.

2.1.2 Second case: symmetric grazing bifurcations

Symmetric grazing bifurcations occur on the two transient surfaces Π1and Π2 at two
grazing points (denoted also for simplicity) xk, k = 1, 2 at time t0 = 0 if the following
general grazing conditions are satisfied on a bifurcation neighborhood vks of Πk. for each
function H1 := H − E and H2 := H + E:
C

k,g
1 ) Hk(xk) = 0 and ∇Hk(xk) 6= 0,

C
k,g
2 ) for i = 1, 2 and k = 1, 2 : < ∇Hk(xk), F

0
ki >= 0,

C
k,g
3 ) for i = 1, 2. and k = 1, 2: ∂2Hk(x̄k,0)

∂x2 ∈ R∗

+,

C
k,g
4 ) (< Lk, F

0
k1 >< Lk, F

0
k2 >) ∈ R∗

+ for each k = 1, 2, where Lk is the unit vector
perpendicular to ∇H(xk) at point xk.

2.2 Determination of Poincaré maps associated with symmetric non smooth
transitions

It is assumed that at ε = 0 there exists a periodic orbit x(.) that intersects symmetrically
at two points the two symmetric manifolds Π1 and Π2.It is also requested that this
orbit is hyperbolic and hence isolated. This implies that there is no points of sliding
(respectively grazing) along the orbit other than xk, k = 1, 2. Those conditions are
defined on an open set such that there exist sufficiently small neighborhoods Vε of
ε = 0 and vxk

of xk such that assumptions Ck,s
j , j = 1, 2, 3, associated with symmetric

sliding bifurcations (respectively C
k,g
j , j = 1, 2, 3, associated with symmetric grazing

bifurcations) are satisfied.
At this step, in order to compute the corresponding Poincaré maps, let us begin

with choosing specially two symmetric Poincaré sections denoted Λ1 and Λ2 to be
perpendicular to Π1 and Π2 and consider the following diffeomorphism defined by:

S : R2 × S1 → R2 × S1, (x1, x2, t) → S(x1, x2, t) = (−x1,−x2, t+ 2pπ),

where S1 is the unit circle and pǫZ (the set of relative numbers).

The Poincaré maps denoted P s (for non-symmetric sliding case) and P g (for the
non-symmetric grazing case) are given in details in [8] and [10].
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The procedure for computing the Poincaré map is the same for the symmetric sliding
and the symmetric grazing case, we directly deal with notation P s,g ,where following the
cases, this map corresponds to the sliding or the grazing Poincaré one.

Now, let us consider P s,g
1 being the the part of Poincaré map including sliding (respec-

tively grazing) bifurcation on the transient surface Π1 going from Λ1 to Λ2 and consider
P

s,g
2 being the the other part of Poincaré map including sliding (respectively grazing)

bifurcation on the transient surface Π2 going from Λ2 to Λ1, then the global Poincaré
map of the system subjected to symmetric sliding (respectively symmetric grazing) is
given by:

P s,g : Λ1 → Λ2 such that P s,g = P
s,g
2 ◦ P s,g

1 .

However, due to the symmetry of the trajectory, maps P s,g
1 and P

s,g
2 are related by the

following relation:

S ◦ P s,g
2 = P

s,g
1 ◦ S,

this implies that P s,g = S−1 ◦ P s,g
1 ◦ S ◦ P s,g

1 .
Taking this fact into account, the Poincaré maps have the following form:

P s,g(x, ε) =

{

S−1 ◦ P s,g
1 ◦ S ◦ P s,g

1 (x, ε) if < ∇H1, x >∈ R+ or < ∇H2, x >∈ R−

S−1 ◦ P s,g
2 ◦ S ◦ P s,g

2 (x, ε) if < ∇H1, x >∈ R∗

−
and < ∇H2, x >∈ R∗

+

(2)
In the next section, a rigorous approach of a route to chaos for p.w.s systems subjected

to those symmetric non-smooth bifurcations is proposed.

3 Analysis of Route to Chaos for P.W.S Systems Subjected to Symmetric
Non Smooth Transitions

A mathematical analysis of generated chaos for bounded piecewise smooth systems of
dimension 3, subjected to symmetric sliding or grazing bifurcations is now presented.
This approach is based on the period doubling method applied to the corresponding
Poincaré maps given by (2). Note that these Poincaré maps are discrete maps defined
in dimension 2 and thus at this step, the result of Li and Yorke “Period three implies
chaos” can not be used because period three does not imply necessarily chaos for contin-
uous flows of dimension three (and so for their corresponding Poincaré maps that are
discrete maps of dimension 2). In fact, determinism (non intersection of trajectories) and
continuity requirement set constraints on how points of period doubling are defined on
the corresponding Poincaré maps and move around the associated orbit. On the other
hand, many simulation results show that period doubling can imply chaos for discrete
systems of dimension greater than one. This is possible for specific cases when the multi-
dimensional map is described in one direction by a particular map (as the saw-tooth one
or the logistic one) while the other directions are characterized by strong contractions
or if the process of squeezing and stretching is chosen for particular systems defined in
dimension three. Moreover, the process corresponding to a pure rotation does not imply
a chaotic attractor but that corresponding to braid implies chaos. In this work, a more
general case of dynamic systems is considered and the trick proposed here is to reduce
the dimension of the Poincaré map to one in the neighborhood of the transient points.
This is possible by choosing a convenient Poincaré map section that is transversal to the
switching surface, this neighborhood of x is denoted vs,gx . This main idea is supported by
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applying the implicit function theorem to vs,gx . It is a simple and a powerful mathemati-
cal tool allowing us to generate a “branch” of continuous solutions x with respect to the
bifurcation parameter ε defined in some neighborhood of ε = 0 denoted v

s,g
ε=0 ⊂ Vε . In

this context, the dimension of the discrete map P s,g defined on vs,gx × v
s,g
ε=0 is reduced to

1, without confusion and only for simplicity we denote it also by P s,g. Now, the famous
result of Li and Yorke can be applied to P s,g.

To propose the main result of this paper, we set the following assumptions:
Bs,g

1 )∂P
s,g

∂x
(0, 0)− 1 6= 0,

Bs,g
2 )−∂P s,g

∂x
(0, 0)(∂P

s,g

∂x
(0, 0)− 1)−1 + (∂P

s,g

∂x
(0, 0)− 1)−1 − 1 6= 0,

Bs,g
3 )∂P

s,g

∂x
(∂P

s,g

∂x
(0, 0)− 1)−1(∂P

s,g

∂x
(0, 0)(∂P

s,g

∂x
(0, 0)− 1))−1 −(∂P

s,g

∂x
(0, 0)− 1)−1 + 1)−

(∂P
s,g

∂x
(0, 0)− 1)−1(∂P

s,g

∂x
(0, 0) (∂P

s,g

∂x
(0, 0)− 1))−1 − (∂P

s,g

∂x
(0, 0)− 1)−1 + 1)− 1 6= 0.

Theorem 3.1

1. Symmetric sliding case: Under conditions C
k,s
j ) j = 1, 2, 3, A

k,s
i ), i = 1, 2, 3, 4,

k = 1, 2 and B
s,g
i , i = 1, 2, 3 the bounded p.w.s system (1) admits a chaotic behavior

associated with specific type of symmetric sliding transitions.

2. Symmetric grazing case: Under conditions C
k,g
j ) j = 1, 2, 3, 4, k = 1, 2 and B

s,g
i ,

i = 1, 2, 3 the bounded p.w.s system (1) admits a chaotic behavior associated with
symmetric grazing transitions.

Proof. According to period doubling method, the problem is to determine three
distinct points denoted respectively by x, y and z that satisfy: P s,g(x, ε) = y, P s,g(y, ε) =
z and P s,g(z, ε) = x.

So this procedure will be done in three steeps, each step corresponds to the determi-
nation of one of the 3 previous searched points.

First step of the period doubling procedure: it is performed by the analysis of
the following equation:

P s,g(x, ε) = y, (3)

y := x+ η, (4)

where η is a real parameter defined in the neighborhood of x.
The equation (3) is equivalent to the following one:

Ψs,g(x, ε, η) := P s,g(x, ε) − x− η = 0. (5)

Under assumption ∂Ψs,g

∂x
(0, 0, 0) 6= 0, (that is equivalent to assumption Bs,g

1 )), and
using the implicit functions theorem, one obtains that ∃ a neighborhood of the parameter
ε denoted ϑ

s,g
ε=0 ⊂ v

s,g
ε=0 in R, a neighborhood of the parameter η denoted υ

s,g
η=0 ⊂ R, a

neighborhood of x noted υ
s,g
x=0 ⊂ vs,gx ⊂ R and a unique application x∗: ϑs,g

ε=0 × υs,g
η=0

−→
υ
s,g
x=0 solution of Ψs,g(x∗(ε, η), ε, η) = 0 such that x∗(0, 0) = 0. Furthermore, x∗ depends

continuously on ε and η.
Second step of the period doubling procedure: it is equivalent to the analysis

of the following equation:

P s,g(P s,g(x, ε), ε) = z, (6)

z := y + µ, (7)

where µ stands for a real parameter defined in the neighborhood of x.
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Taking into account results of the previous step, the equation (6) becomes equivalent
to:

Γs,g(ε, η, µ) := P s,g(x∗(ε, η) + η, ε)− x∗(ε, η)− η − µ = 0 (8)

for (ε, η, µ) ∈ ϑ
s,g
ε=0 × υs,g

η=0
×R.

In order to continue the process with the same arguments (i.e. the implicit function
theorem applied to Γs,g), the following hypothesis is necessary:

∂Γs,g

∂η
(0, 0, 0) 6= 0 that is written in details as ∂P s,g

∂x∗
(0, 0)∂x

∗

∂η
(0, 0)− ∂x∗

∂η
(0, 0)− 1 6= 0,

knowing that ∂x∗

∂η
(0, 0) = −(∂P

s,g

∂x∗
(0, 0)−1)−1, this is exactly the stated assumption Bs,g

2 )

and thus, ∃ a neighborhood υ
s,g
ε=0 ⊂ ϑ

s,g
ε=0, a neighborhood νs,gη=0

⊂ υs,g
η=0

, a neighborhood
of µ denoted ν

s,g
µ=0 ⊂ R and a unique application η∗:υs,g

ε=0 ×ν
s,g
µ=0 −→ νs,gη=0

solution of
Γs,g(ε, η∗(ε, µ), µ) = 0 such that η∗(0, 0) = 0. Furthermore, η∗ depends continuously on
ε and µ.

Third step of the period doubling procedure: the last step of the period dou-
bling is reduced to the analysis of the following equation:

P s,g(P s,g(P s,g(x(ε, η), ε), ε), ε) = x. (9)

Taking into account the results obtained in the two previous steps, the analysis of this
equation (9) becomes equivalent to the analysis of the following one:
for (ε, µ)ǫυs,g

ε=0 × ν
s,g
µ=0:

Πs,g(ε, µ) := P s,g(x∗(ε, η∗(ε, µ)) + η∗(ε, µ) + µ, ε)− x∗(ε, η∗(ε, µ)) = 0. (10)

In this case, the following hypothesis is required to apply the implicit function theorem
to Πs,g :

∂Πs,g

∂µ
(0, 0) 6= 0 that is equivalent in details to:

∂P s,g

∂x∗

∂x∗

∂η
∂η
∂µ

(0, 0)− ∂x∗

∂η
∂η
∂µ

(0, 0)− 1 6= 0

and as ∂η
∂µ

(0, 0) = −(∂Γ
s,g

∂η
(0, 0, 0))−1, this is exactly the stated assumption Bs,g

3 ).

This permits us to affirm that: ∃ a neighborhood ω
s,g
ε=0 ⊂ υ

s,g
ε=0, a neighborhood θs,gµ=0

⊂
νs,gµ=0

and a unique application µ∗: ωs,g
ε=0 −→ θ

s,g
µ=0 solution of Πs,g(ε, µ∗(ε)) = 0 such

that µ∗(0) = 0. Furthermore, µ∗ depends continuously on ε .

Thus the period doubling procedure applied to the Poincaré map (2), associated
with p.w.s system (1) (reduced to a discrete map of dimension 1 on the neighborhood
vs,gx × v

s,g
ε=0) is constructed step by step and this system becomes chaotic according to

the well-known result ”period 3 implies chaos” applied to the discrete map P s,g. ✷

4 Simulations Results

4.1 Symmetric sliding case

Let us consider an academic model subjected to symmetric sliding bifurcations given by:

ẋ =

{

F1(x, ε) for x ∈ D1,

F2(x, ε) for x ∈ D2,
(11)
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where D1 :=
{

x ∈ R3 : x3 −
44
3 x3

1 −
41
2 x2

1 − 5.3x1 > 0
}

,

D2 :=
{

x ∈ R3 : x3 −
44
3 x3

1 −
41
2 x2

1 − 5.3x1 ≤ 0
}

F1(x, ε) =





100
−x3

−0.7x1 + x2 + 0.24x3 − (εx3)
3



 ,

F2(x, ε) =





−100
−x3

−0.7x1 + x2 + 0.24x3 − (εx3)
3



 ,

where ε is the bifurcation parameter defined near 0.

Applying the procedure presented in Section 2 in order to compute the Poincaré map
associated with (11) and the method of chaotification given in Section 3, we obtain the
following results:

• For ε = 0.4, there is a limit cycle between the two sides Π1 and Π2, see Fig. 1.
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Figure 1: Symmetric sliding case: limit cycle for ε = 0.4.

• For ε = 0.2, a symmetric sliding period doubling appears, see Fig. 2.

• For ε = −0.05, a symmetric sliding multi period doubling appears, see Fig. 3.

• For ε = −0.23, a chaotic behavior appears, see Fig. 4.

4.2 Symmetric grazing case (Chua circuit)

Let us consider the Chua model subjected to symmetric grazing bifurcations given by:
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Figure 2: Symmetric sliding case: period doubling for ε = 0.2

−1.2
−1

−0.8
−0.6

−0.4
−0.2

0
0.2

−3

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3: Symmetric sliding case: multi period doubling for ε = −0.05.







ẋ1 = −1
C1R

(x1 − x2) +
f(x1,ε)

C1

,

ẋ2 = 1
C2R

(x1 − x2) +
x3

C2

,

ẋ3 = −x2

L
,

(12)

with f(x1, ε) = Gbx1+0.5(Ga(1+ε)−Gb)(|x1+E|−|x1−E|, R = 2.115KΩ, E = 5.75V ,
C1 = 10nF , C2 = 100nF , Ga(ε) =

1+ε
0.999R , Gb =

1
2R and the following initial conditions

(E + 0.3V, 0,−E
R
).

The system (12) can be rewritten according to the general form of systems considered
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Figure 4: Symmetric sliding case: a chaotic behavior for ε = −0.23.

in this paper as:

ẋ =

{

F1(x, ε) for x ∈ D1,

F2(x, ε) for x ∈ D2,

with D1 =
{

x ∈ R3 : −E ≤ x1 ≤ E
}

, D2 =
{

x ∈ R3 : x1 > E or x1 < −E
}

,

F1(x, ε) =





[α1 +
1
C1

Ga(1 + ε)]x1 − α1x2

α2x1 − α2x2 +
x3

C2

α3x2,



 ,

F2(x, ε) =

{

F2,E(x, ε) for x1 > E ,

F2,−E(x, ε) for x1 < −E,

where

F2,E(x, ε) =





[α1 +
1
C1

Gb]x1 − α1x2 +
1
C1

[Ga(1 + ε)Gb]E

α2x1 − α2x2 +
x3

C2

α3x2





and by symmetry

F2,−E(x, ε) =





[α1 +
1
C1

Gb]x1 − α1x2 +
1
C1

[Ga(1 + ε)Gb](−E)

α2x1 − α2x2 +
x3

C2

α3x2



 ,

where α1 = −1
C1R

, α2 = 1
C2R

and α3 = −1
L
, ε is the parameter bifurcation.

So applying the method presented in Section 2 as for the first example, one determines
the Poincaré map associated with this system when a symmetric grazing occurs. The
procedure of chaotification given in Section 3 and applied to this Poincaré map gives us
the following results:
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Figure 5: Symmetric grazing case (Chua circuit): limit Cycle for ε = 0.1.

• For ε = 0.1 (this corresponds to the initial value of Ga), there is a limit cycle between
the two sides Π1 and Π2, see Fig. 5.

• For ε = 0.2, a period doubling appears, see Fig. 6.
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Figure 6: Symmetric grazing case (Chua circuit): period doubling for ε = 0.2.

• For ε = 0.3, a Rössler behavior appears, see Fig. 7.

• For ε = 0.4, a double scroll behavior appears, see Fig. 8.
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Figure 7: Symmetric grazing case (Chua circuit): Rössler attractor for ε = 0.3.
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Figure 8: Symmetric grazing case (Chua circuit): double scroll attractor for ε = 0.4.

5 Conclusion

In this paper, we have proposed a mathematical approach of route to chaos for bounded
p.w.s systems of dimension three subjected to symmetric grazing or sliding bifurcations.
This approach highlights the fact that it is possible to extend the procedure given in [4,5]
to the interesting case of symmetric non-smooth bifurcations. Moreover, simulation
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results show that it is less complicated to deal with symmetric non-smooth transitions
than non-symmetric non-smooth ones. Simulation results were proposed for academic
example subjected to symmetric sliding bifurcations and an application of this approach
is also done for the well-known Chua circuit where two grazing bifurcations associated
with two symmetric transient surfaces appear simultaneously and symmetrically. Many
possible perspectives can be investigated such as to generalize the results to other forms
of non-smooth transitions, for example corner ones, or to deal with multimodal p.w.s
systems.

References

[1] Aulbach, B. and Kieninger, B. On three definitions of Chaos. Nonlinear Dynamics and
Systems Theory 1 (1) (2001) 23–37.

[2] Banergee, S. and Grebogi, C. Border collision bifurcations in 2-dimensional piecewise
smooth maps. Phys. Rev. E 59 (4) (1999) 4052–4061.

[3] Banergee, S. and Karthik, M.S. and Yuan, G.H. and Yorke, J.A. Bifurcations in one-
dimensional piecewise smooth maps. IEEE. Trans. Circuits. Syst. I. 47 (3) (2002) 389–394.

[4] Benmerzouk, D. and Barbot, J-P. Grazing Analysis for Synchronization of Chaotic Hybrid
Systems. IFAC Nolcos 2007, Pretoria S. A., 2007.

[5] Benmerzouk, D. and Barbot, J-P. Chaotic behavior analysis based on sliding bifurcations.
Nonlinear Analysis: Hybrid Systems 4 (3) (2010) 503–512.

[6] di Bernardo, M. and Budd, C.J. and Champneys, A.R. Corner-collision implies border-
collision bifurcation. Physica D 154 (3-4) (2001) 171–194.

[7] di Bernardo, M. and Feigin, M.I. and Hogan, S.J. and Homer, M.E. Local analysis of C-
bifurcations in n-dimensional piecewise smooth dynamical systems. Chaos, solitons and
fractals 10 (11) (1999) 1881–1908.

[8] di Bernardo, M. and Budd, C.J. and Champneys, A.R. Normal form maps for grazing
bifurcations in n-dimensional piecewise-smooth dynamic systems. Physica D 160 (3-4)
(2001) 222–254.

[9] di Bernardo, M. and Budd, C.J. and Champneys, A.R. Unified framework for the analysis
of grazing and border-collisions in piecewise smooth systems. Physical Review Letters 86
(12) (2001) 2554–2556.

[10] di Bernardo, M. and Kowalczyk, A.R. and Nordmark, P. Bifurcations of dynamic systems
with sliding: Derivation of normal forms. Physica D 170 (3-4) (2002) 175–205.

[11] di Bernardo, M. and Tse, C.K. Chaos in power electronics: an overview. In: Chaos in
circuits and systems, Chapter 16. World Scientific, Singapore, 2002.

[12] di Bernardo, M. and Budd, M. and Champneys, C.J. and Kowalczyk, A.R. Piecewise
Smooth Systems: Theory and Applications”. Springer-Verlag, N◦ 163 Applied Mathematics
Series, 2007.

[13] M. di Bernardo, M.Budd, C.J.Champneys, A.R. Kowalczyk, P. Nordmark, G.O.Tost and
P.T. Piiroinen, Bifurcations in non-smooth dynamical systems. Siam Review 50 (4) (2008)
629–701.

[14] Bresis, H. Analyse Fonctionnelle, Théorie et Applications. Dunod, 1999.
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Abstract: The paper summarizes the studies of wave fields in structured non-
equilibrium media described by means of nonlocal hydrodynamic models. Due to
the symmetry properties of models, we derived the invariant wave solutions satis-
fying autonomous dynamical systems. Using the methods of numerical and quali-
tative analysis, we have shown that these systems possess periodic, multiperiodic,
quasiperiodic, chaotic, and soliton-like solutions. Bifurcation phenomena caused by
the variation of nonlinearity and nonlocality degree are investigated as well.
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1 Introduction

Open thermodynamic systems attract attention of scientists by their synergetic prop-
erties, their ability to produce localized nontrivial structures and order. Description
of such phenomena requires the creation of new and the refinement of already known
mathematical models.

According to [1–3], with the methods of non-equilibrium thermodynamics and the in-
ternal variables concept [6], the nonlinear temporally and spatially nonlocal mathematical
models have been constructed for non-equilibrium processes in media with structure. In
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this paper, we present the results of investigations of wave processes in such media. To
this end, we use the following hydrodynamic type system

ρ̇+ ρux = 0, ρu̇+ px = γρm,

1

ρ2
Γεr
τTP

{[

−ρxx (1 + a) +
1

ρ
(ρx)

2
(1− aΓV0)

]

+ [−ρ̈ (1 + a) +

+
2

ρ
ρ̇2

(

1−
a (ΓV0 − 1)

2

)

+
1

τTP
ρ̇ (1 + a)

]}

+ ω2
0ρ

1−ΓV0

0 ρΓV0 (1)

−ω2
0ρ0 = b (p− p0) + bτTVṗ−

χT0

χT∞

bτ2TVp̈− bΓεrτTV

(

pxx +
ρx
ρ
px

)

,

where

a = T0α∞ΓV0

(

ρ

ρ0

)ΓV0+1

, ω2
0 =

bc2S0α0T0

γ0
, b =

χT0

ρ0τ2TP

, χT0 = ρ−1
0 c−2

T0 = γ∞ρ−1
0 c−2

S0 ;

cT0, cS0 are the isothermal and adiabatic frozen velocities of sound; γ∞ is the frozen
polytropic index, γρm is the mass force.

Using the characteristic quantities t0, u0, ρ0, let us construct the scale transformation

t = t̄t0, x = x̄t0u0, p = p̄ρ0u
2
0, ρ = ρ̄ρ0, u = ūu0,

σ =
ΓεrτTV

(t0u0)2
, τpT = τTV

χT0

χT∞

, τ =
τTV

t0
, (2)

h =
χT0

χT∞

τ2, κ =
ω2
0

bu2
0

, χ =
1

ρ0u2
0χT∞

, a = δnρn+1, δ = T0α∞, ΓV 0 = n,

which leads system (1) to the dimensionless form

ρ̇+ ρux = 0, ρu̇+ px = γρm,
σχρ−2

[

−ρxx(1 + a) + ρ2xρ
−1(1− an)

]

+ hχ ρ−2
[

−ρ̈(1 + a) + 2ρ̇2ρ−1(1− 0.5a(n− 1)) + τh−1ρ̇(1 + a)
]

+κρn = p+ τ ṗ− hp̈− σ
(

pxx + ρxpxρ
−1

)

.

(3)

We would like to emphasize that system (3) can be regarded as a hierarchical set of
submodels which are complicated by taking new effects into account. We are thus going
to study the chain of nested models and to classify their wave solutions using the methods
of qualitative and numerical analysis.

The remainder of the paper is organized as follows. In Section 2 we begin our studies
with a simplified version of system (3) keeping the terms with the first temporal deriva-
tives, then attaching the terms with the second temporal or spatial derivatives. The form
of wave solutions and the description of techniques for their exploration are presented in
detail. Section 3 is devoted to the spatially nonlocal model which is used for investigat-
ing the Shilnikov homoclinic structures whose existence and bifurcations are extremely
important during chaotic regimes formation. The model incorporating both temporal
and spatial nonlocalities is presented in Section 4. Generalizations of the previous mod-
els by means of introducing the third temporal derivatives and incorporating physical
nonlinearity are given in Section 5 and Section 6, respectively. For all models we de-
rive invariant wave solutions and carry out the qualitative analysis of the corresponding
factor-systems.
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2 Wave Solutions of the Models with Dynamic Equation of State (DES)
Incorporating the Second Temporal or Spatial Derivatives

To begin with, let us consider the simplest model with relaxation derived from (3) at
δ = h = σ = 0, n = 1. As has been shown in [5, 6], the system

ρ̇+ ρux = 0, ρu̇+ px = γρ, τ(ṗ− χρ̇) = κρ− p, (4)

due to its symmetry properties [20], admits the ansatz

u = U(ω) +D, ρ = ρ0 exp (ξt+ S(ω)), p = ρZ(ω), ω = x−Dt, (5)

where D is the constant velocity of wave front, ξ determines a slope of the inhomogeneity
of the steady solution (5). According to [5], solutions (5) are described by the plane
system of ODE which possesses limit cycles and homoclinic trajectories.

If we incorporate the second temporal derivatives in the last equation of system (3),
then the previous DES is generalized to the following one:

τ (ṗ− χρ̇) = κρ− p− h

{

p̈+ χ

(

2

ρ
(ρ̇)

2
− ρ̈

)}

. (6)

This model takes into account the dynamics of internal relaxation processes in more
detail. As has been shown in [7], wave solutions (5) are described by the system of ODE
with three dimensional phase space. This system possesses the limit cycles undergoing
the period doubling cascade, and the chaotic attractors.

Consider now the model with relaxation and spatial nonlocality

τ (ṗ− χρ̇) = κρ− p+ σ

{

pxx +
pxρx
ρ

− χ

(

ρxx −
ρ2x
ρ

)}

. (7)

Solutions (5) satisfy the following dynamical system

U
dU

dω
= UW, U

dZ

dω
= γU + ξZ +W (Z − U2),

U
dW

dω
= {U2[τ(γU + ξZ −WU2) + χτW + Z − κ] (8)

+σ[(ξ +W )(2U(γ − UW ) + χW ) + (UW )2]}
[

σ(χ− U2)
]−1

.

This system has the fixed point

U0 = −D, Z0 =
κ

1− 2σ(ξ/D)2
, W0 = 0, γ =

ξZ0

D
(9)

which is the only one lying in the physical parameter range.
We start with analyzing the linearized at the fixed point (9) system (8) with the

matrix M̂

M̂ =





0 0 −D
γ ξ Z0 −D2

A B C



 ,

where

A =
Dκξ(2ξσ −D2τ)

Qσ(2ξ2σ −D2)
, B =

D2(1 + ξτ)

Q
, Q = σ(χ−D2),

C = Q−1

{

ξσ
(

χ−D2
)

−
2D2κξσ

D2 − 2ξ2σ
+D2τ

(

χ−D2
)

}

.
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a b

Figure 1: Bifurcation diagrams of system (8) in the plane (D2, Z) obtained for χ = η = 50, ξ =
1.8, τ = 0.1, σ = 0.76 and κ = 14 (a), κ = 1 (b).

The well-known Andronov-Hopf bifurcation theorem [21] tells us that periodic solution
creation can take place if the spectrum of matrix M̂ is (−α;±Ωi). This is so if the
following relations hold:

α = ξ + C > 0, (10)

Ω2 = AD −B
(

Z0 −D2
)

+ ξC > 0, (11)

αΩ2 = ξ (AD − Z0B) > 0. (12)

The first two take on the form of inequalities imposing some restrictions on the param-
eters. The third one determines the neutral stability curve (NSC) in the space

(

D2;κ
)

provided that the remaining parameters are fixed. For σ = 0.76, ξ = 1.8, τ = 0.1,
χ = 50, it looks like a parabola with branches directed from left to right, see Figure 2a.
Crossing the NSC from right to left, we observe the limit cycle appearance. Development
of limit cycle at decreasing D2 is convenient to study by means of the Poincaré section
technique [13, 22].

Let us choose the plane W = 0 as an intersecting one and find coordinates of intersec-
tion points of phase curves which cross-sect the intersecting plane only in one direction.
Plotting coordinate Z of the cross-section point along the vertical axis, and the value
of the bifurcation parameter D2 along the horizontal one, we will obtain the typical bi-
furcation diagrams in (Figure 1). From the analysis of diagram Figure 1a we can see
that while parameter D2 decreases the development of the limit cycle coincides with the
Feigenbaum scenario, followed by the creation of a chaotic attractor. Moreover, in the
vicinity of the main limit cycle there are the hidden attractors (designated in Figure 1a
by the symbols I and II). These attractors can be visualized by the integrating of system
(8) with special initial data only.

In Figure 1b we see the torus development at decreasing D2. According to the
diagram, we can distinguish tori with densely wound trajectories and striped tori.

Proceeding in the same way, we get the two-parameter bifurcation diagram (Figure 2)
which shows that system (8) possesses the periodic, multiperiodic, quasiperiodic, and
chaotic trajectories.

Such a complicated structure of the phase space of the system can be coursed by
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a b

Figure 2: Left: bifurcation diagram of system (8) in parametric space (D2, κ): 1 – stable focus;
2 – 1T -cycle; 3 – torus; 4 – multiperiodic attractor; 5 – chaotic attractor; 6 – loss of stability.
Right: enlargement of part of the left figure: 6 – 3T -cycle.

homoclinic trajectory existence.

3 Homoclinic Loops of Shilnikov Type and Their Bifurcations

It is worth noting that existence of homoclinic trajectories, i.e. loops consisting of the
separatrix orbits of hyperbolic fixed point, plays a crucial role [16,19] in the formation of
localized regimes (solitary waves) in the phase space of dynamical system. It turned out
that the incorporation of spatial nonlocality causes the creation of solitary waves with
oscillating tails, whereas the well-known soliton equations have solutions with monotonic
asymptotics or compact support (compactons) [17].

For the present, the problem on the existence of homoclinic trajectory of Shilnikov
type [18, 21] in system (8) has been treated numerically.

We investigate a set of points of parameter space (D2, κ) for which the trajectories
moving out of the origin along the one-dimensional unstable invariant manifoldWu return
to the origin along the two-dimensional stable invariant manifold W s. In practice, for
the given values of parameters κ, D2, we numerically define a distance (the counterpart
of split function in [18], p. 198) between the origin and the point (XΓ(ω), Y Γ(ω),WΓ(ω))
of the phase trajectory Γ

(

·; κ, D2
)

:

fΓ
(

κ, D2; ω
)

=

√

[XΓ(ω)]
2
+ [Y Γ(ω)]

2
+ [WΓ(ω)]

2
,

starting from the fixed Cauchy data (0, 0, 0.001). Next we determine

Φ(κ, D2) = min
ω

{fΓ} (13)

for the part of the trajectory which lies beyond the point at which the distance gains
its first local maximum, providing that it still lies inside the ball centered at the origin
and having a fixed (sufficiently large) radius (for this case fΓ(ω) ≤ 5). The results are
presented in Figure 3. The first one is of the most rough scale in this series. Here, white
color marks the values of parameters κ, D2 for which Φ > 1.2, light grey corresponds to
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a b

Figure 3: a) Projection of the homoclinic solution of system (8) onto the (X,W ) plane. b)
A portrait of subset of parameter space (D2, κ), corresponding to different intervals of function
fΓ
min(D

2, κ) values and the following Cauchy data: X(0) = Y (0) = 0, W (0) = 0.001: fΓ
min > 1.2

for white colour; 0.6 < fΓ
min ≤ 1.2 for light grey; 0.3 < fΓ

min ≤ 0.6 for grey; 0.01 < fΓ
min ≤ 0.3 for

dark grey; fΓ
min ≤ 0.01 for black.

the cases when 0.9 < Φ < 1.2 and so on (further explanations are given in the subsequent
captions). The black coloured patches correspond to the case when Φ < 0.01. In [11] the
structure of the set of points in Figure 3b has been studied in more detail.

4 Models with DES taking spatial and temporal nonlocalities into account

Combining the models (6) and (7), we obtain the following spatio-temporal nonlocal
model

τ (ṗ− χρ̇) = κρ− p+ σ

{

pxx +
1

ρ
pxρx − η

(

ρxx −
ρ2x
ρ

)}

−h

{

p̈+ η

(

2

ρ
(ρ̇)2 − ρ̈

)}

. (14)

This model has been studied in [8,14], when the parameters h and σ are regarded as small
quantities, i.e., equations (6) and (7) are perturbed by the terms with high derivatives.
It turned out that the wave localized regimes are saved under perturbations and undergo
some smooth changes.

5 Models Involving DES with the Third Temporal Derivatives

If we need to describe the relaxing processes in more detail, then we can incorporate the
terms with the third temporal derivatives in DES (14). In such case DES has the form [3]

τ (ṗ− χρ̇) = κρ− p+ σ

{

pxx +
1

ρ
pxρx − χ

(

ρxx −
1

ρ
(ρx)

2

)}

−h

{

p̈+ χ

(

2

ρ
(ρ̇)2 − ρ̈

)}

+
h2

τ

...
p +

h2χ

τ

{

−
6ρ̇3

ρ2
+

6ρ̇ρ̈

ρ
−
...
ρ

}

. (15)
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Solutions (5) satisfy the following dynamical system

U
dU

dω
= UW, U

dZ

dω
= γU + ξZ +W (Z − U2), U

dW

dω
= UR,

U
dR

dω
=

(

bU3
(

χ− U2
))−1

{−κU2 + ηξσW − 2ξσU2W + χτU2W − hξU4W

+bξ2U4W − τU4W + ησW 2 + (χh− σ)U2W 2 − hU4W 2 + bξU4W 2 − bχU2W 3(16)

+bU4W 3 + γ
(

2ξσU + hξU3 − bξ2U3 + τU3 + 2σUW
)

+ U2Z + hξ2U2Z

−bξ3U2Z + ξτU2Z +
(

−ησU + U3
{

σ + χh− 4bχW − hU2 + bξU2 + 4bWU2
})

R},

where b = h2/τ , and quadrature

U
dS

dω
= − (W + ξ) .

The fixed point of this system has the coordinates

U0 = −D,Z0 =
κD2

D2 − 2σξ2
,W0 = 0, R0 = 0. (17)

The conditions under which the linearized matrix

M̂ =









0 0 a1 0
a2 a3 a4 0
0 0 0 a5
a6 a7 a8 a9









=









0 0 −D 0
γ ξ Z0 −D2 0
0 0 0 −D
a6 a7 a8 a9









, (18)

a6 =
κξ

(

−2ξσ +D2
(

hξ − bξ2 + τ
))

∆D (2ξ2σ −D2)
, a7 = −

1 + hξ2 − bξ3 + ξτ

∆
,

a8 =
ξσ (2Z0 − η) +D4

(

hξ − bξ2 + τ
)

−D2 (χτ − 2ξσ)

D2∆
,

a9 =
χD2h−D4h+ bD4ξ +D2σ − ησ

D∆
, ∆ = bD

(

χ−D2
)

admits the spectrum (±Ω2i;−α1;−α2) have the form

B2 =
B1

B3
+B0

B3

B1
, B2

3 − 4B0
B3

B1
≥ 0, (19)

where B3 = −a3 − a9, B2 = a3a9 − a5a8, B1 = a5 (a3a8 − a1a6 − a4a7), B0 =
a1a5 (a3a6 − a2a7) are the coefficients of characteristic polynomial for the matrix M̂ .

If we fix the parameters χ = η = 30, ξ = −1.9, h = 1, τ = 1, b = 1, σ = 2.7,
then in the plane (D2, κ) equation (19) defines the NSC. Crossing this curve at the point
A(2.2852; 3.7), one can observe the appearance of the limit cycle at D2 ≥ 2.2852.

In the Poincaré diagram depicted at increasing D2 (Figure 4) we can identify the
moments of several period doubling bifurcations leading to the chaotic attractor creation.
But the chaotic attractor existing at a short interval of parameter D2 is destroyed.
Instead of it in the phase space of system (16) the complicated periodic trajectory in the
shape of a loop (Figure 5a) appears.
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a b

Figure 4: a) Neutral stability curve in the plane (D2; κ). b) The bifurcation Poincaré diagram
at increasing D2

Consider also the development of oscillating regimes whose basins of attraction are
separated from the basin of attraction of the main limit cycle. Integrating dynamical sys-
tem (16) from initial conditions (0; 0; 0; 0.01) at D2 = 2.722, we see that the phase space
of the system, in addition to the main limit cycle, contains the complicated trajectory
(Figure 5,a) which can be regarded as a hidden attractor. From the analysis of Poincaré
diagram (Figure 6a) it follows that the system weakly responds to the growing of the
parameter D2 until D2 = 2.7445. When D2 > 2.7445, the system jumps to another type
of oscillations followed by chaotic regime creation.

If we plot the Poincaré diagram at decreasing D2 (Figure 6b) starting from the
chaotic attractor, then we observe the periodic trajectory (Figure 5b) that differs from
the initial regime (Figure 5a). Note that the periodic trajectory in Figure 5b can be
revealed directly by the integration from the initial conditions (0; 0; 0; 0.1).

a b

Figure 5: Phase portraits of separated trajectories derived at D2 = 2.722, κ = 3.7, b = 1 and
under different initial conditions.
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a b

Figure 6: The bifurcation Poincaré diagram of development of separated regime at increasing
D2 (a) and decreasing D2. Here b = 1.

6 DES with Physical Nonlinearity and Second Derivatives

Till now we dealt with the models without physical nonlinearity. Generalizing the pre-
vious models in this direction, we obtain the following model [13]

σχρ−2
[

−ρxx (1 + a) + ρ2xρ
−1 (1− na)

]

+hχρ−2[−ρ̈ (1 + a) + 2ρ̇2ρ−1 (1− 0.5a(n− 1))

+τh−1ρ̇ (1 + a)] + κρn = p+ τ ṗ− hp̈− σ
(

pxx + ρxpxρ
−1

)

, a = δnρn+1.

(20)

Properties of solutions to system (20) can be found out using the symmetry of the system
with respect to the Galilei group [20]. One can ascertain by direct verification that system
(20) allows the operator

X̂ =
1

2ξ

∂

∂t
+ t

∂

∂x
+

∂

∂u
.

Let us construct an anzatz with its invariants

ρ = R(ω), p = P (ω), u = 2ξt+ U(ω), ω = x− ξt2, (21)

where parameter ξ is proportional to acceleration of the wave front. Substitution by (21)
into the system yields the following quadrature

UR = C = const

and the dynamical system

R′ = W, P ′ = γRm − 2ξR+
C2

R2
W,

W ′ = −(κRn+3 − PR3 − P ′R2Cτ − hP ′C2W

+P ′R2σW + γmR2+mσW + χLτCW + γhmRmC2W

+hχL(CWR−1)2 − 2C2σW 2 + χMσW 2 − 2C4hR−2W 2

+2hχNC2R−2W 2 − 2R3σWξ − 2hRC2Wξ)×

((C2 − χL)R(σ + hC2R−2))−1,

(22)
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where (·)′ =
d

dω
(·) , L = 1 + a,M = 1− an,N = 1− 0.5a(n− 1), a = δnRn+1.

The single isolated equilibrium (neglecting the trivial) point has the following coor-
dinates

R0 =

(

2ξ

γ

)
1/m− 1

, P0 = κRn
0 , W0 = 0. (23)

At this point the linearized matrix M̂ has the form

M̂ =





0 0 1
a1 0 a2
a3 a4 a5



 , (24)

where

a1 = 2ξ(n− 1), a2 = C2R−2
0 , a4 = R2

0∆
−1,

a3 = (2C3h
[

C2 − χL
]

τ [γRm
0 − 2ξR0]R

−2
0

+Cχ(n+ 1)(L− 1)τ∆− C
[

C2 − χL
]

τ∆

−
[

C2 − χL
] (

C2hR−2
0 + σ

)

×
(

κnR1+n
0 − Cτ (γ(2 +m)Rm

0 − 6ξR0)
)

)/∆2,

a5 = (C2γh (nRn
0 −Rm

0 )− C3τ + CχLτ

+R2
0σ (γ [Rm

0 + nRn
0 ]− 4R0ξ))/R0∆,

∆ =
(

C2 − χL
) (

C2hR−2
0 + σ

)

.

The NSC for system (22) has the following form

G (ξ, σ, n, h, τ, κ, χ) ≡ a5 (a3 + a2a4) + a1a4 = 0. (25)

Let us make the values of parameters fixed as follows:

γ = 1, χ = 10, C = −2.8, σ = 0.2,

τ = 1.1, h = 3.2, δ = 1.4, n = m = 3.2.

Condition (25) allows us to find numerically the value of ξ0 = 0.157 corresponding to
birth of the limit cycle.

Let us consider in more detail the influence on the revealed regimes of parameters
n and δ changes, which determine nonlinearity of the medium in the dynamic equation
of state. Let us make the value of parameter ξ = 0.35 fixed, then there is a limit cycle
with period 2T in the space of the system, and we construct the bifurcation diagram
presented in Figure 7a.

The diagram reveals some peculiarities of system (22) behaviour. In particular, we
would like to pay attention to the presence of a ”special” point in the parameter plane
surrounded by four different types of solutions. One can also see the ”windows” of
periodicity (area 6) in the chaotic area. To find out the structure of phase space in more
detail near area 6, one-parametric Poincaré diagrams were plotted [13].

It turns out that abrupt reconstruction of the chaotic attractor structure can be ob-
served, which is probably caused by the interaction of two (or more) co-existing attractors
of the dynamic system. We also reveal that the chaotic trajectory is localized in a more
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a b

Figure 7: a) The two-parametric bifurcation diagram in case of γ = 1, χ = 10, C = −2.8,
τ = 1.1, σ = 0.2, κ = 0.9, h = 3.2, ξ = 0.35, m = 3.2; b) The Poincaré bifurcation diagram
for development of the torus in case of δ = 0.4, n = 3.2 (for other values of parameters see
Figure 7a) and increasing σ, where graph I is the basic limit cycle, graph II – complicated
periodic trajectory with separated region of attraction.

a b

Figure 8: a) The Poincaré cross-section of the torus surface in case of σ = 14 b) The Poincaré
cross-section of the chaotic attractor in case of σ = 14.6. Fixed parameters γ = 1, χ = 10,
C = −2.8, τ = 1.1, κ = 0.9, h = 3.2, δ = 0.4, ξ = 0.35, n = m = 3.2.
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a b

Figure 9: a) The bifurcation diagram at increasing n. b) The graph of dependence Wi+1 vs
Wi at n = 4.25. The fixed values of parameters γ = 1.49, χ = 50, C = −1.5, τ = 0.1, κ = 1.9,
σ = 0.2, h = 0.9, ξ = 0.18, δ = 0.8.

narrow area of phase space of system (22), stipulating the appearance of a specific win-
dow (area 6) of periodicity with a decrease of n. Analysis of two-parametric bifurcation
diagrams for κ > 0.9 shows that the area of existence of chaotic attractors increases and
the windows of regular behaviour in case of the increasing κ are shifted towards higher
values of the nonlinearity parameter n.

A crucially different set of bifurcations is observed in case of a change of parameter
σ.

Let us fix the values of parameters γ = 1, χ = 10, C = −2.8, τ = 1.1, κ = 0.9,
h = 3.2, ξ = 0.35, n = m = 3.2 and δ = 0.4. Integrating system (22) with the initial data
(0, 0, 0.01) and σ = 5 within phase space near the equilibrium point, in addition to the
limit cycle, other periodic trajectory has been found with a separated pool of attraction
(development of this regime with increasing of σ is presented in Figure 7b graph II).

The presence of such a regime leads to the assumption on the existence of quasi-
periodic regimes. To look for such a regime let us plot a bifurcation diagram of Poincaré
for development of basic limit cycle in case of increasing parameter σ (Figure 7b graph
I).

Another bifurcation, leading to the appearance of the toroidal surface, has been dis-
covered in this system. An intersection of the toroidal attractor with the plane y3 = 0
forms a closed curve, shown in Figure 8a. A further increase of parameter σ causes
the synchronization of tore frequencies, and finally an abrupt increase of vibrations am-
plitude, which shows the creation of a crucial new dynamical behavior. To clarify the
character of the produced regime, let us analyze the Poincaré section for the case of
σ = 14.6 (Figure 8b). The plotted cross-section is specific for chaotic attractor, which
provides reasons for statements on the existence of bifurcation of a quasi-periodic regime
with a producing chaotic attractor.

It turned out that system (22) provides another type of chaotic attractor creation,
namely, intermittency. Let us fix γ = 1, χ = 50, C = −1.5, τ = 0.1, κ = 1.9, σ = 0.2,
h = 0.9, ξ = 0.18.

Plotting the Poincaré bifurcation diagram (Figure 9a), we see that a limit cycle
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undergoes several period doubling bifurcations resulting in the chaotic attractor creation.
But the development of chaotic attractor is interrupted suddenly and new complicated
periodic trajectory appears which bifurcates in chaotic attractor as well at increasing n.
Considering the hereditary sequences (Figure 9b) for chaotic trajectories, we found that
the graph of the map Wi+1 = f(Wi) is close to the bissectrice at n = 4.25. As in the
case with the Lorentz system, existence of narrow passage leads to the alternation of the
chaotic and regular behavior of the system trajectories.

7 Conclusions

Finally, we have studied the hierarchical sequences of the mathematical models for non-
equilibrium media. Analyzing the wave fields in such media we have shown that the
derived models possess wide set of localized wave regimes. In particular, the models with
relaxation admit periodic, multiperiodic and chaotic solutions. Spatially nonlocal models
have in addition quasiperiodic and solitary wave solutions. All the models demonstrate
most bifurcations and scenarios of chaotic regimes creation. The equations of state uti-
lized in this paper are suitable for developing other models of complicated nonequilibrium
systems [23].

On the other hand, identifying internal variables with parameters undergoing fluctu-
ations, one can consider these investigations as the problem on the dissipative structures
creation under the influence of noise.
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1 Introduction

Any natural or manmade systems involve interactions between its constituients, which
can be considered as interconnections between them. These interconnections form a
network, which can be expressed by a graph [12, 2]. Also, graphs arise naturally when
one models organizational structures in social sciences [10]. It has been observed that
while many social phenomena change with respect to time, modeling them using static
graphs has limited the study. Thus a dynamic graph, a graph that changes with time
was introduced [12]. This also led to the concept of a rate of change of a graph with
respect to time and a graph differential equation [12]. These concepts were introduced
and successfully utilized to study the stability of complex dynamic systems through its
associated adjacency matrix [12].
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In [13] the author and her group have utilized the concepts defined in [12] including
a graph linear space and its associated matrix linear space. Observing that the study
of graph differential equations (GDEs) falls into the realm of differential equations in
abstract spaces, the author and her group planned to study GDEs through the associated
matrix differential equations (MDEs). This approach appeared to be more reasonable
and practical for the study of GDEs. Hence in [13], a weighted directed simple graph
was considered as a basic element and existence and uniqueness results were obtained by
using monotone iterative technique for the MDE. It is interesting to note that in 2008 a
comparison principle for matrix differential equations was developed by Martynyuk [8]. It
was realized that simple graphs have no loops and hence in terms of applications a simple
graph is not a correct representative of a social structure. This led to the definition of a
pseudo simple graph in [14]. Also in [14] a proposition was made that the non linearity of
a prey predator model can be preserved using graphs. In [3, 11, 13, 15] many results have
been obtained for MDEs and its associated GDEs in terms of iterative techniques and
basic theory. With the basic theory well placed the question of studying the qualitative
theory of MDEs and its associated GDEs came to the fore. In this direction there is a
paper dealing with the stability of dynamic graphs on time scales [2].

The Lyapunov second method, with its advantage of not requiring the knowledge
of solutions, has gained increasing significance and gave impetus for developments in
the stability theory of differential equations [5]. It is now recognized that the Lyapunov
function can be considered to define a generalized distance and can be employed to study
various qualitative and quantitative properties of dynamic systems. Further, Lyapunov
function serves as a vehicle to transform a given completed differential system into a
relatively simpler system and as a result, it is enough to study the properties of solutions
of the simpler system.

It was observed that at times a single Lyapunov function might not cater to the
needs of a problem and hence a vector Lyapunov function [6] was introduced. In another
direction new concepts of stability were defined to be on par with the real world situations.
Concepts like partial stability, eventual stability and practical stability were introduced.
This posed the question of the possibility of unification of all the definitions. As an
answer the concept of stability in terms of two measures [7] was introduced. At this
stage, it is appropriate to mention that the study of stability of physical applications
is quite appealing. In this context we refer to the following two papers dealing with
stability for real world problems [9] and mechanical systems with swiching linear force
fields [1].

In this paper, an attempt has been made to study the qualitative theory of MDEs and
its associated GDEs using the Lyapunov function and the concept of stability in terms
of two measures. The theory is well supported with examples. Further, a comparison
method wherein the Lyapunov function is used to simplify the complicated MDE is given.

2 Preliminaries

In this section, we introduce all the necessary notation and results that have been devel-
oped in earlier works.

Definition 2.1 Pseudo simple graph: A simple graph having loops is called a
pseudo simple graph.

Let v1, v2, ...vN , be N vertice, where N is any positive integer. Let DN be the set of
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all weighted directed pseudo simple graphs D=(V, E). Then (DN ,+, .) is a linear space
with respect to the operations + and . defined in [12, 13].

Let the set of all matrices be R
N×N . Then (RN×N ,+, .) is a matrix linear space

where ’+’ denotes matrix addition and ’.’ denotes multiplication of a matrix by a scalar.

Definition 2.2 Continuous and differentiable matrix function:

(1) A matrix function E : J → R
N×N defined by E(t) = (eij(t))N×N is said to be

continuous if and only if each entry eij(t) is continuous for all i, j = 1, 2, . . . , N where
eij : J → R.
(2) A continuous matrix function E(t) is said to be differentiable if and only if each entry
eij(t) is differentiable for all i, j = 1, 2, . . . , N . The derivative of E(t) (if it exists) is
denoted by E′(t) and is given by E′(t) = (e′ij(t))N×N .

Definition 2.3 Continuous and differentiable graph function: Let D : J →
DN be a graph function and E : J → R

N×N be its associated adjacency matrix function.
Then

(1) D(t) is said to be continuous if and only if E(t) is continuous.
(2) D(t) is said to be differentiable if and only if E(t) is differentiable.

Consider the initial value problem

D′ = G(t,D), D(t0) = D0, (2.1)

where G ∈ C[J×DN , DN ] and J = [t0, T ]. The derivative of a graph function D denoted
by D′ is the graph function whose edges have weight functions that are derivatives of the
weight functions of the corresponding edges of D.

The integral of a graph function D denoted by
∫
D dt is the graph function whose

edges have weight functions that are integrals of the weight functions of the corresponding
edges of D. With the above definitions the initial value problem (IVP) of GDE (2.1) can
be written as the graph integral equation

D(t) = D0 +

∫ t

t0

G(s,D(s))ds. (2.2)

Now using the isomorphism between graphs and matrices we observe that the graph
function G(t,D) will be isomorphic to some matrix function F (t, E), and corresponding
to (2.1) and (2.2), we can consider the IVP of matrix differential equation

E′ = F (t, E), E(t0) = E0, (2.3)

and the matrix integral equation

E(t) = E0 +

∫ t

t0

F (s, E(s))ds, (2.4)

where E0 is the adjacency matrix of D0.
In the following sections, we study stability results for the MDE and using the iso-

morphism that exists between graphs and matrices, we obtain similar results for the
corresponding GDE. In order to do so we begin with the following definitions.
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Definition 2.4 Stability: Consider the differential system

E′ = F (t, E), E(t0) = E0, t ≥ t0, (2.5)

where F ∈ [R+×R
N×N ,RN×N ]. Suppose that the function F is smooth enough to guar-

antee existence, uniqueness and continuous dependence of solutions E(t) = E(t, t0, E0)
of (2.5). Before proceeding further, we introduce the following classes of functions which
are needed in our work

K = {a ∈ C[R+, R+] : a(u) is strictly increasing in u and a(0) = 0},

L = {σ ∈ C[R+, R+] : σ(u) is strictly decreasing in u and limu→∞σ(u) = 0},

KL = {a ∈ C[R2
+, R+] : a(t, s) ∈ K for each s and a(t, s) ∈ L for each t},

CK = {a ∈ C[R2
+, R+] : a(t, s) ∈ K for each t},

Γ = {h ∈ C[R2
+ × R

N×N , R+] : inf{t,E}h(t, E) = 0},

Γ0 = {h ∈ Γ inf h(t, E) = 0 for each t ∈ R+}.

We are ready to define various stability concepts for the system (2.3) in terms of two
measures h0, h ∈ Γ.

Definition 2.5 The differential system (2.3) is said to be
(S1) (h0, h) -equi-stable if, for each ǫ > 0, t0 ∈ R+, there exists a positive function

δ = δ(t0, ǫ) that is continuous in t0 for each ǫ such that h0(t0, E0) < δ implies
h(t, E(t)) < ǫ, t ≥ t0 where E(t) = E(t, t0, E0) is any solution of the system (2.5)

(S2) (h0, h)-uniformly stable if the δ in (S1) is independent of t0;
(S3) (h0, h)-equi-attractive-uniformly stable, if for each ǫ > 0 and t0 ∈ R+ there exist

positive constants δ0 = δ(t0) and T = T (t0, ǫ) such that h0(t0, E0) < δ0
implies that h(t, E(t)) < ǫ, t ≥ t0 + T ;

(S4) (h0, h)-uniformly attractive, if (S3) holds with δ0 and T being independent of t0;
(S5) (h0, h)-equi-asymptotically stable if (S1) and (S3) hold simultaneously;
(S6) (h0, h)-uniformly-asymptotically stable if (S2) and (S4) hold together;
(S7) (h0, h)-equi attractive in the large if for each ǫ > 0 and α > 0 and

t0 ∈ R+, there exists a positive number T = T (t0, ǫ, α) such that h0(t0, E0) < α
implies h(t, E(t)) < ǫ, t ≥ t0 + T ;

(S8) (h0, h)-uniformly attractive in the large if the constant T in (S7) is independent
of t0;

(S9) (h0, h)-unstable if (S1) fails to hold.

In order to understand the generality of the above stability definitions refer to [ P. 5,6 of
[7] ] where examples are given.

Next, we need the following definitions.

Definition 2.6 Let h0, h ∈ Γ. Then we say that
(i) h0 is finer than h if there exist a ρ > 0 and a function φ ∈ CK such that

h0(t, E) < ρ implies h(t, E) ≤ φ(t, h0(t, E));
(ii) h0 is uniformly finer than h if in (i) φ is independent of t;
(iii) h0 is asymptotically finer than h if there exist a ρ > 0 and a function KL such

that h0(t, E) < ρ implies h(t, E) ≤ φ(h0(t, E), t).
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Definition 2.7 Let V ∈ C[R+ × R
N×N , R+] then V is said to be

(i) h-positive definite if there exist a ρ > 0 and a function b ∈ K such that
b(h(t, E)) ≤ V (t, E) whenever h(t, E) ≤ ρ;

(ii) h- decrescent if there exist a ρ > 0 and a function a ∈ K such that
V (t, E) ≤ a(h(t, E)) whenever h(t, E) < ρ;

(iii) h-weakly decrescent if there exist a ρ > 0 and a function a ∈ CK such that
V0(t, E) ≤ a(t, h(t, E)) whenever h(t, E) < ρ;

(iv) h-asymptotically decrescent if there exist a ρ > 0 and a function a ∈ KL
such that V (t, E) ≤ a(h(t, E), t) whenever h(t, E) < ρ.

For any function V ∈ C[R+ × R
N×N , R+] we define the function

D+V (t, E) = lim
δ→0+

= sup
1

δ
[V (t+ δ, E + δF (t, E))− V (t, E))] (2.6)

for (t, E) ∈ R+ × R
N×N .

Let E(t) be a solution of (2.3) existing on [t0,∞) and V (t, E) be locally Lipschitzian
in E . Then, given t ≥ t0, there exists a neighbourhood U of (t, E(t)) and an L > 0 such
that |V (τ, ζ)− V (τ, η)| ≤ L||ζ − η|| for (τ, ζ), (τ, η) ∈ U.

3 Lyapunov Theorems in Two Measures

In this section we propose to state and prove the theorems due to Lyapunov in terms
of two measures for GDEs through its associated MDEs. Though the two theorems of
Lyapunov deal with uniform stability and uniform asymptotic stability, we begin with
a result on equi stability. We weaken the condition of differentiability of the Lyapunov
function by assuming continuity and that it possesses a Dini derivative. We consider the
IVP of MDE given by

E′ = F (t, E), E(t0) = E0, t ≥ t0, (3.1)

where F ∈ C[R+ × R
N×N ,RN×N ].

Theorem 3.1 Assume that
(H1) V ∈ C[R+ ×R

N×N ,R+], h ∈ Γ, V (t, E) is locally Lipschitzian in E and h-positive
definite;

(H2) D+V (t, E) ≤ 0, (t, E) ∈ S(h, ρ) = {(t, E) ∈ R+ × R
N×N , h(t, E) < ρ, ρ > 0};

(H3) h0 ∈ Γ, h0 is finer than h and V(t,E) is h0 weakly decrescent. Then the system
(3.1) is (h0, h)− equi stable.

Proof. From the hypothesis (H1), V is h-positive definite, hence there exist a positive
constant ρ0 ∈ (0, ρ) and a function b ∈ K such that

b(h(t, E)) ≤ V (t, E) whenever h(t, E) ≤ ρ0. (3.2)

By hypothesis (H2), V(t,E) is h0− weakly decrescent, therefore for t0 ∈ R+, E0 ∈ R
N×N ,

there exist a constant δ0 = δ(t0) > 0 and a function a ∈ K such that h0(t0, E0) < δ0
implies

V (t0, E0) ≤ a(t0, h0(t0, E0)). (3.3)
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Further, the fact that h0 is finer than h implies that there exist a constant δ1 = δ1(t0) > 0
and a function ψ ∈ CK such that

h(t0, E0) ≤ ψ(t0, h(t0, E0)) whenever h(t0, E0) < δ1, (3.4)

where δ1 is chosen so that (t0, δ1) < ρ0. Let ǫ ∈ (0, ρ0) and t0 ∈ ψ+ be given. Since
a ∈ CK, there exists a δ2 = δ2(t0, ǫ) > 0 that is continuous in t0 such that

a(t0, δ2) < b(ǫ). (3.5)

Choose δ(t0) = min{δ0, δ1, δ2}. Then, using the fact that h(t0, E0) < δ0 and the relations
from (3.2) to (3.5) we get

b(h(t0, E0)) ≤ V (t0, E0) ≤ a(t0, h0(t0, E0)) < b(ǫ), (3.6)

which in turn yields that h(t0, E0) < ǫ. We claim that for every solution E(t) =
E(t, t0, E0) of (3.1) satisfying h(t0, E0) < δ, we have

h(t, E(t)) < ǫ, t ≥ t0. (3.7)

If this is not true, there exists a t1 > t0 such that

h(t1, E(t1)) = ǫ and h(t, E(t)) < ǫ, t ∈ [t0, t1], (3.8)

for some solution E(t, t0, E0) of (3.1). Set m(t) = V (t, E(t)), for t ∈ [t0, t1] and using
the fact that V is Lipschitzian in E and the definition of D+V (t, E) we arrive at

D+m(t) ≤ 0, which implies by Lemma 1.1 [4] , that m(t) is nonincreasing in [t0, t1],
that is V (t, E(t)) is nonincreasing in [t0, t1], which yields V (t1, E(t1)) ≤ V (t0, E(t0)).
On combining the relations from (3.5) to (3.8), we obtain

b(ǫ) = V (t1, E(t1)) ≤ V (t0, E(t0)) ≤ a(t0, h0(t0, E0(t0))) < b(ǫ) (3.9)

which is a contradiction. Hence (3.7) holds, which means that E(t) < ǫ for all t ≥ t0.
The proof is complete.

Theorem 3.2 Assume that the hypotheses (H1) and (H2) of Theorem 2.1 hold. Fur-
ther assume that h0 ∈ Γ, h0 is uniformly finer than h, and V (t, E) is h0− decrescent.
Then the system (3.1) is (h0, h)− uniformly stable.

Proof. Since h0 is uniformly finer than h and V (t, E) is h0− decrescent, there exist
functions a ∈ K and ψ ∈ K such that

h(t0, E0) ≤ ψ(h0(ǫ)), (3.10)

V (t0, E0) ≤ a(h0(ǫ)). (3.11)

Working along the lines of the proof of Theorem 3.1, the relations (3.2), (3.5), (3.9)
together with the relations (3.10) and (3.11) yield the uniform stability of system (3.1).
The proof is complete.

Theorem 3.3 Assume that
(i) h0, h ∈ Γ and h0 is uniformly finer than h;
(ii) V ∈ C[R+ × R

N×N ,R+], V (t, E) is locally Lipschitzian in E, h-positive definite,
h0− decrescent and

D+V (t, E) ≤ −c(h0(t, E)), (t, E) ∈ S(h, ρ), c ∈ K. (3.12)

Then the system (3.1) is (h0, h)-uniformly asymptotically stable.
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Proof. Since V (t, E) is h-positively definite and h0-decrescent, there exist constants
ρ0, δ0 with 0 ≤ ρ0 ≤ ρ, δ0 > 0 and functions a, b ∈ K such that

b(h(t, E)) ≤ V (t, E), (t, E) ∈ S(h, ρ0) (3.13)

and

V (t, E) ≤ a(h0(t, ǫ)), whenever h0(t, E) < δ0. (3.14)

Since the hypothesis of Theorem 3.2 is satisfied, the system (3.1) is (h0, h)-uniformly
stable. Thus setting ǫ = ρ0, there exists a δ1 = δ1(ρ0) > 0 such that h0(t0, E0) < δ
implies h(t, E(t)) < ρ0, t ≥ t0, where E(t) = E(t, t0, E0) is any solution of the system
(3.1).

Let 0 < ǫ < ρ0. Then the (h0, h) uniform stability of the system (3.1) yields a
δ = δ(ǫ) such that h0(t0, E0) < δ implies h(t, E(t)) < ǫ, t ≥ t0. Taking δ = min{δ0, δ1},
we assume that h0(t0, E0) < δ, and choose T = T (ǫ) = a(δ)/c(δ) + 1.

To show that the system (3.1) is (h0, h)-uniformly stable, it is enough to show that
there exists a t ∈ [t0, t0+T ] such that h0(t, E(t)) < δ. If the above relation does not hold,
then there exists a solution E(t) = E(t, t0, E0) of the system (3.1) with h0(t0, E0) < δ
such that

h(t, E(t)) ≥ δ, t ∈ [t0, t0 + T ]. (3.15)

Let m(t) = V (t, E(t)). Then, since V (t, E) is locally Lipschitzian in E, taking Dini
derivative we get D+m(t) ≤ D+V (t, E(t)) ≤ −c[h0(t, E(t))], t ≥ t0, which yields

m(t0 + T )−m(t0) ≤ −
∫ t0+T

t0
c(h0(s, E(s)))ds. Thus

∫ t0+T

t0
(h0(s, E(s)))ds ≤ m(t0)−m(t0 + T ) ≤ V (t, E(t0)) ≤ a(h0(t0, E(t0))) < a(δ).

On the other hand,∫ t0+T

t0
c(h0(s, E(s)))ds ≥ c(δ)T = c(δ).a(δ∗)/c(δ) + 1 = a(δ̂ + 1) > a(δ∗),

which is a contradiction. Thus, the proof of the theorem is complete.

Now we proceed to consider the IVP of GDE given by

D′ = G(t, E), D(t0) = D0, (3.16)

where G ∈ C[R+ × DN , DN ]. In order to study the stability properties of the system
(3.16), we use the existence of an isomorphism between graphs and matrices and state
and prove the following theorem.

Theorem 3.4 Assume that there exists a function F (t, E) isomorphic to G(t,D)
in GDE (3.16) such that F ∈ C[R+ × R

N×N ,R+]. Further, assume that there exists a
function V ∈ C[R+ × R

N×N ,R+] satisfying the hypothesis of Theorem 3.1. Then the
system (3.16) is equistable.

Proof. Since F is isomorphic to G and the existence of continuous function F is
given, we consider the IVP for MDE (3.1). As the hypothesis of Theorem 3.1 is satisfied,
we have that the system (3.1) is equistable. Now by virtue of the existence of isomorphism
between graphs and matrices, we observe that the Lyapunov function V also caters to
the GDE (3.16) and hence the system (3.16) is equistable.

Similar results parallel to Theorem 3.2 and Theorem 3.3 can be established for the
IVP of the GDE (3.16).
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4 Examples

In this section, we proceeed to give examples to each of the theorems in the previous
section. We consider a graph differential equation of a system having two vertices and
weighted edge functions. Note that we have taken the examples in 7 and extended them
suitably to cater to our need.

Example 4.1 Consider a graph differential equation given by two vertices V1 and
V2 and whose derivatives of weighted edges are given by the following equations





e′11 = −e12 e
t,

e′12 = −
1

2
e12 + e11 − e21 +

1

2
e22,

e′21 = (e11 − e21) e
t,

e′22 = −
1

2
(e12 + e22)e

t.

(4.1)

Using the isomorphism between the graphs and the matrices, the fore mentioned graph
differential equation can be written as the matrix differential equation given by

[
x1 x2
x3 x4

]′
=

[
−etx2 − 1

2
x2 + x1 − x3 +

1

2
x4

(x1 − x3)e
t − 1

2
(x2 + x4)e

t

]
, (4.2)

where x1, x2, x3, x4 represent the weighted edges e11, e13, e13, e14 respectively. Thus

E =

[
x1 x2
x3 x4

]
.

Now we define the Lyapunov function V (t, E) = (x22 + x24)e
t + (x1 − x3)

2 and

h(t, E) =
√
x21 + x24, h0(t, E) =

√
x21 + x22 + x23 + x24.

Then clearly

[h(t, E)]2 ≤ V (t, E) ≤ [h0(t, E)]2, D+V (t, E) ≤ −2(x1−x3)
2 et ≤ 0, (t, E) ∈ R+×R

2×2.

Hence by Theorem 3.1, the matrix differential equation (4.2) equistable, which in turn
yields on using Theorem 3.4, that the graph differential equation (4.1) is also equistable.

Example 4.2 Consider a graph differential equation associated with two vertices V1
and V2 and weighted edge function ei,j(t), i, j = 1, 2 given by the following equations





e′11 = −e22,

e′12 = − e21 + (1− e212 − e221) e12 e
−t,

e′21 = e12 + (1− e212 − e221) e21 sin2 x,

e′22 = e11.

(4.3)

Associated with the above graph differential equation (4.3), we can write the matrix
differential equation, where x1, x2, x3, x4 represent the e11, e12, e21, e22 respectively
as

E′ =

[
x1 x2
x3 x4

]′
=

[
−x4 −x3 + (1− x22 − x23)x2e

−t

x2 + (1 − x2 − x23) x3 sin
2 x2 x1

]
,

(4.4)
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where E ∈ R
2×2. Let V (E) = (x21 + x24 − 1)2 + (x22 + x23 − 1)2 and

h(E) =
√
(x22 + x23 − 1)2, h0(E) =

√
(x21 + x24 − 1)2 + (x22 + x23 − 1)2.

Then clearly [h(E)]2 ≤ V (E) ≤ [h0(E)]2, E ∈ R
2×2 and

D+V (E) = (−4) (x22 + x23 − 1)2 (x22e
−t + x23 sin

2 x) ≤ 0, (t, E) ∈ R+ × R
2×2.

The (h0, h)−uniform stability follows from Theorem 3.2. Observe that
[
x1(t) x2(t)
x3(t) x4(t)

]
=

[
sin t cos t
sin t cos t

]

and has components (x1(t), x4(t)) = (cos t, sin t) and (x2(t), x3(t)) = (sin t, cos t) which
are periodic, hence the system in pairs (x1(t), x4(t)) and (x2(t), x3(t)) is uniformly
orbitally stable. It now follows that the considered graph differential equation is also
(h0 − h)-uniformly stable.

The following example will illustrate Theorem 3.3.
Consider a graph having two vertices V1 and V2. Suppose a graph differential equation

is defined on this graph, where the edges satisfy the relations




e′11 = 2e12 − e11 e
t − e22,

e′12 = −e12(1 + sin2 e21)− 2e11e
−t − e22,

e′21 = −e12 e
−t + e11 cos t+ e21 sin t,

e′22 = −(e12 + e11)e
−t − e22.

(4.5)

Then we construct the adjacency matrix by replacing e11, e12, e21, e22 by x1, x2, x3, x4
respectively and obtain the matrix differential equation

E′ =

[
x1 x2
x3 x4

]′
=

[
2x2 − x1 e

t − x4 −x2(1 + sin2 x3)− 2x2e−t + x4)
−x2e

−t + x1 cos t+ x3 sin t −x2 + x1e
−t − x4

]
,

(4.6)
where E ∈ R

2×2. Define

A = {

[
x1 x2
x3 x4

]
∈ R

2×2 : x1 = x2 = x4 = 0}, B = {

[
x1 x2
x3 x4

]
∈ R

2×2 : x1 = x4 = 0}

and V (t, E) = x21 + x22e
−t + x24. For E1 = (cij)2×2 and E2 = (dij)2×2, we define

d(E1, E2) =

√√√√
2∑

i,j=1

(cij − dij)2

and consider h(t, E) = d(E,B) and h0(t, E) = d(E,A). Then

h0(t, E) =
√
x21 + x22 + x24, h(t, E) =

√
x21 + x24

which yield A ⊂ B and

[h(t, E)]2 ≤ V (t, E) ≤ [h0(t, E)]2.

Also
D+V (t, E) ≤ (−2)[h0(t, E)]2.

An application of Theorem 3.3 yields that the matrix differential equation (4.6) is (h0−h)
uniformly asymptotically stable. From which we can make the same conclusion for the
graph differential equation (4.5) using the isomorphism between matrices and graphs.
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5 Comparison Technique

It is well known that a Lyapunov function can be considered as a vehicle to transform a
given complicated differential system into a relatively simpler scalar differential equation.
Thus using the concept of a Lyapunov function and theory of differential inequalities we
obtain a very general comparison principle in terms of two measures. In order to achive
our goal we need the following results from [4,15].

Consider the scalar differential equation given by

u′ = g(t, u), u(t0) = u0 ≥ 0, (5.1)

where g ∈ C[R+ × R,R] and g(t0) = 0.

Definition 5.1 Let r(t) be a solution of (5.1) existing on some interval I = [t0, t0 +
α], 0 < α <∞. Then r(t) is said to be a maximal solution of (5.1) if for every solution
u(t) = u(t, t0, u0) of (5.1) existing on J, the following inequality holds

u(t) ≤ r(t), t ∈ J. (5.2)

Lemma 5.1 Let g ∈ C[R+ × R,R] and r(t) = r(t, t0, u0) be the maximal solution of
(5.1) existing on J. Suppose that m ∈ C[R+,R+] and Dm(t) ≤ g(t,m(t)), t ∈ J, where
D is any fixed Dini derivative. Then m(t0) ≤ u0 implies m(t) ≤ r(t), t ∈ J.

We now formulate a basic comparison theorem in terms of Lyapunov function V for
MDE (3.1).

Theorem 5.1 Let V ∈ C[R+× R
N×N , R+] and V (t, E) be locally Lipschitzian in E

for each t ∈ R+. Assume further that

D+V (t, E) ≤ g(t, V (t, E)), (t, E) ∈ R+ × R
N×N , (5.3)

where g ∈ C[R+× R, R]. Let r(t) = r(t, t0, u0) be the maximal solution of (5.1) existing
on J. Then, for any solution E(t) = E(t, t0, E0) of (3.1) existing on J, V (t0, E0) ≤ u0
implies

V (t, E(t)) ≤ r(t), t ∈ J. (5.4)

Proof. Let E(t) = E(t, t0, E0) be a solution of (3.1). Set m(t) = V (t, E(t))
such that V (t0, E0) ≤ u0. Using the fact that V (t, E) is locally Lipschitzian in E,
the definition of Dini derivative and the relation (5.3) we arrive at the inequality
D+m(t) ≤ g(t, V (t,m(t))), m(t0) ≤ u0, t ∈ J From Lemma 5.1, we conclude that
V (t, E(t)) ≤ r(t), t ∈ J, completing the proof.

For the sake of completeness, we define the stability concept for the trivial solution
of the comparision equation (5.1). We give here the definition of equistability only.

Definition 5.2 Let u(t, t0, u0) be any solution of (5.1). The trivial solution u(t) ≡ 0
of (5.1) is said to be equistable if for any ǫ > 0 and t0 ∈ R+, there exists a δ = δ(t0, ǫ) > 0
that is continuous in to for each ǫ such that u0 < δ implies u(t, t0, u0) < ǫ, t ≥ t0.

We will now state and prove the following theorem which gives sufficient conditions
for the (h0, h)-stability properties of the differential system.
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Theorem 5.2 Assume that
(i) h0, h ∈ Γ and h0 is uniformly finer than h;
(ii) V ∈ C[R+ × R

N×N , R+], V (t, E) is locally Lipshitzian in E, V is
h− positive definite and h0−decrescent;

(iii) g ∈ C[R+ × R, R] and g(t, 0) ≡ 0;
(iv) D+V (t, E) ≤ g(t, V (t, E)), (t, E) ∈ S(h, ρ), where

S(h, ρ) = {(t, E) ∈ R+ × R
N×N : h(t, E) < ρ, ρ > 0}.

Then, the stability properties of the trivial solution of (4.2) imply the corresponding
(h0, h)− stability properties of MDE (3.1).

Proof. As the proofs of various stability properties are similar, we shall only prove
the (h0, h)− equiasymptotic stability property of (3.1). In order to do so, we begin by
proving (h0, h)− stability.

Since V is h− positive definite, there exist a λ ∈ (0, ρ] and a b ∈ K such that

b(h(t, E)) ≤ V (t, E), (t, E) ∈ S(h, λ). (5.5)

Let 0 < ǫ < λ and t0 ∈ R+ be given and assume that the trivial solution of (5.1) is
equistable. Then, given b(ǫ) > 0 and t0 ∈ R+, there exists a positive function δ1 =
δ1(t0, ǫ) such that

u0 < δ implies u(t, t0, u0) < b(ǫ), t ≥ t0, (5.6)

where u(t, t0, u0) is any solution of (5.1). Set u0 = V (t0, E0). Using hypotheses (i) and
(ii) (i.e., h0 is finer than h and V is h0− decrescent) we find that there exist a λ0 > 0
and a function a ∈ K such that for (t0, E0) ∈ S(h0, λ0)

h(t0, E0) < λ and V (t0, E0) ≤ a(h(t0, E0)). (5.7)

The above relation (5.7) along with the relation (5.5) yields

b(h(t0, E0)) ≤ V (t0, E0) ≤ a(h0(t0, E0)), (t0, E0) ∈ S(h0, λ0). (5.8)

Next choose a positive δ = δ(t0, ǫ) such that δ ∈ (0, λ0], a(δ) < δ1 and let h0(t0, E0) < δ.
Then from relations (5.8) we get, on using the fact that δ1 < b(ǫ), h(t0, E0) < b(ǫ).
Now for any solution E(t) = E(t, t0, E0) claim that h(t, E(t)) < ǫ, t ≥ t0, whenever
h(t0, E0)) < δ.

If possible, suppose our claim is incorrect. Then there exist a t1 > t0 and a solution
E(t) of (3.1) such that

h(t1, E(t1)) = ǫ and h(t, E(t)) < ǫ, t0 ≤ t ≤ t1, (5.9)

since h(t0, E0) < ǫ whenever h0(t0, E0) < δ. From this we deduce that

h(t, E(t)) ∈ S(h, λ)

for t0 ≤ t ≤ t1 and thus by Theorem (5.1), we conclude

V (t, E(t)) ≤ r(t, t0, u0), t0 ≤ t ≤ t1, (5.10)

where r(t, t0, E0) is the maximal solution of (5.1).
On using the relations (5.5), (5.6), (5.7) and (5.10) we arrive at

b(ǫ) < V (t1, E(t1)) ≤ r(t, t0, E0) < b(ǫ),
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which is a contraduction, proving h0, h−equistability of (3.1).

Next, we assume that the trivial solution of (5.1) is equiattractive. Since the equation
(5.1) is (h0, h)-stable, we set ǫ = λ which implies that

δ̂0 = δ(t0, λ).

Let 0 < η < λ. Then since the equation (5.1) is equiattractive, given b(η) > 0 and
t0 ∈ R+, there exist δ∗1 = δ∗1(t0) > 0 and T = T (t0, η) > 0 such that

u0 < δ∗1 implies u(t, t0, u0) < b(η), t ≥ t0 + T. (5.11)

Choose u0 = V (t0, E0) and working as before, we find a δ∗0 = δ∗0(t0) > 0 such that

δ∗0 ∈ (0, λ0] and a(δ
∗
0) < δ∗1 . Let δ0 = min(δ∗0 , δ̂0) and h(t0, E(t0)) < δ0, which implies

that h(t, ...E(t)) < λ, t ≥ t0, and hence the relation (5.10) holds for all t ≥ t0. Now
suppose that the system (5.1) is not (h0, h)− equialtractive then there exists a sequence
{tk}, tk ≥ t0 + T, tk → ∞ as k → ∞ such that ηk < h(tk, E(tk)), where E(t) is any
solution of (3.1) such that h0(t0, E0) < δ0. Then using the above inequality along with
relations (5.10) and (5.1), we obtain

b(ηk) < b(h(tk, E(tk))) ≤ V (tk, E(tk)) < r(t, t0, E0) < b(η),

which is a contradiction. Hence the system (3.1) is (h0, h)− asymptotically stable and
hence the proof.

Theorem 5.3 Supose that the function G ∈ C[R+×DN , DN ] in (3.16) is isomorphic
to a function F ∈ C[R+ × R

N×N ,RN×N ]. Let E(t) be the solution associated with the
system (3.1) corresponding to the F obtained above. If the hypothesis of Theorem 5.2 is
satisfied then the trivial solution or the null graph of GDE (3.16) has all the stability
properties that the associated MDE possesses.

Proof. Corresponding to the given graph function G(t,D), we construct the matrix
function F (t, E). Owing to the isomorphism that exists between graphs and matrices
F (t, E) is continuous. Now from hypothesis, E(t) is any solution of MDE (3.1). Also
since the hypothesis of Theorem 5.2 is satisfied, we obtain that the zero solution of MDE
(3.1) possesses all the stability properties of the comparison equation (5.1). Hence by the
isomorphism that exists between graphs and matrices, we have that the zero solution, a
null graph function of the GDE (3.16) has all the stability properties that the comparison
equation (5.1) possesses. The proof is complete.

6 Conclusion

In this paper we have considered a MDE in terms of two measures and studied its stability
properties using the basic Lyapunov theorems and the comparison methods. Using the
isomorphism that exists between the graphs and matrices, we have extended these results
to study the stability properties in terms of two measures, for the GDEs. We have also
given examples to verify the stability properties of graph differential equations and its
associated matrix differential equations using suitable Lyapunov functions.
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1 Introduction

Higher-order nonlinear differential equations are frequently encountered in mathematical
models of most dynamic processes in electromechanical systems in physics and engineer-
ing. The notions of stability and boundedness of solutions are fundamental in the theory
and application of differential equations. In this way, both concepts lead to the real
world applications. Many results relative to stability, boundedness, square integrability
of solutions to differentiel equations have been obtained. See for instance ( [1]– [42]). In
discussing stability and boundedness of a nonlinear differential system, Lyapunov’s direct
method perhaps is the most effective method. Numerous methods have been proposed
in the literature to derive suitable Lyapunov functions, but finding a proper Lyapunov’s
function in general is a big challenge.

The study of fourth order nonlinear differential equations has attracted the interest
of many researchers. Many results concerning the stability and boundedness of solutions
of fourth order differential equations have been obtained in view of various methods,
especially, Lyapunov’s method, see, the book of Reissig et al. [28] as a survey and the
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papers of Adesina and Ogundare [2], Cartwright [6], Chukwu [9], Abou-El-Ela and
Sadek [1], Ezeilo [12], [14] Ezeilo and Tejumola [15], Harrow [17], Hu [18], Tejumola [30],
Tunç [35], [36], [37], [38], Wu and Xiong [42], Vlček [41] and the references cited therein.

In 1956, Cartwright [6] investigated the asymptotic stability of zero solution of var-
ious linear and nonlinear fourth order differential equations. In [6], she considered the
following differential equations

x′′′′ + a1x
′′′ + a2x

′′ + a3x
′ + f(x) = 0, (1)

x′′′′ + a1x
′′′ + ψ(x′)x′′ + a3x

′ + a4x = 0, (2)

x′′′′ + a1x
′′′ + a2x

′′ + ψ(x)x′ + f(x) = 0. (3)

In [22] and [23], Omeike by using the Cauchy formula for the particular solution of
nonlinear differential equations, has proved that every solution of the equations

x′′′′ + ax′′′ + bx′′ + cx′ + h(x) = p(t), (4)

x′′′′ + ax′′′ + ψ(x′′) + g(x′) + h(x) = p(t), (5)

and its derivatives up to order three are bounded.

In [31], and [39] Tunç established sufficient conditions for the asymptotic stability of
the zero solution of the equations and the boundedness of the following equations

x′′′′ + a1x
′′′ + ψ(x, x′)x′′ + a4x

′ + h(x) = 0, (6)

x′′′′ + a1x
′′′ + ψ(x, x′)x′′ + g(x′) + a4x = 0, (7)

x′′′′ + ax′′′ + ψ(x, x′, x′′) + g(x, x′) + h(x) = p(t). (8)

The solution which is in L2[0,∞) for higher order nonlinear differential equations
was also of great interest, but it should be noted that only a few results are related to
the fourth order nonlinear differential equations. Namely, in 1989, Andres and Vlček [3],
established some sufficient conditions, when all the solutions of (4) are in L2[0,∞).

In this paper, we develop the conditions under which all the solutions of the following
equation (9) are bounded and are square integrable

x′′′′ + a (t)
(

p
(

x(t)
)

x′′(t)
)

′

+b (t)
(

q
(

x(t)
)

x′(t)
)

′

+ c (t) f
(

x(t)
)

x′(t) + d (t)h
(

x(t)
)

= e(t), (9)

where the primes in (9) denote differentiation with respect to t; the functions a, b, c, d, are
continuously differentiable functions. The functions f, h, p, q, and e are continuous func-
tions depending only on the arguments shown. It is also supposed that the derivatives,
p′(x), q′(x), f ′(x) and h′(x) exist and are continuous.

Equation (9) is equivalent to the system


















x′ = y

y′ = z

z′ = w

w′ = −a(t)p (x)w −
(

b(t)q (x)+a(t)θ1

)

z −
(

b(t)θ2+c (t) f (x)
)

y − d (t)h (x) + e(t),

(10)



194 M. REMILI AND M. RAHMANE

such that
θ1 (t) = p′ (x (t))x′ (t) , θ2 (t) = q′ (x (t)) x′ (t) .

The continuity of the functions a, b, c, d, e, p, q, f, p′, q′, f ′ and h guarantees the existence
of the solutions of (9) ( see [11], p. 15). It is assumed that the right hand side of the
system (10) satisfies a Lipschitz condition in x(t), y(t), z(t), and w(t). This assumption
guarantees the uniqueness of solutions of (9) ( [11], p. 15). The present work was
motivated by the papers [3], [23], [31], [39] and the papers mentioned above, where the
boundedness and square integrability of solutions for a fourth order nonlinear differential
equation was studied. Using Lyapunov’s method, we show that every solution x(t) of
equation (9) and its derivatives are bounded and square integrable.

2 Assumptions and Main Results

First, we state some assumptions on the functions that appeared in (9). Suppose that
there are positive constants a0, b0, c0, d0, f0, p0, q0, a1, b1, c1, d1, f1, p1, q1,m,M, δ, and
η1, such that the following conditions are satisfied

i) 0 < a0 ≤ a (t) ≤ a1; 0 < b0 ≤ b (t) ≤ b1; 0 < c0 ≤ c (t) ≤ c1;
0 < d0 ≤ d (t) ≤ d1 for t ≥ 0.

ii) 0 < f0 ≤ f (x) ≤ f1; 0 < p0 ≤ p (x) ≤ p1; 0 < q0 ≤ q (x) ≤ q1 for x ∈ R and
0 < m < min

{

f0, p0, 1
}

, M > max
{

f1, p1, 1
}

.

iii)
h(x)

x
≥ δ > 0 ( for x 6= 0) ; h (0) = 0.

iv)

∫ +∞

0

(|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|) dt < η1.

The following lemma will be useful in the proof of the next theorem.

Lemma 2.1 [20] Let h(0) = 0, xh(x) > 0 (x 6= 0) and δ(t)−h′(x) ≥ 0 (δ(t) > 0),
then

2δ(t)H(x) ≥ h2(x), where H(x) =

∫ x

0

h(s)ds.

Theorem 2.1 In addition to conditions (i)-(iv) being satisfied, suppose that there
are positive constants h0, δ0, δ1, η2 and η3 such that the following conditions hold

H1) h0 −
a0mδ0

d1
≤ h′ (x) ≤ h0

2
for x ∈ R.

H2) δ1 =
d1h0a1M

c0m
+
c1M + δ0

a0m
< b0q0.

H3)

∫ +∞

−∞

(|p′ (s)|+ |q′ (s)|+ |f ′ (s)|) ds < η2.

H4)

∫ +∞

0

|e (t)| dt < η3.

Then any solution x(t) of (9) and its derivatives x′(t), x′′(t) and x′′′(t) are bounded and
satisfy

∫

∞

0

(

x2(s) + x′2(s) + x′′2(s) + x′′′2(s)
)

ds <∞.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (2) (2016) 192–205 195

Remark 2.1 Equation (9) can be rewritten as

x′′′′(t) + a(t)p(x)x′′′ + ϕ1(t, x, x
′)x′′ + ϕ2(t, x, x

′)x′ + d(t)h(x) = e(t),

where

ϕ1(t, x, x
′) = b(t)q(x) +

1

2
a(t)p′(x)x′, and ϕ2(t, x, x

′) = b(t)q′(x)x′ + c(t)f(x).

If we apply Tunç theorem [39] to show that every solution x(t) of (9) is bounded, we must
take ψ(x, x′, x′′) = ϕ1(t, x, x

′)x′′ and g(x, x′) = ϕ2(t, x, x
′)x′ then the boundedness of

ψ(x,y,z)
z

and g(x,y)
y

is needed. However in our theorem this latter condition is not required

since we just need to deal with the boundedness of a(t), b(t), p(x), and q(x).

Proof. Boundedness of solutions.
First we proof the boundedness of solutions. The proof of this theorem depends on
properties of the continuously differentiable function W =W (t, x, y, z, w) defined as

W = e
−1

η

∫ t

0

γ (s) ds
V, (11)

where
γ (t) = |a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|+ |θ1(t)|+ |θ2(t)|+ |θ3(t)|,

θ3 (t) = f ′ (x (t))x′ (t)

and

2V = 2βd (t)H (x) + c (t) f (x) y2 + αb (t) q(x)z2 + a (t) p(x)z2 + 2βa (t) p(x)yz

+ [βb (t) q(x) − αh0d (t)] y
2 − βz2 + αw2 + 2d (t)h (x) y + 2αd (t)h (x) z

+2αc (t) f (x) yz + 2βyw + 2zw,

with H(x) =
∫ x

0
h(s)ds, α =

1

a0m
+ ǫ , β =

d1h0

c0m
+ ǫ, ǫ, and η are positive constants to

be determined later in the proof. We rewrite 2V as

2V = a (t) p(x)

[

w

a (t) p(x)
+ z + βy

]2

+ c (t) f (x)

[

d (t)h (x)

c (t) f (x)
+ y + αz

]2

+
d2 (t)h2 (x)

c (t) f (x)
+ 2ǫd (t)H (x) + V1 + V2 + V3,

where

V1 = 2d (t)

∫ x

0

h (s)

[

d1h0

c0m
− 2

d (t)

c (t) f (x)
h′ (s)

]

ds,

V2 =
[

αb (t) q(x) − β − α2c (t) f (x)
]

z2,

V3 =
[

βb (t) q(x) − αh0d (t)− β2a (t) p(x)
]

y2 +

[

α− 1

a (t) p(x)

]

w2.

Now, we will prove that V is positive definite. Take

ǫ < min

{

1

a0m
,
d1h0

c0m
,

b0q0 − δ1

M (a1 + c1)

}

, (12)
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then
1

a0m
< α <

2

a0m
,

d1h0

c0m
< β < 2

d1h0

c0m
. (13)

Using conditions (i)-(iii), (H1), (H2) and inequalities (12), (13) we get

V1 ≥ 4d (t)
d1

c0m

∫ x

0

h (s)

[

h0

2
− h′ (s)

]

ds ≥ 0,

V2 =

(

α

(

b (t) q(x) − βa (t)− αc (t) f (x)

)

+ β
(

αa (t)− 1
)

)

z2

≥ α

(

b0q0 −
d1h0a1

c0m
− c1M

a0m
− ǫ(a1 + c1M)

)

z2 + β
( 1

m
− 1
)

z2

≥ α
(

b0q0 − δ1 − ǫM(a1 + c1)
)

z2 ≥ 0,

and

V3 ≥ β

(

b0q0 −
α

β
h0d1 − βa1M

)

y2 +

(

α− 1

a0m

)

w2

≥ β

(

b0q0 −
c0

a0
− a1

d1h0M

c0m
− ǫ(c0m+ a1M)

)

y2 + ǫw2

≥ β
(

b0q0 − δ1 − ǫM(c1 + a1)
)

y2 + ǫw2 ≥ 0.

Hence, it is evident from the terms contained in the last inequalities, that there exists
positive constant D0 such that

2V ≥ D0

(

y2 + z2 + w2 +H(x)
)

. (14)

By Lemma 2.1 and conditions (iii) and (H1) it follows that there is a positive constant
D1 such that

2V ≥ D1

(

x2 + y2 + z2 + w2
)

. (15)

Thus V is positive definite. From (i)-(iii), it is not difficult to see that there is a positive
constant U1 such that

V ≤ U1

(

x2 + y2 + z2 + w2
)

.

By (H3), we have

∫ t

0

(

|θ1(s)|+ |θ2(s)|+ |θ3(s)|
)

ds =

∫ α2(t)

α1(t)

(

|p′(u)|+ |q′(u)|+ |f ′(u)|
)

du

≤
∫ +∞

−∞

(

|p′(u)|+ |q′(u)|+ |f ′(u)|
)

du < η2 <∞,

(16)

where α1(t) = min{x(0), x(t)}, and α2(t) = max{x(0), x(t)}. From inequalities (11),
(15), and (16), it follows that

W ≥ D2(x
2 + y2 + z2 + w2), (17)

where D2 =
D1

2
e−

η1+η2
η . Also, it is easy to see that there is a positive constant U2 such

that
W ≤ U2(x

2 + y2 + z2 + w2), (18)
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for all x, y, z and w, and all t ≥ 0.
Next we show that Ẇ is negative definite function. The derivative of the function

V, along any solution (x(t), y(t), z(t), w(t)) of system (10), with respect to t is after
simplifying

2
.

V (10) = −2ǫc (t) f(x)y2 + V4 + V5 + V6 + V7 + 2(βy + z + αw)e(t) + 2
∂V

∂t
,

where

V4 =− 2

(

d1h0

c0m
c (t) f(x) − d (t)h′ (x)

)

y2 − 2αd (t)
(

h0 − h′ (x)
)

yz,

V5 =− 2
(

b (t) q(x)− αc (t) f(x)− βa (t) p(x)
)

z2,

V6 =− 2
(

αa (t) p(x) − 1
)

w2,

V7 =− a(t)θ1

(

z2 + 2αzw
)

− b(t)θ2

(

αz2 + 2αzw + βy2 + 2yz
)

+ c(t)θ3

(

y2 + 2αyz
)

.

By conditions (i), (ii), (H1), (H2) and inequality (12), (13) we obtain the following

V4 ≤ −2 [d (t)h0 − d (t)h′ (x)] y2 − 2αd (t) [h0 − h′ (x)] yz

≤ −2d (t) [h0 − h′ (x)] y2 − 2αd (t) [h0 − h′ (x)] yz

≤ −2d (t) [h0 − h′ (x)]

[

(

y +
α

2
z
)2

−
(α

2
z
)2
]

≤ α2

2
d (t) [h0 − h′ (x)] z2.

Therefore,

V4 + V5 ≤ −2

[

b (t) q(x) − αc (t) f(x)− βa (t) p(x)− α2

4
d (t) [h0 − h′ (x)]

]

z2

≤ −2

[

b0q0 −
( 1

a0m
+ ǫ
)

c1M −
(d1h0

c0m
+ ǫ
)

a1M − α2

4
(a0mδ0)

]

z2

≤ −2

[

b0q0 −
M

a0m
c1 −

d1h0a1M

c0m
− δ0

a0m
− ǫM (a1 + c1)

]

z2

≤ −2 [b0q0 − δ1 − ǫM (a1 + c1)] z
2 ≤ 0,

and
V6 ≤ −2 [αa0m− 1]w2 = −2ǫw2 ≤ 0.

Hence, there exists a positive constant D3 such that

−2ǫc (t) f(x)y2 + V4 + V5 + V6 ≤ −2D3

(

y2 + z2 + w2
)

.

From (14), and the Cauchy Schwartz inequality, we get

V7 ≤ a(t)|θ1|
(

z2 + α(z2 + w2)
)

+ b(t)|θ2|
(

αz2 + α(z2 + w2) + βy2 + (y2 + z2)
)

+ c(t)|θ3|
(

y2 + α(y2 + z2)
)

≤ λ1(|θ1|+ |θ2|+ |θ3|)
(

y2 + z2 + w2 +H (x)
)

≤ 2
λ1

D0

(

|θ1|+ |θ2|+ |θ3|
)

V,
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where λ1 = max
{

a1(1 + α), b1(1 + 2α+ β), c1(1 + α)
}

. We get also

2
∂V

∂t
= d′ (t)

[

2βH (x) − αh0y
2 + 2h (x) y + 2αh (x) z

]

+c′ (t)
[

f(x)y2 + 2αf(x)yz
]

+ b′ (t)
[

αq(x)z2 + βq(x)y2
]

+a′ (t)
[

p(x)z2 + 2βp(x)yz
]

.

Using condition (H1) and Lemma 2.1, we obtain

h2(x) ≤ h0H(x),

consequently,

2

∣

∣

∣

∣

∂V

∂t

∣

∣

∣

∣

≤ |d′ (t) |
[

2βH (x) + αh0y
2 +

(

h2 (x) + y2
)

+ α
(

h2 (x) + z2
)]

+|c′ (t) |
[

y2 + α
(

y2 + z2
)]

+ |b′ (t) |
[

αz2 + βy2
]

+|a′ (t) |
[

z2 + 2β
(

y2 + z2
)]

≤ λ2 [|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|]
(

y2 + z2 + w2 +H (x)
)

≤ 2
λ2

D0
[|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|]V,

such that λ2 = max
{

2β + αh0 + h0, αh0 + 1, α+ 1
}

. By taking
1

η
=

1

D0
max

{

λ1, λ2
}

,

we obtain

.

V (10) ≤−D3(y
2+z2+w2)+

1

η

(

|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|+ |θ1|+ |θ2|+ |θ3|
)

V

+
(

βy + z + αw
)

e(t). (19)

From (iv), (H3), (16), (17), (19) and the Cauchy Schwartz inequality, we get

.

W (10) =

(

.

V (10) −
1

η
γ (t)V

)

e
−1

η

∫ t

0

γ (s) ds

≤
(

−D3

(

y2 + z2 + w2
)

+
(

βy + z + αw
)

e(t)
)

e
−1

η

∫ t

0

γ (s) ds
(20)

≤ (β|y|+ |z|+ α|w|) |e(t)|
≤ D4 (|y|+ |z|+ |w|) |e(t)|
≤ D4

(

3 + y2 + z2 + w2
)

|e(t)|

≤ D4

(

3 +
1

D2
W

)

|e(t)|

≤ 3D4|e(t)|+
D4

D2
W |e(t)|, (21)

where D4 = max{α, β, 1}. Integrating (21) from 0 to t, and using the condition (H4)
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and the Gronwall inequality, we obtain

W (t, x, y, z, w) ≤ W
(

0, x(0), y(0), z(0), w(0)
)

+ 3D4η3

+
D4

D2

∫ t

0

W
(

s, x(s), y(s), z(s), w(s)
)

|e(s)|ds

≤
(

W
(

0, x(0), y(0), z(0), w(0)
)

+ 3D4η3

)

e

D4

D2

∫ t

0

|e(s)|ds

≤
(

W
(

0, x(0), y(0), z(0), w(0)
)

+ 3D4η3

)

e

D4

D2
η3

= K1 <∞. (22)

In view of inequalities (17) and (22), we get

(x2 + y2 + z2 + w2) ≤ 1

D2
W ≤ K2, (23)

where K2 =
K1

D2
. Clearly (23) implies that

|x(t)| ≤
√

K2, |y(t)| ≤
√

K2, |z(t)| ≤
√

K2, |w(t)| ≤
√

K2 for all t ≥ 0.

Hence,

|x(t)| ≤
√

K2, |x′(t)| ≤
√

K2, |x′′(t)| ≤
√

K2, |x′′′(t)| ≤
√

K2 for all t ≥ 0. (24)

Square integrable solutions.

Now, we proof the square integrability of solutions and their derivatives. We define
Ft = F (t, x(t), y(t), z(t), w(t)) as

Ft =W + ρ

∫ t

0

(

y2(s) + z2(s) + w2(s)
)

ds,

where ρ > 0. It is easy to see that Ft is positive definite, since W = W (t, x, y, z, w) is
already positive definite. Using the following estimate

e
−

η1 + η2

η ≤ e
−

1

η

∫ t

0

γ (s) ds
≤ 1,

by (20) we have the following

.

Ft(10) ≤ −D3

(

y2(t) + z2(t) + w2(t)
)

e
−η1 + η2

η (25)

+D4

(

|y(t)|+ |z(t)|+ |w(t)|
)

|e(t)|

+ρ
(

y2(t) + z2(t) + w2(t)
)

.
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By choosing ρ = D3e
−η1 + η2

η we obtain

.

Ft(10) ≤ D4

(

3 + y2(t) + z2(t) + w2(t)
)

|e(t)|

≤ D4

(

3 +
1

D2
W
)

|e(t)|

≤ 3D4|e(t)|+
D4

D2
Ft|e(t)|. (26)

Integrating the last inequality (26) from 0 to t, and using again the Gronwall inequality
and the condition (H4), we get

Ft ≤ F0 + 3D4η3 +
D4

D2

∫ t

0

Fs|e(s)|ds

≤
(

F0 + 3D4η3

)

e

D4

D2

∫ t

0

|e(s)|ds

≤
(

F0 + 3D4η3

)

e

D4

D2
η3

= K3 <∞. (27)

Therefore,
∫

∞

0

y2(s)ds < K3 ,

∫

∞

0

z2(s) < K3 and

∫

∞

0

w2(s)ds < K3,

which implies that
∫

∞

0

x′2(s)ds ≤ K3 ,

∫

∞

0

x′′2(s)ds ≤ K3 ,

∫

∞

0

x′′′2(s)ds ≤ K3. (28)

Next, multiply (9) by x(t) and integrate by parts from 0 to t, we obtain

∫ t

0

d(s)x(s)h(x(s))ds = I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + L0, (29)

where

I1(t) = x′(t)x′′(t)− x(t)x′′′(t)−
∫ t

0

x′′2(s)ds,

I2(t) = −a(t)p(x(t))x(t)x′′(t) +
∫ t

0

a′(s)p(x(s))x(s)x′′(s)ds

+

∫ t

0

a(s)p(x(s))x′(s)x′′(s)ds,

I3(t) = −b(t)q(x(t))x(t)x′(t) +
∫ t

0

b′(s)q(x(s))x(s)x′(s)ds+

∫ t

0

b(s)q(x(s))x′2(s)ds,

I4(t) = −1

2
c(t)f(x(t))x2(t) +

1

2

∫ t

0

c′(s)f(x(s))x2(s)ds+
1

2

∫ t

0

c(s)f ′(x(s))x′(s)x2(s)ds,

I5(t) =

∫ t

0

e(s)x(s)ds,
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and

L0 = x(0)x′′′(0)− x′(0)x′′(0) + a(0)p(x(0))x(0)x′′(0)

+b(0)q(x(0))x(0)x′(0) +
1

2
c(0)f(x(0))x2(0).

From (24), (28) and the conditions (i), (ii), (iv), (H3) and (H4), we have

I1(t) ≤ 2K2 +

∫ t

0

x′′2(s)ds,

I2(t) ≤ a1MK2 +MK2

∫ t

0

|a′(s)|ds+ a1M

∫ t

0

x′(s)x′′(s)ds,

≤ 3

2
a1MK2 +MK2

∫ t

0

|a′(s)|ds,

I3(t) ≤ b1q1K2 + q1K2

∫ t

0

|b′(s)|ds+ b1q1

∫ t

0

x′2(s)ds,

I4(t) ≤ 1

2
c1MK2 +

1

2
MK2

∫ t

0

|c′(s)|ds,+1

2
c1K

3
2

2

∫ t

0

|f ′(s)|ds,

I5(t) ≤
√

K2

∫ t

0

|e(s)|ds.

It follows that

lim
t→+∞

I1(t) ≤ 2K2 +K3 = L1, lim
t→+∞

I2(t) ≤
3

2
a1MK2 +MK2η1 = L2,

lim
t→+∞

I3(t) ≤ b1q1K2 + q1K2η1 + b1q1K3 = L3,

lim
t→+∞

I4(t) ≤
1

2
c1MK2 +

1

2
MK2η1 +

1

2
c1K

3
2

2 η2 = L4, and lim
t→+∞

I5(t) ≤
√

K2η3 = L5.

Thus,

lim
t→+∞

(

I1(t) + I2(t) + I3(t) + I4(t) + I5(t)
)

≤
5
∑

i=1

Li <∞. (30)

Consequently, (29), (30) and condition iii) give

∫

∞

0

x2(s)ds ≤ 1

d0δ

∫

∞

0

d(s)x(s)h(x(s))ds ≤ 1

d0δ

5
∑

i=0

Li <∞,

which completes the proof of the theorem.

Remark 2.2 If e(t) = 0, similarly to the above proof, the inequality (3.10) becomes

.

W (10) =

(

.

V (10) −
1

η
γ (t) V

)

e
−1

η

∫ t

0

γ (s) ds

≤ −D3

(

y2 + z2 + w2
)

e
−1

η

∫ t

0

γ (s) ds

≤ −µ
(

y2 + z2 + w2
)

,
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where µ = D3e
−

η1+η2
η . It can also be observed that the only solution of system (10) for

which
.

W (10)(t, x, y, z, w) = 0 is the solution x = y = z = w = 0. The above discussion

guarantees that the trivial solution of equation (9) is uniformly asymptotically stable, and
the same conclusion as in the proof of Theorem 2.1 can be drawn for square integrability
of solutions of equation (9).

3 Example

We consider the following fourth order non-autonomous differential equation

x′′′′ +
(

e−t sin t+ 2
)

((

x+ 4ex + 4e−x

4 (ex + e−x)

)

x′′
)′

+

(

cos t+ 7t2 + 7

1 + t2

)((

sinx+ 6ex + 6e−x

ex + e−x

)

x′
)′

+
(

e−2t sin3 t+ 2
)

(

x cos x+ 5x4 + 5

5 (1 + x4)

)

x′

+

(

cos2 t+ t2 + 1

10 (1 + t2)

)(

x

x2 + 1

)

=
2 sin t

t2 + 1
, (31)

by taking

p (x) =
x+ 4ex + 4e−x

4 (ex + e−x)
, q (x) =

sinx+ 3ex + 3e−x

ex + e−x
, f (x) =

x cosx+ 5x4 + 5

5 (1 + x4)
,

h (x) =
x

x2 + 1
, a (t) = e−t sin t+ 2 , b (t) =

cos t+ 4t2 + 4

1 + t2
,

c (t) = e−2t sin3 t+ 2 , d (t) =
cos2 t+ t2 + 1

10 (1 + t2)
and e (t) =

2 sin t

t2 + 1
. It follows easily that

m =
9

10
, M =

11

10
, q0 =

5

2
, q1 =

7

2
, h0 =

11

5
, δ0 =

3

2
, a0 = 1 , a1 = 3 , b0 = 3 ,

b1 = 5 c0 = 1 , c1 = 3 , d0 =
1

10
, and d1 =

1

5
. We find h0 − a0mδ0

d1
= −4,

55 ≤ h′ (x) ≤ h0

2
= 1. 1 and b0q0 =

15

2
>

6 946 7

10000
=
d1h0a1M

c0m
+
c1M + δ0

c0m
= δ1.

We have
∫ +∞

−∞

|p′ (x)| dx =
1

4

∫ +∞

−∞

∣

∣

∣

∣

∣

1

ex + e−x
+ x

e−x − ex

(ex + e−x)
2

∣

∣

∣

∣

∣

dx

≤ 1

4

∫ 0

−∞

(

1

ex + e−x
− x

e−x − ex

(ex + e−x)2

)

dx

+
1

4

∫ +∞

0

(

1

ex + e−x
− x

e−x − ex

(ex + e−x)
2

)

dx =
π

4
,

∫ +∞

−∞

|q′ (x)| dx =

∫ +∞

−∞

∣

∣

∣

∣

∣

(ex + e−x) cosx− (ex − e−x) sinx

(ex + e−x)
2

∣

∣

∣

∣

∣

dx

≤
∫ +∞

−∞

(

1

ex + e−x
+

x

(ex + e−x)
2

(

ex − e−x
)

)

dx = π, and
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∫ +∞

−∞

|f ′ (x)| dx =
1

5

∫ +∞

−∞

∣

∣

∣

∣

∣

(cosx− x sinx)
(

x4 + 1
)

− 4x4 cosx

(x4 + 1)
2

∣

∣

∣

∣

∣

dx

=
1

5

∫ +∞

−∞

∣

∣

∣

∣

∣

cosx

x4 + 1
− 4x4

cosx

(x4 + 1)
2 − x

sinx

x4 + 1

∣

∣

∣

∣

∣

dx

≤ 1

5

∫ +∞

−∞

(

5

x4 + 1
+

x2

x4 + 1

)

dx =
6

5

√
2π.

Consequently,
∫ +∞

−∞

(|p′ (s)|+ |q′ (s)|+ |f ′ (s)|) ds <∞.

A simple computation gives

∫ +∞

0

|e (t)| dt =
∫ +∞

0

∣

∣

∣

∣

2 sin t

t2 + 1

∣

∣

∣

∣

dt ≤
∫ +∞

0

2

t2 + 1
dt = π,

∫ +∞

0

|a′ (t)| dt =

∫ +∞

0

∣

∣ (cos t) e−t − (sin t) e−t
∣

∣ dt ≤
∫ +∞

0

2e−tdt = 2,

∫ +∞

0

|b′ (t)| dt =

∫ +∞

0

∣

∣

∣

∣

∣

− sin t

t2 + 1
− 2t

cos t

(t2 + 1)
2

∣

∣

∣

∣

∣

dt ≤
∫ +∞

0

(

1

t2 + 1
+

2 |t|
(t2 + 1)

2

)

dt

≤
∫ +∞

0

(

1

t2 + 1
+

t2 + 1

(t2 + 1)
2

)

dt =

∫ +∞

0

2

t2 + 1
dt = π,

∫ +∞

0

|c′ (t)| dt =

∫ +∞

0

∣

∣ 3
(

cos t sin2 t
)

e−2t − 2
(

sin3 t
)

e−2t
∣

∣ dt ≤
∫ +∞

0

5e−2tdt =
5

2
,

and

∫ +∞

0

|d′ (t)| dt =

∫ +∞

0

∣

∣

∣

∣

∣

−2 (cos t)
sin t

t2 + 1
− 2t

cos2 t

(t2 + 1)
2

∣

∣

∣

∣

∣

dt

≤
∫ +∞

0

(

2

t2 + 1
+

2 |t|
(t2 + 1)

2

)

dt ≤
∫ +∞

0

3

t2 + 1
dt =

3π

2
.

Therefore,
∫ +∞

0

(|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|) dt < +∞.

Thus all the assumptions of Theorem 2.1 hold, so solutions of (31) are bounded and
square integrable.
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1 Introduction

In this paper, a criteria for selecting order of a reduced order model of bilinear time
invariant systems based on the value alteration of the least upper bounds of a transfer
function of difference bilinear systems in the proposed H2-norm is considered. The
order selection based on the value alteration of the singular Hankel values, see [3], is
not apparent because the decision is influenced by knowledge of the decision makers.
The measurement of the model reduction, which is calculated by using the H2-norm is
able to characterize the virtue of the reduced order model. The definition of the H2-
norm based on transfer function of the bilinear time invariant system which includes the
controllability gramian or the observability gramian is then proposed.

The least upper bounds of the error transfer function between the full order and the
reduced order model of the bilinear systems in the H2-norm become a tool for modern
controller design. The least upper bounds of the error transfer function between full
order and reduced order model for the linear systems in the H2-norm have been discussed
in [10] and [13]. Therefore, the least upper bounds of the bilinear time invariant systems
discussed in [23, 24] are important in model order reduction.

The reduced order bilinear systems are obtained by using the balanced truncation [3]
and the singular perturbation methods [22]. Two methods are used because they preserve
the dominant state of the original bilinear systems which are based on the controllability
or observability gramians. These methods result in the reduced bilinear systems which
are nearly optimal for a given least upper bound. The comparison of the least upper
bounds of the difference bilinear system using two methods is investigated in the paper.
Another method, for example, the moment-matching method is very efficient and numer-
ically robust, but the reduced bilinear systems are not guaranteed as an optimal reduced
bilinear system.

In the high order of the bilinear systems, the bottleneck of the balanced truncation
and singular perturbation methods can occur in the calculation of controllability or ob-
servability gramians. The controllability or observability gramians can be approximated
in the frequency domain to reduce the computational cost. Therefore, it is suggested to
use the Poor man’s truncated balanced realization of the bilinear systems. This approach
uses frequency-weighted finite summation to approximate the infinite integration. This
method approximates the gramian in the frequency domain without solving the Lya-
punov equations [20]. The reduced bilinear systems will be accurate when the bilinear
systems have finite bandwidth inputs.

A class of nonlinear system which is linear in inputs and linear in states with a non-
linearity in a product of states and inputs is known as bilinear systems [3]. Mathematical
modeling and control design of bilinear systems were discussed in [1] and [8]. The iden-
tification of time-invariant bilinear system models in the error-in-variables framework
has been discussed in [16]. The error-in-variables framework is dedicated to problem of
dynamic system identification in the presence of noise corrupting both input and output
measurements. The bilinear control systems have been discussed by using the Lie groups
approach in [9] and [19], whereas in [14] it has been discussed how to stabilize the ho-
mogeneous bilinear system by sliding mode control. The bilinear systems are naturally
found in science and technology problems, for example induction motor drives in [1], pa-
per making machines in [1], quantum mechanics in [19], power systems in [3], suspension
systems in [26], circuit electricity in [17], and immunity problems in [18].

The control design problem of a bilinear system is to seek a controller that stabilizes
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and satisfies a given norm of the closed loop of the bilinear system. Many problems in
science and technology are usually formulated in terms of a high order bilinear system.
In fact, the order of robust control design is always higher than the order of the system
so a reduced-order controller is necessary for application in real problems. Hence, model
order reduction and reduced order controller are an important part in the high order
control system design.

Model reduction for linear time invariant (LTI) and linear time varying (LTV) sys-
tems has been discussed in [2], whereas the model reduction for bilinear systems has been
developed by many researchers in [3–7,12,15,21,22,25,27]. Model order reduction meth-
ods for nonlinear model have been discussed in [11]. Balanced truncation [3] and singular
perturbation [22] methods are used to obtain the reduced order bilinear time invariant
systems. In the balanced truncation method, the original bilinear system is transformed
to the balanced system. The characterizations of the original bilinear system and the
balanced system are the same. In the singular perturbation method, the original bilinear
system is transformed into a balanced system which is then divided into two subsystems,
i.e. slow and fast mode systems. After that, the reduced bilinear systems are obtained
by defining that the velocity of fast mode is zero.

The paper is organized as follows. Section 2 presents the least upper bounds of the
transfer function of the bilinear time invariant systems in the H2-norm. Section 3 reviews
the balanced truncation and singular perturbation methods for bilinear systems. Section
4 gives the main result that is the least upper bounds of the difference bilinear system.
In Section 5, the procedure of selecting the reduced order bilinear system is presented.
Section 6 shows the simulation results which illustrate the performance of the proposed
algorithm and Section 7 gives conclusions.

2 The Least Upper Bounds of Bilinear Systems

Consider a bilinear time invariant system B characterized by the following differential
equations

B :
ẋ(t) = Ax(t) +

m
∑

i=1

Niui(t)x(t) +Bu(t),

y(t) = Cx(t) +Du(t),

(1)

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the control input, ui(t) is the i−th
element of u(t), y ∈ ℜq is the output system, A ∈ ℜnxn, Ni ∈ ℜnxn, i = 1, 2, . . . ,m,B ∈
ℜnxm, C ∈ ℜqxn, and D ∈ ℜqxm. Suppose the bilinear system (1) is locally stable, (A,B)
is controllable, and (A,C) is observable. The bilinear system is called locally stable if
the real parts of all eigenvalues of A are negative. The relation of inputs and outputs of
the bilinear system (1) can be expressed by the following Volterra series [18]

y(t) =

∞
∑

i=1

∫ t

i=0

∫ t1

i=0

. . .

∫ tk−1

i=0

m
∑

i1,i2,...,ik=1

h
(i1,i2,...,ik)
k (t1, t2, ..., tk)

ui1(t− tk) . . . uik(t−
i
∑

k=1

tk)dt1 . . . dtk.

The regular Volterra kernel hk can be expressed as [18]

h
(i1,i2,...,ik)
k (t1, t2, ..., tk) = CeAtkNi1e

Atk−1 . . . Nik−1e
At1bik ,
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where bik denotes the ik−th column of B matrix. For the sake of simplicity,

h
(i1,...,ik)
k (t1, t2, ..., tk) is denoted by hk. The notation hT

k denotes transpose of the hk.

To deal with the least upper bounds problem, the paper treats the controllability and
the observability gramians defined in [3] as follows

Definition 2.1 The controllability gramian matrix P is defined by

P =

∞
∑

i=1

∫

∞

0

. . .

∫

∞

0

PiP
T
i dt1 . . . dti,

where P1(t1) = eAt1B, and Pi(t1, . . . , ti) = eAti
[

N1Pi−1 . . . NmPi−1

]

, i = 2, 3, . . ..
Analogously, observability gramian matrix Q is defined by

Q =

∞
∑

i=1

∫

∞

0

. . .

∫

∞

0

QT
i Qidt1 . . . dti,

where Q1(t1) = CeAt1 , and Qi(t1, . . . , ti) =









Qi−1N1

Qi−1N2

. . .

Qi−1Nm









eAti , i = 2, 3, . . . .

The existence and properties of the controllability gramian P and the observability
gramian Q which satisfy the generalized Lyapunov equations are presented in [27]. The
generalized Lyapunov equations are given by the following equations

AP + PAT +

m
∑

i=1

NiPNT
i +BBT = 0, (2)

ATQ+QA+
m
∑

i=1

NT
i QNi + CTC = 0. (3)

If the equation (2) is taken vec on two sides then
(

A⊗ I + I ⊗A+
m
∑

i=1

Ni ⊗Ni

)

vec(P ) = −vec(BBT ).

Therefore, if A⊗ I+ I⊗A+
∑m

i=1 Ni⊗Ni is a nonsingular matrix, then a single solution
P will be found. If P is a nonnegative matrix then P is called the controllability gramian.
The observability gramian Q is obtained by using the similar manner and properties to
the equation (3) [27].

Let us introduce a definition of H2-norm of the bilinear system B in [23, 24].

Definition 2.2 Consider the bilinear system (1). TheH2-norm of the bilinear system
B is defined by

‖B‖2 =

√

√

√

√

√λmax





∞
∑

k=1

∫

∞

0

. . .

∫

∞

0

m
∑

i1,...,ik=1

hkh
T
k dt1...dtk



,

where λmax(.) denotes the maximum of (.) eigenvalues and hk is the regular Voltera
kernel.
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Definition 2.2 is an extended form of the Euclidian-induced norm of matrix M which
is equivalent to the square root of the maximum eigenvalue of MTM over a time interval
of integration from t = 0 to t = ∞. It is clear that hkh

T
k is a symmetry and a semi

definite positive matrix because hk is k−variate impulse response. The following lemma
is obtained from Definition 2.2.

Lemma 2.1 [23,24] Suppose the bilinear system (1) is locally stable. If there exists
the controllability gramian P of bilinear system (1) then ‖B‖2 =

√

λmax(CPCT ). If there

exists the observability gramian Q of bilinear system (1) then ‖B‖2 =
√

λmax(BTQB).

Proof. Suppose that

J2
k =

∫

∞

0

∫

∞

0

. . .

∫

∞

0

m
∑

i1,...,ik=1

hkh
T
k dt1 . . . dtk.

When k = 1 then J2
1 =

∫

∞

0

∑m
i1=1 CeAt1bi1b

T
i1e

AT t1CTdt1 = C
∫

∞

0 P1P
T
1 dt1C

T . When

k = 2 then J2
2 =

∫

∞

0

∫

∞

0

∑m
i1=1 φφ

T dt1dt2 = C
∫

∞

0

∫

∞

0
P2P

T
2 dt1dt2C

T , where
φ = CeAt2N1e

At1bi1, bi1 denotes the i1-th column of the matrix B, and generally
J2
k = C

∫

∞

0
. . .
∫

∞

0
PkP

T
k dt1 . . . dtkC

T , i = 2, 3, . . . . Therefore, the following result will
be obtained by taking the sum from k = 1 to infinite

∞
∑

k=1

J2
k = C

∞
∑

k=1

∫

∞

0

. . .

∫

∞

0

PkP
T
k dt1 . . . dtkC

T = CPCT .

Hence, the H2 norm can also be computed by using

‖B‖2 =

√

√

√

√λmax

(

∞
∑

k=1

J2
k

)

=
√

λmax(CPCT ),

where P is the controllability gramian of bilinear system (1). Similar reasoning holds for
the second case. ✷

The least upper bounds of H2-norm of the transfer function of the bilinear system
are determined as a function of the controllability gramian (the observability gramian)
of the bilinear system.

Lemma 2.2 [23, 24] Suppose the bilinear system (1) is locally stable. If
there exists the controllability gramian P of bilinear system (1) then ‖B‖2 <
√

λmax(P )
√

λmax(CTC). If there exists the observability gramian Q of bilinear system

(1) then ‖B‖2 ≤
√

λmax(Q)
√

λmax(BBT ).

Proof. We shall furnish the proof for the controllability gramian P , having the same
arguments for the observability gramian Q. As the controllability gramian P exists,
then P is a positive definite matrix. Furthermore, CTC is a positive semidefinite matrix.
According to Lemma 2.1 and properties of the eigenvalues of positive semidefinite matrix,
it holds that ‖B‖2 =

√

λmax (CPCT ) ≤
√

λmax (P )
√

λmax (CTC). ✷
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3 Balanced Truncation and Singular Perturbation Methods

According to [3], balanced realization of the bilinear system (1) can be obtained by
applying the state space balancing transformation xb(t) = T−1x(t) to (1). Hence, the
new presentation will be obtained as follows

Bb :
ẋb(t) = Abxb(t) +

m
∑

i=1

Nbiui(t)xb(t) +Bbu(t),

y(t) = Cbxb(t),

(4)

where Ab = T−1AT,Nbi = T−1NiT,Bb = T−1B,Cb = CT. The controllability and the
observability gramians of the balanced system are Pb = T−1PT−T and Qb = T TQT.

Furthermore, the system (4) is denoted by (Ab, Bb, Nbi, Cb, Dd), i = 1, ...,m.

Definition 3.1 The system (Ab, Bb, Nbi, Cb, Db), i = 1, ...,m is called the balanced
realization of the bilinear system (1) if

Pb = Qb = Σ = diag(σ1, σ2, ..., σn), σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0,

where Pb and Qb are the controllability gramian and the observability gramian, respec-
tively. Furthermore, σk =

√

λk(PbQb), k = 1, ..., n is called Hankel singular value of the
balanced system, where λk(PbQb) denotes the k-th eigenvalue of the matrix PbQb.

The balanced system (4) can be partitioned as follows

[

ẋb1

ẋb2

]

=

[

Ab11 Ab12

Ab21 Ab22

] [

xb1

xb2

]

+

m
∑

i=1

[

Nb11i
Nb12i

Nb21i
Nb22i

] [

xb1

xb2

]

ui +

[

Bb1

Bb2

]

u,

y =
[

Cb1 Cb2

]

[

xb1

xb2

]

,

where ẋb1 is the velocity of slow mode and ẋb2 is the velocity of fast mode. In the balanced
truncation method, the system of the slow mode is selected as the reduced bilinear
system. The system which is obtained by the balanced truncation method can preserve
the stability, but this method gives high error at low frequencies. Let Σ be partitioned

as Σ =

[

Σ1 0
0 Σ2

]

, where Σ1 = diag[σ1, σ2, ..., σr] and Σ2 = diag[σr+1, σr+2, ..., σn].

According to [3], the order selection of the slow mode is based on the ratio of Hankel
singular values that is σr

σr+1
≫ 1, then, the reduced bilinear system where order r is

chosen. Furthermore, the balanced truncation method for bilinear systems has been
developed to the singular perturbation method for bilinear systems in [22]. Denote

K = Ab12 +

m
∑

i=1

Nb12i
ui(t), L = Ab22 +

m
∑

i=1

Nb22i
ui(t),M = Ab21 +

m
∑

i=1

Nb21i
ui(t),

and assume that the velocity of the fast mode is zero, then
xb2(t) = −L−1Mxb1(t)−L−1Bb2u(t). Therefore, the reduced bilinear system is given by

ẋb1(t) = (Ab11 −KL−1M)xb1 +

m
∑

i=1

Nb11i
xb1(t)ui(t) + (Bb1 −KL−1)u(t),
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y(t) = (Cb1 − Cb2L
−1M)xb1 (t).

The reduced order bilinear system using the balanced truncation or the singular pertur-
bation methods can be presented by

Br :
ẋr(t) = Arxr(t) +

m
∑

i=1

Nriui(t)xr(t) + Bru(t),

yr(t) = Crxr(t),

(5)

where xr ∈ ℜr, r < n, yr ∈ ℜp, Ar is stable, (Ar , Br) is controllable and r is order of the
reduced bilinear systems.

4 The Least Upper Bounds of the Difference Bilinear Systems

Consider the full order model (1) and the reduced order model (5) of the bilinear system.
The difference bilinear system is defined as a system in which the transfer function is the
difference of transfer function between the full order system (1) and the reduced order
system (5) of a bilinear system. The difference of the transfer matrix k-variate of the full
order model and the reduced order model of the bilinear system is obtained as follows:

hi1,...,ik(t1, . . . , tk)− hri1,...,rik(t1, . . . , tk) =
[

C −Cr

]

e





A 0
0 Ar



tk

[

Ni1 0
0 Nri1

]

e





A 0
0 Ar



tk−1
[

Ni2 0
0 Nri2

]

. . .

[

Nik−1 0
0 Nrik−1

]

e





A 0
0 Ar



t1 [
bik
brik

]

.

The difference of the transfer matrix k-variate leads to the difference bilinear system
given by

Bd :

[

ẋ

ẋr

]

=

[

A 0
0 Ar

] [

x

xr

]

+

m
∑

i=1

[

Ni 0
0 Nri

] [

x

xr

]

ui +

[

B

Br

]

u,

y − yr =
[

C −Cr

]

[

x

xr

]

.

(6)

Suppose P̄ and Q̄ are the controllability gramian and the observability gramian of the
difference bilinear system (6), respectively. Therefore, P̄ and Q̄ are nonnegative matrices
and the two following generalized Lyapunov equations are satisfied

FP̄ + P̄FT +

m
∑

i=1

HiP̄HT
i + S = 0, (7)

FT Q̄+ Q̄F +

m
∑

i=1

HT
i Q̄Hi +M = 0, (8)
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where F =

[

A 0
0 Ar

]

, Hi =

[

Ni 0
0 Nri

]

, S =

[

BBT BBT
r

BrB
T BrB

T
r

]

, and

M =

[

CTC −CTCr

−CT
r C CT

r Cr

]

.

Furthermore, the least upper bounds of the error transfer function between the full
order (1) and the reduced order (5) of the bilinear time invariant systems in the H2-norm
are given by the following theorem.

Theorem 4.1 Consider the order of the bilinear system (1) is n and the order of the
reduced bilinear system (5) is r, r = 1, 2, ..., n− 1. Suppose A and Ar are locally stable.
If there exists the controllability gramian P̄ of the difference bilinear system (6) then

‖B−Br‖2 ≤
√

λmax(P̄ )
√

λmax(M), ∀r.

If there exist the observability gramian Q̄ of the difference bilinear system (6) then

‖B−Br‖2 ≤
√

λmax(Q̄)
√

λmax(S), ∀r.

Proof. BecauseA and Ar are locally stable then F =

[

A 0
0 Ar

]

is locally stable. By

using Lemma 2.2 and the controllability gramian P̄ of the difference bilinear system (6)
(the observability gramian Q̄ of the difference bilinear system (6)), the least upper bounds
as on the right hand side are obtained. ✷

The results for the linear time invariant systems (LTIS) as a special case of the bilinear
time invariant systems when Ni = 0, ∀i is given by the following

Corollary 4.1 If Ni = 0, ∀i, then (1) will become the linear time invariant system
(LTIS). The least upper bound of the transfer function of the LTIS in the H2-norm is

√

λmax(P )
√

λmax(CTC),

where P is the controllability gramian of the LTIS. The least upper bound of the H2-norm
of the difference of the transfer function for the difference of LTIS is

√

λmax(P̄ )
√

λmax(M),

where P̄ is the controllability gramian of the difference of LTIS.

5 Procedure to Select the Reduced Order Bilinear System

The following algorithm is used to show that the least upper bounds of the H2-norm of
the transfer function of the difference bilinear systems are valid. The algorithm can also
be used to choose the reduced order bilinear system which is similar to the full order
bilinear system. The input of the algorithm is a bilinear system (1), where A,B,Ni, C, i =
1, 2, 3, ...,m are matrices of suitable dimensions and the order of the bilinear system is n.

• Step 1: Choose the method to obtain the reduced order bilinear system.

1. Reduce the bilinear system (1) by using the balance truncation method.
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2. Reduce the bilinear system (1) by using the singular perturbation method.

• Step 2: Calculate the H2-norm and the least upper bounds of the difference bilinear
system.

1. Suppose βrBT = ‖B − Br‖2 denotes H2-norm of the transfer function of
the difference bilinear systems with the reduced r-th order bilinear systems,
r = 1, 2, ..., n − 1 using the balanced truncation method. Calculate βrBT

by Lemma 2.1 where the gramian matrix P̄ satisfies (7). Next, calculate
the least upper bounds γrBT by using Theorem 4.1. It is clear that
βrBT < γrBT , ∀r = 1, 2, ..., n − 1. The index BT denotes the balanced
truncation method.

2. Suppose γrBT denotes the least upper bound of the difference bilinear systems
with the reduced r-th order bilinear system which is reduced by using the
balanced truncation method. Suppose the index SP denotes the singular
perturbation method. Calculate βrSP by Lemma 2.1, where the gramian
matrix P̄ satisfies (8). Next, calculate the least upper bounds γrSP by using
Theorem 4.1. It is also clear that βrSP < γrSP , ∀r.

• Step 3: Choose the smallest r of the reduced order bilinear systems Br such that
γ(r−1)BT

γrBT
≈ 1, or

γ(r−1)SP

γrSP
≈ 1, where γrBT is the least upper bound of the transfer

function of the difference of the bilinear systems with the reduced r-th order bilinear
system using the balanced truncation method, γ(r−1)BT for order r− 1. The index
SP is for the singular perturbation method.

6 Simulation Results

Consider the circuit bilinear time invariant system as in [17] as follows

B :

ẋ(t) =















−5 2 0 . . . 0
2 −5 2 . . . 0
...

. . .
. . .

. . .
...

0 0 2 −5 2
0 0 0 2 −5















+















0 −3 0 . . . 0
3 0 −3 . . . 0
...

. . .
. . .

. . .
...

0 0 3 0 −3
0 0 0 3 0















u1(t)x(t)

+















1 3 0 . . . 0
−3 1 3 . . . 0
...

. . .
. . .

. . .
...

0 0 −3 1 3
0 0 0 −3 1















u2(t)x(t) +











0 1
0 1
...

...
0 1











u(t),

y(t) =





1 1 . . . 1
1 1 . . . 1
1 1 . . . 1



x(t).

Furthermore, the simulation of circuit bilinear system with order 25 and 15 is pre-
sented. The H2-norm and the least upper bounds of the difference bilinear system with
order 25 and 15 are obtained by using the proposed algorithm as shown in Figures 1
and 2. It is found that βrBT < γrBT for each r. When the order of the reduced bilinear
system is increased, the value of ‖B−Br‖2 is decreased and the least upper bounds of
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the difference of bilinear system are increased. According to Definition 3.1, the Hankel
singular values of the circuit bilinear system and the ratio of the Hankel singular values
are presented in Table 1. The ratio of the Hankel singular value of each order of the
reduced bilinear system from 2 up to 14 is near to 1. Therefore, the order of the reduced
bilinear system is not easy to be determined because it depends on knowledge of the
decision makers.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

r−th order

→ β
BT

→ γ
BT

γ
SP

 ←

β
SP

 ←

Figure 1: The H2-norm β and least upper bound γ of the difference bilinear system.

For the order of the circuit system is 25, the order of the reduced bilinear systems can
be chosen to the 10-th order when the balance truncation method is used to obtain the
reduced bilinear system and to the 13-th order when the singular perturbation method is
used. The output of the circuit bilinear system is presented in Figures 3 and 4. For the
11-th order reduced bilinear system, the response of the reduced bilinear system is not
similar to that of the full order, so it is not recommended as the reduced order model.

The reduced circuit system by using the two methods will have nearly the same
response when the order of the reduced bilinear system is 13. For the order of the circuit
system is 15, the order of the reduced bilinear systems can be chosen to the 4-th order
when the balanced truncation method is used to obtain the reduced bilinear system.
The reduced circuit system by using the two methods will have nearly the same response
when the order of the reduced bilinear system is 8. The outputs of the circuit bilinear
system are shown in Figure 5 for the 4-th order reduced circuit bilinear system.

7 Conclusions

The least upper bounds of the difference bilinear time invariant systems were derived by
defining the H2-norm of the bilinear systems in terms of the error transfer function. The
least upper bounds of the difference bilinear system were presented by the controllability
gramian or the observability gramian of the difference bilinear system. The results were
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Figure 2: The H2-norm β and least upper bound γ of the difference bilinear system.

Order σi, i = 1, 2, ..., n = 25 Rk, k = 1, 2, ..., 24 σi, i = 1, 2, ..., n = 15 Rk, k = 1, 2, ..., 14
1 4.5536 5.8207 3.4232 4.3639
2 0.7823 1.9669 0.7844 1.9817
3 0.3977 1.0126 0.3958 1.0977
4 0.3928 1.3096 0.3606 1.1909
5 0.2999 1.2173 0.3028 1.2161
6 0.2464 1.3369 0.2490 1.3118
7 0.1843 1.2429 0.1898 1.2736
8 0.1483 1.1669 0.1490 1.3711
9 0.1271 1.3048 0.1087 1.6485
10 0.0974 1.3010 0.0659 1.8538
11 0.0749 1.2387 0.0356 2.0791
12 0.0604 1.1717 0.0171 2.3844
13 0.0516 1.1419 0.0072 2.8787
14 0.0452 1.4572 0.0025 3.9790
15 0.0310 1.6138 0.0006
16 0.0192 1.7376
17 0.0111 1.8585
18 0.0059 1.9983
19 0.0030 2.1563
20 0.0014 2.3551
21 0.0006 2.6129
22 0.0002 2.9861
23 0.0001 3.6031
24 0.0000 5.0032
25 0.0000

Table 1: Hankel singular value σi, i = 1, 2, ..., n for the circuit bilinear system and its ratios
Rk = σk

σk+1
, k = 1, 2, ..., n− 1.
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Figure 3: The output of the circuit bilinear system, BT: balanced truncation, SP: singular
perturbation.
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Figure 4: The output of the circuit bilinear system, BT: balanced truncation, SP: singular
perturbation.
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Figure 5: The output of the circuit bilinear system, BT: balanced truncation, SP: singular
perturbation.

also valid for the linear time invariant systems as a special case. The value of the
‖B −Br‖2 decreased as the order of the reduced bilinear system was closer to the full
order bilinear system.

The order selection of the reduced bilinear system was based on the alteration value of
the least upper bounds or the value alteration of ‖B−Br‖2. The proposed method was
easier than using the alteration of the singular Hankel values. The least upper bounds of
the transfer function of the bilinear system inH2-norm are a function of the controllability
gramian or the observability gramian of the bilinear system. The simulation result showed
that the balanced truncation method was better than the singular perturbation method
when the system frequency is low and vice versa. Therefore, the order of the reduced
bilinear system can be chosen to be smaller when using the balanced truncation method
although H2-norm of difference bilinear system was greater when using the singular
perturbation method.
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