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Abstract: This paper continues modeling of an antagonistic game with two players
initiated in Dshalalow and Ke [4] which dealt with a stochastic game with player
A losing to player B. Theorem 1 in [4] gave an explicit functional of several key
components of the game, including the ruin time of A and the total casualties to
both players at the exit, i.e. at A’s ruin time. The claim of why the formula in
Theorem 1 of [4] for the above mentioned functional was explicit is fully justified.
Here we work on a particular case calculating Laplace-Carson inverse transforms and
probability density functions followed by numerics.
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1 Introduction

This paper models an antagonistic game with two players earlier initiated in Dshalalow
and Ke [4]. The first part of [4] dealt with a basic game when player A lost the game
to player B. Theorem 1 in [4] gave an explicit functional of several major components
of the game, including the ruin (exit) time, the total casualties to both players at the
exit. The claim of why the formula in Theorem 1 of [4] for the above mentioned func-
tional was explicit is finally justified in this paper. Here we analyze a particular case
evaluating Laplace-Carson inverse transforms and probability density functions followed
by numerical calculations.
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In short, the game initiated in [4] was modeled by a complex marked point process.
It included two marked Poisson processes representing incremental casualties to players
A and B during the conflict as well as the hitting times. Both processes were supposed
to be observed by a third party point process which preserved more or less crude infor-
mation about the course of the game. So, the ruin time as well as other events were
cumulative upon observation epochs. The literature on antagonistic games is very rich.
We mention just a few articles and books: [1, 5, 7-8, 11, 12]. The contemporary work
on antagonistic games finds its applications to economics [1, 7, 8, 11] and warfare [4, 5,
12]. The techniques used in this paper are based on fluctuation theory developed by the
first author in [4] and his earlier papers. Related work on fluctuation theory is in [9,10].

The paper is organized as follows. In Section 2, we give a brief description of the model
in [4]. Section 3 formalizes a special case making an assumption about the distributions of
casualties and observation process. The double inverse of the Laplace-Carson transform
is evaluated explicitly in terms of the modified Bessel functions of order zero and one.
Section 4 deals with one marginal functional of the ruin time and casualties to player
A, all in terms of the Laplace-Stieltjes transform. Other results, such as casualties to
player B and inverse of the Laplace-Stieltjes transform (that yields associated probability
density functions), are dealt in paper [6].

2 The Model

For consistency, we present some descriptional details of the model before we turn to
the special case. Let (2, F(€2), P) be a probability space and let Fa, Fp, Fr C F(Q) be
independent sub- o-algebras. Suppose

A= ijasj and B:= szstk, s1,t1 >0, (2.1)

j>1 k>1

are J4-measurable and Fp-measurable marked Poisson random measures (g, is a point
mass at a) with respective intensities Ay and Ap and position independent marking.
They are specified by their transforms

Ee oAC) = ghalllal)=1l " g() = Be="1 Re(a) >0, (2.2)

Be#B0) — AslB)-1 p(8) = Ee*1,  Re(B) > 0, (2.3)

| - | is the Borel-Lebesgue measure, and w; and zj, are nonnegative r.v.’s. Furthermore,
let

T = Zsﬂ., 70 > 0, (2.4)
i>0

be an F -measurable delayed renewal process.
If
(A(t), B(t)) := A®@ B ((—00,1]), (2.5)

then
(A;,Bj) = (A(1), B(15)) = A® B((—00,75]), j=0,1,..., (2.6)

forms the observation process upon A ® B embedded over 7, with respective increments

(Xj,Yrj):A@)B((Tj_l,Tj]), 7=12... (27)
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and
Xo = Ao, Yo= Bo. (2.8)

Obviously, the bivariate marked point process

A @ Br =Y (X;,Y))es,, (2.9)
j=0
where
A- =Y Xier, and B, =) Yie,,. (2.10)
>0 i>0

are with position dependent marking and with X; and Y; being interdependent. With
the notation
Aj =T — Tj—1, j:1,2,..., (211)

we evaluate the functional

Y(a, B,0) = Be X770 = §5{0 + X\a(1 — g(a)) + A\g(1 - h(B))}, j=1,2,...,

(2.12)
Re(a) >0, Re(8) >0, Re(d) >0, (2.13)
where
5(0) = BEe %21, Re() > 0. (2.14)
is the common marginal Laplace-Stieltjes transform of Aj, Ao, . ...
Analogously,
Yo(a, 8,0) = Bem @M= AB0m0m = 50{0 + Aa(1 - g(a)) + Ap(1 - h(B)},  (2.15)
where
50(0) = Ee~ 7. (2.16)

The game in this case is stochastic process A, ® B, describing the evolution of a
conflict between players A and B known to an observer only upon process 7 = {79, 71, . . . }.
The game is over when on the kth observation epoch 7 (for some k), the cumulative
damage to player A or B (Ay or By, respectively) exceeds its respective threshold M or
N (some positive real numbers). But we are looking into the paths of the game where
player A is losing first.

With the exit indices

pe=inf{j >0: 4;=Xo+X1+ ... +X; >M} (2.17)

and
vi=inf{k>0: By =Yy +Y1+...+Y; >N}, (2.18)

A, and B, are the respective cumulative damages to players A and B at their ruin times.
We will be concerned, however, with the ruin time of player A and thus restrict our game
to the confined trace o-algebra F(2) N{u < v}. In paper [4] (Dshalalow-Ke) the authors
studied a game between two players, A and B, in particular, the functional

By = (e, B,0) = B [em A =FBub0Tuy 1] (2.19)

of the game. It represented the multivariate Laplace-Stieltjes transform of joint distri-
bution of the exit time 7, of the game and the status of the casualties to both players
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at the exit. The evolution of the game is followed here when player A loses the game to
player B.

Theorem 1 [4] below gives an explicit formula for @,,. With (2.12) and (2.15) we
abbreviate

Yo(a, 3,0) := Ee~Xo=fYo—040 Re(a) >0, Re(B8) >0, Re(d) >0,

FO = ’)’0(0{4’1',54’]_/,9), Fol = 70(055/3+y59)5
I=~(a+az,f+y0), I':=~(aB+y,0). (2.23

The results are presented in terms of the inverse of the Laplace-Carson transform defined
as

(2.20)

v(av, B,0) := Be=Xi=PYi=02i = Re(a) >0, Re(B) >0, Re(d) >0, j>0, (2.21)
(2.22)

)

L0y () (@sy) = oy / : / : =TV )d(p,q), Re(x) >0, Re(y)>0.  (2.24)

Denote its inverse

LC,, ()P q) = Ly < $—1y> (2.25)

where £7! is the inverse of the bivariate Laplace transform.
Theorem 1 [4] In light of abbreviations (2.20)—(2.23), the functional @, of the game
on the trace o-algebra F () N {p < v} satisfies the following formula:

Iy
1-r

b, = LC,) (Fol —Io+ (rt— F)) (M, N), (2.26)
which for the restricted functional (2.19) of only three major components can be rewritten

as
1-1t

1-r

b, = LC,,) (Fol — I ) (M, N). (2.27)

3 A Special Case

We assume that the intervals Aj, As,... between the successive observation times
To, T1, - . . are exponentially distributed with parameter 4, i.e.
8(0) := Fe %% = 0 (3.1)
' §+6

We assume that the game starts from zero, i.e., Xy and Yy are some constants and that
Ag :=0. (3.2)

Furthermore, we assume that the marks in the processes A and B specified by ¢ and h
in (2.2) and (2.3), respectively, are exponential with parameters g and h, i.e.

and h(B) = # (3.3)

g(a)=g+a



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (1) (16) 63

Our goal is to simplify @, of (2.27) for this special case to a form for which we can
find the Laplace-Carson inverse explicitly. We start with the first factor, I'} of (2.27) by
unfolding notation (2.12):

Fol = yolo, B +1,0) = E[e—aXo—(B-iry)Yo—HAo] — Ee—oXo—(B+y)Yo (3.4)

Now we apply the Laplace-Carson inverse to (3.4):

- a1 axe— o (1 _oxe- .
ECwyl([’Ol)(p,q)zgzyl(z_ye X (ﬁ+y)Y)(p,q):£y1(§€ X, (ﬁ+y)Y)(q)

(3.5)
= e N0 (3 ) (@) = YLy 000 (9)-
Turn to the second term FO% of (2.27). Firstly,
Iy = yola + z, 8 +y,0) = e~ (@ T2 Xo=(BHu)Y¥o, (3.6)

Recall from (2.13) that y(a, 3,6) = 6[0 + Aa(1 — g(@)) + Ap(1 — h(B))]. Using (3.1) we
get
|~ (e 5.6) = (g + o) (h+ B) + Aaa(h + B) + ApB(g + a)

' (6+0)(g+a)(h+B)+Aaalh+8) +ApB(g +a)

Denote X := X(z)=g+a+zandY :=Y(y) =h+ S +y. Then

(3.7)

1-I" 1 —y(,B+4y,0)
1-I'  1—y(a+zB+y.0)
0(g+ )Y +daaY + Ag(B+1y)(g+ ) 1

T XY+ ra(ata) Y A (B+y) X
(6 + 9)(9 + a)Y T )\Aay T )\B (ﬁ + y) ('g + a) (6+0)XY+A/\A(aJrz)Yf/\B(ﬁery)X

Continuing with calculations we have

1-T'  GY =Xgh(g+a) (B+A)XY —AagY — AghX
_ . = L) f(X,Y), (38
1—T  GsY —Agh(g+0a)  AXY —dagY — AghX ALXY), (38)

where
A=0+Xra+ g, G:=A(g+a)—rag, Gs:=(0+A)(g+a)— Aag, (3.9)

GY—)\Bh(g—i—a) (6+A)XY—)\AgY—)\BhX

Y):= X)Y):= 3.10
A) GsY — \gh(g +a)’ f(X.Y) AXY — AagY — AghX (3.10)
Here is how f2(X,Y") can be evaluated to separate x and ¥ = Y (y):
(5+A)XY—)\AgY—)\BhX 13
X,)Y) = = f3(Y A1
f2( ) ) AXY—)\AQY—)\BhX f3( )+x+a’ (3 )
where 5 Aghs 1
B
= — : A2
)\A95Y2
AagY
a=alY):=g+a A9 (3.14)

AY — A\gh’
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For the upcoming calculations we rewrite the function f3(Y") as

1

f3(Y):b+C.Y—r’ (3.15)
where 5 Apho Ash
B B
=1 — = = . 1
b + 1 C 2o " A (3.16)
(3.11) substituted in (3.8) gives
1-It 13
= f1(Y Y . 3.17
= hm(am ) (3.17)
Due to (3.5) and (3.6),
Ty = e (@) Xo=(B+y)Yo — g—aXo=fYo—2Xo—yYo — 4. o= Xo—yYo (3.18)
With (3.17) and (3.18) substituted in Iy 2=L> | we arrive at
1 — Fl — ngyYO 5
=¢-e” Y Y . q
o =ve S fs(Y) + Tt o (3.19)
Now we apply the Laplace-Carson inverse to (3.19):
1-1t 1 1-1t
L£C) | I =L, — I
1 1 ¢ 1 1
— o1l e VYo r (v V). Ze~%Xo 4 S pmaXo 2 _ .
e {s v e A () g S (2o ) ) )

By Fubini’s theorem, we can apply univariate Laplace inverses first in  and then in
y. So

_ 1-1!

S Sl Le &1 — eet-xo
g {0 e A0 + 00 1= ) 100,000 @)

(3.20)

To make (3.20) inversely transformable in a closed form we decompose the underly-
ing expressions with respect to y. The partial fraction decomposition will be rendered
throughout.

Let

_ GY —Agh(g+a) GY —o0

= Aph d Y)= = . 21
oi=Aphlg+a) and A(Y) = G T G —o (3:21)
Then the partial fraction decomposition of i f1(Y) gives
1 A B
(V)= — = 22
AN =24 (3.22)
with G(h G5 — G
htp)=o = p_ _olG-G) (3.23)

T GihtpB) -0 T Gs(h+B) -0
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Continuing working on the first term %fl(Y)f3(Y) of (3.20) and using (3.15) and
(3.22) we get
Ab Bb Ac 1 Be 1

1
yfl( )f3( ) y +G5Y—a+y Y77’+G5Y*U Y -7’

in notation,
= p1(y) + e2(y) + 3(y) + pa(y). (3.24)

Here is the partial fraction decomposition of ¢3(y), and ¢4(y). We distinguish three
cases with various combinations of « # 0, a =0, d # Aa, and § = A4.

(i) Case a # 0.
As B;

ws(y)=?+yir and <p4(y)=G5YiU+Y7T, (3.25)
where A OB
_ _p c _ _ sBc
As = —Bs e Ay = (—G5)By P (3.26)
Substituting (3.25) into (3.24) we have
1 _Ab  Bb/Gs As  As By By
yfl(Y)fg(Y) Ty Y- o/Gs " < y Y —7") " (Y - Y- 0/G5> (3.27)
1 1 Bb 1 '
= (b 2) 7 (B o)+ (aB)m
(i¢) Case a = 0 and § # X 4. Here we have
0(h + B) + App ( 5) 1
= 1+—)-= 3.28
W)= Grgh+ BB\ TR) Y (3:28)
Aphd 1 ( 5) 1
= : 14— ) — 3.29
22 = g+ B) +oaB 310+ 05 /-1 (3:29)
0(h+ B) + AgpS c (1 -1 )
= : - 3.30
2 = Gr o+ B+ B hiB-r\y V_7) (8:30)
Aphd? 1 ( -1 1 )
= : : 3.31
#aly) O+ 0)(h+B)+ApB A0 —Aa) \Y — ;52 Y, (8:31)
Substituting (3.28)—(3.31) into (3.24) we obtain
1 O(h+ B) + App ( d(h+p) )1
— (V) f3(Y) = 1+ =
yfl( Jfs(Y) (0+0)(h+B) + AsB Ah+B-1))y
N —AaAphd . 1 . 1 )
GG +0+r5) O+OG+A B v 2wh 532
AaAphd 1 1

AG—Xa) Ah+B)—Xgh Y —r
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(ii1) Case a = 0 and § = A 4. Here we have

_0(h+B)+ B Aa) 1
P00 =S e (1 F)

+

(3.33)

@2(y):%.%(1+%)-ylr, (3.34)
ga@)=9%jﬁ2+gfﬁ-kifh(i+§;JT), (3.35)
wdy)Ka?f%%??agﬁ~£§<},ir)2. (3.36)

Substituting (3.33)—(3.36) into (3.24) we finally have

ifl(y)fg(y) - i((i;iﬂﬁ))tiii (1 * A(ij\i(g)tﬂ))\gh) é

2 _

Aﬁ?h'&¥Z1§l£§%'Yir (3.37)
+ % ' A(h?g%ﬁim (v - r)2

Now turn to the factor ifl (Y)% in the second term of (3.20). We begin with evalu-
ation of & substituting (3.13) and (3.14),

£ Y? 1
a Y-+ YR (3:38)
where
Aago Aagd Aph(g + «) o
= = and Ri= ——mMm——F— = —. 3.39
7 A[A(g +a) — Aag] AG Ag+a)—rag G (3:39)
Represent the last two factors YY—_QT - 545 of (3.38)—(3.39) as
Y?2 1 r? R?
=1 — . 3.40
Y-+ Y-R T W-n0r-R (Y-R(-R) (340)
With (3.40) substituted in (3.38) we have
i3 Y2 1 r? R?
2 —_p. . =n-(1 — . 3.41
Ty vy_r "UT o oor-rn  -RG-BR (341)

Further, substituting (3.22) and (3.41) into the second term %fl(Y)g of (3.20), we arrive
at

1 ¢ A B/Gs 11 1 1
A= (2 2170 el . .
yfl( )a g (y+YJ/G5 o Y Y—r+a2 Y—-0/Gs Y -—r
(3.42)
n 1 1 n 1 1
a - —_— e —,—,_, a . .
Yy Y-R Y Y—0/Gs Y-R’
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where

Ar?y Br?n AR?n BR?n (3.43)
=—— = ————, a3:=— oy = ———— . .
r—R T Gs(r—R) ° r—Rr’ Gs(r — R)

g

Continuing with calculations, after a decomposition and some algebra, we arrive at:

(¢) Case a # 0.

1 ¢ 1 1 1 1
il 0 70 Y _ . . 44
yfl( )a ai y+a2 Y —o/Cs +as Y—R+a4 v, (3.44)
where ) as
— 1A 3.45
R Ay i A 4 (3.45)
nB Qg oy
- = 4
a2 Gg JFU/G(s—TJrU/Gg—R7 (3 6)
—Q3 — 0Oy
= .4
“BEWTB-R 0/Gs R’ (3-47)
—Qq —Q9
= . A4
“ h+ﬁ—r+0/G5—r (3.48)
(it) Case a =0 and § # A\ 4.
L)t = Qa0+ 5 1 1
y'" " a T A+ B)—Aph 0+ 0)(h+B) +ApB y
—AaAghd 1 1
AG—2a) ANhtB) —rgh Y —7 (3.49)
. AaAghd 1 1
(O=2AA)0+0+Ap) (0+0)(h+P)+AsB Y — 3=
(#41) Case a = 0 and § = A 4.
LN M(h+8)? 1 —NAsh 20(h+8)—Xsh 1
vy e [AEA) —AshP y T N AREA) AP Y- o
N —NABR 1 ( 1 )2 '
A3 A(h+B) —Ah\Y —r
With (3.32) and (3.44) substituted into (3.20) we have
(2) Case a # 0.
1T ) v 1
ECwyl <F0ﬁ)(p,q) 2y1{1/1'6 v |:<Ab+A3+a1)§
Bb 1 1 1
+<G_6_B4+GQ>Y—U/G(S+a3.Y—R+<B4_A3+a4)Y—r (3.51)

— e~ a(p—Xo) a1.l+a2.;+a . 1 + a4 - 1
y Y—0/Gs  ° Y-R Y —r
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Correspondingly, we modify the above components in (3.51). After some algebra in
(3.26) and (3.45) and the use of notation (3.16), (3.23), (3.39), and (3.43) we arrive at

Ac A Aphd A rd
As = = : = L 52
T htfB-r h+B-r A2 h+fB-r A’ (3:52)
oy o3 Aagd(h + B)?
=nA+ + = . 3.53
= h+B8—r h+B—R Ah+8—1)Gs(h+p)—0] (3:53)
With (3.16) and (3.52)—(3.53) substituted into Ab + Az + a1 we finally have
) A ) Aago(h 2
Abt As+ar = AL+ )+ r Ago(h+ B)

NN Er R AT AonGhi ) =] B

We continue calculating g;é’ — By + as in (3.51). After some algebra we arrive at

1

1-TI 1 1
—1 T — —1 L —yYo | = _ _—a(p—Xo) -
‘chy ( 0 1T )(paq) Ey {w € |:y € ai Y

(3.55)

+as - !t +ay - LN x 1 (p) v(q)

2 Y—U/G5 4 Y —r (Xo,00)\P) ¢\4),

where Aagb(h 1 B)? 0B
Ago(h + A9
_ , = , 3.56
NN+ B-nGCoh+B) =0 7GsG, (3.56)
—Ar? B

s r“Aagd rAagé (3.57)

T AG(r—R)(h+B—1)  AGGi(r—R)
(i¢) Case a = 0 and § # X 4. Substituting (3.32) and (3.49) into (3.20), we have

o, 1-TIt
1 —Aa0(h 2 1 1
:£§1{¢-6_yyﬂ[—+( adh +B)" 2
y  \Ah+8)—Agh (§+0)(h+B)+Asf y
AaAphd 1 1
AW —Aa) A(h+B)—Agh Y —r
+ —AaAghd . ! . 1 ea(:DXo):|
(0=2Aa)(0+0+Ap) (+0)(h+B)+AB V¥V — ;35—
X 1(X0700)(p)}(‘J)-
(3.58)
(i4i) Case o = 0 and & = A4. Substituting (3.37) and (3.50) into (3.20), we get
1-r11
LCqy (To7—F) (p:9)

sl i [Ly (D1 gk ) deh
% y NAGR+B) —Ash2 y o A2 [A(R+B) - Agh]2 Y -7
)\2 )\2 h2 1 1 —a(p—

AAI; 'A(h+ﬂ)fABh(Yfr)2)e v XO)}l(X"‘"’)(p)}(q)'

(3.59)
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Now we need to handle e~*®~%0) in (3.59) before inversely transforming the rest of the
terms. Unfold (3.14) by using notation (3.16), we have

agm%.%%agz-yl_r, (3.60)
where
fi=gta- 220 g AENY (3.61)
We finally have
e~ a(p=Xo) _ ,—(&1—b2 1) (p—Xo0) _ ,—61(p—X0) pE2(p—Xo) v 7 (3.62)

where & (p — Xo) is positive (if p > Xo) since & >0 .
Now, we will apply the univariate Laplace-Carson inverse in y to (3.55), (3.58), and
(3.59). We will make use of the following formulas for the Laplace inverse (cf. [2,3]):

1
-1 —« —b(g—a
£t (e 2 )@ = ) (3.69)
i ey €7 bg—a
£y1(e y-—)(q):e b(q )10(2 a(q—a))l(ayoo)(q), (3.64)
y+b
_ —a eﬁ — —«
£y1<e T )(q)e P11 1y (24/alg — @) 1(a,00) (@)
Yy o2 e (3.65)
+ (bl — b2) : €7b2(q7a) / e(b2ibl)ZIO (QM)dzl(a,oo) (q)a
z=0

-1 —« eﬁ _ q—« —b(g—a)
Ey (6 v (y ¥ b)2) (q) - T - € (a Il (2 a(q - a))l(a,oo) (q)a (366)
where Iy and I; are the modified Bessel functions of order zero and one, respectively.
Equation (3.65) can be readily proved, while the rest of the above formulas can be found
in references [2,3].

(¢) Case a # 0. Using (3.63)—(3.66) in (3.55), then combining it with (3.5) we finally
have

_ 1-rIt
£e,, (Fol ~hhT—F )(p, q)

_ 1/}{(6“ g + ag)e 8P X0) (B0 [ (9 /6 XY (g — Vo))
q—Yo
+ai(h+ 8 —r)e 1 P=X0) / e MHB=NZ 10 20/ (p — Xo)2)dz  (3.67)
2=0

+a (GL _ T) o1 (- Xo) (4585 (a—¥0)

a—Yo oy,
></ ) Ip(2 52(17—XO)Z)dZ}1(Xo,oo)(p)1(Y01°°)(q)'
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Calculating a1 + a2 + a4 and other terms we arrive at

B 1—-1!
KCM}(FO1 _FOﬁ)(paq)
MIS e XY — (ht B (o
1/}{ AAGg(; G (p=Xo) o= (8- (a=Yo) [ (2 /€, (p — X0)(q — Yo))

Aagdh+8)?  px )/qu .
e 81 0 e nzr (9 ~ X 92)ds
A[Gs(h + B) — o] - 0(2v/&(p — Xo)z)

—Aagdo? . o—&1(p—X0) g~ (h+B—F5)(a=Yo)
AGa[Ga(h +5) -l
q—Yo (r—
X / e 10(2 &(p— O)Z)dz}1(X0,oo)(P)1(Yo,oo)(Q)-
z=0
(3.68)
(i¢) Case o = 0 and § 7# A 4. Using (3.63)—(3.66) in (3.58) and then (3.5) we have
1-1It
11
£C,) (I = Tog—F) (1:9)
Aad
— o BY0 A . e—61(p—Xo) o= (h+B—7)(¢=Y0) [ (9 — X —Y,
e {A(5+9+)\3) e e 0(2v&(p — Xo)(q — Yo))
n Aad(h + 5)2 ) 1 . e—S1(p—Xo)
A (0 4+0)(h+B) + ApS
q—Yo
X / e_(h+ﬂ_T)ZIO (2 &a(p— Xo)z)dz
z=0
—AANh 1 e—€1(p=Xo) , o~ (h B3l ) (a=Yo)

AG+0+ 252 (5+60)(h+pB)+ Asf

q—Yo e Agh
></ T wFoag) “Io(2v/&(p — O)Z)dz}l(xo,oo)(P)l(Yo,oo)(Q)-
z2=0

(3.69)
(iit) Case a = 0 and § = A 4. Using (3.63)—(3.66) in (3.59) then (3.5) we get

LC; ( Fol Fl)(p,q)

T
)\2
e—BYO{A2 ¢~ (0= X0) ,~ (B Y0) (2. /65 (p — Xo)(q — o)
n Na(h+B)* 1 o~ E1(p—X0)
A Alh + B) — Aph

q—Yo
X / e~ (MHB=Z 10 bigl(24/€a(p — Xo)2)d2
z=0

L ZAAABR ! 4=Y0  —&i(p-Xo) o~ (h+8-r)(a-Y0)
A3 A(h+ﬂ) *)\Bh gg(pro)

x I (2¢/&(p — Xo) (g — Vo)) }1()(0,00)(1?)1(1/0,00)((1),

(3.70)
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with the abbreviations:

A
b =e XY A —01A1+ g, o=Agh(g+a), 51=g+a—%9, (3.71)

AaAgh Agh
=200, r= "0 Gs=(6+M)(g+a) — hag. (3.72)

4 Marginal Functionals

Our next goal is to get the marginal transforms. This can be directly obtained from the
version of ¢, (o, 8,0) in (3.68)—(3.70).

Case 1. With g = 6§ = 0 we have the marginal Laplace—Stieltjes transform of the
amount of casualties to player A at the A’s ruin (which is the exit of the game):

éﬂl/(aa Oa 0) =F |:€7QA“1{H<U}:|

- { A A )‘3‘96)\ 2\g) (61+A ) _aMei(ﬁ)(Mixw
(A+ B)(JFAJF B) a+m
« 6_(%)(1\[_}/0)] 9 )\A)\Bhg(M — XO)(N — YO) " Aahgé
0 (A + Ap)? (A4 +AB)(0 + Aa)
N-Y,
X : 5 e_aMe*(%)(M*XO)/ ° e ¢ adig)?
(0% + Sf)\A z2=0
Madphg(M — X N=Yo —Aahgd 1
« I [ 2y 2aAzhg (M — Xo)z dz+/ ANg . '
(Aa +Ap) s=0 | (Qa+AB)(0+Aa) o+ -
Aahgd(d+ Aa+2AB) 1
2 5+)p)
A +28)(0 + Aa + AB) Oc—i—ﬁ
SV S
3 (3+XB)
Oa +28)(6 A1 + A5 \q 4 Cs
Aadrphg 1 Yi—s
y e((s+xA+xB)2 a*% )(N=Yo )ei( )\2533 )(M,Xo)ef(s(fi;iy;)(NfYo)
Aphd 2 )\A)\Bhg(M — Xo)z
X e( CYEST It wen v I (2\/ (}\A n )\B)2 )dz 1(X0,oo)(M)1(Yo,oo)(N)-
(4.1)
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