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A New Approach to Synchronize Different Dimensional Chaotic Maps
Using Two Scaling Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Adel Ouannas and M. Mossa Al-Sawalha

A Simple Analytical Technique to Investigate Nonlinear Oscillations
of an Elastic Two Degrees of Freedom Pendulum . . . . . . . . . . . . . . . . . . . . . 409

Md. Abdur Razzak and Md. Helal Uddin Molla

Mathematical Analysis in a Model of Primary Succession . . . . . . . . . . . . 418
R.V. Ruzich

Observer Based Output Tracking Control for Bounded Linear Time
Variant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

B. Iben Warrad, M.K. Bouafoura and N. Benhadj Braiek

Contents of Volume 15, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Founded by A.A. Martynyuk in 2001.

Registered in Ukraine Number: KB 5267 / 04.07.2001.



NONLINEAR DYNAMICS AND SYSTEMS THEORY

An International Journal of Research and Surveys

Impact Factor from SCOPUS for 2013: SNIP – 1.108, IPP – 0.809, SJR – 0.496

Nonlinear Dynamics and Systems Theory (ISSN 1562–8353 (Print), ISSN 1813–
7385 (Online)) is an international journal published under the auspices of the S.P. Timo-
shenko Institute of Mechanics of National Academy of Sciences of Ukraine and Curtin
University of Technology (Perth, Australia). It aims to publish high quality original
scientific papers and surveys in areas of nonlinear dynamics and systems theory and
their real world applications.

AIMS AND SCOPE

Nonlinear Dynamics and Systems Theory is a multidisciplinary journal. It pub-
lishes papers focusing on proofs of important theorems as well as papers presenting new
ideas and new theory, conjectures, numerical algorithms and physical experiments in
areas related to nonlinear dynamics and systems theory. Papers that deal with theo-
retical aspects of nonlinear dynamics and/or systems theory should contain significant
mathematical results with an indication of their possible applications. Papers that em-
phasize applications should contain new mathematical models of real world phenomena
and/or description of engineering problems. They should include rigorous analysis of
data used and results obtained. Papers that integrate and interrelate ideas and methods
of nonlinear dynamics and systems theory will be particularly welcomed. This journal
and the individual contributions published therein are protected under the copyright by
International InforMath Publishing Group.

PUBLICATION AND SUBSCRIPTION INFORMATION

Nonlinear Dynamics and Systems Theory will have 4 issues in 2016,
printed in hard copy (ISSN 1562–8353) and available online (ISSN 1813–7385),
by InforMath Publishing Group, Nesterov str., 3, Institute of Mechanics, Kiev,
MSP 680, Ukraine, 03057. Subscription prices are available upon request from
the Publisher (mailto:anmart@stability.kiev.ua), EBSCO Information Services
(mailto:journals@ebsco.com), or website of the Journal: http://e-ndst.kiev.ua.
Subscriptions are accepted on a calendar year basis. Issues are sent by airmail to all
countries of the world. Claims for missing issues should be made within six months of
the date of dispatch.

ABSTRACTING AND INDEXING SERVICES

Papers published in this journal are indexed or abstracted in: Mathematical Reviews /
MathSciNet, Zentralblatt MATH / Mathematics Abstracts, PASCAL database (INIST–
CNRS) and SCOPUS.

mailto:anmart@stability.kiev.ua
mailto:journals@ebsco.com
http://e-ndst.kiev.ua


Nonlinear Dynamics and Systems Theory, 15 (4) (2015) 334–343

Synchronization of Dumbbell Satellites: Generalized

Hamiltonian Systems Approach
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Abstract: In this paper, the attitude synchronization problem of two dumbbell satel-
lite models is addressed. To achieve this purpose, a synchronization approach based
on generalized Hamiltonian systems and state observer design reported in literature,
is applied. Potential applications of attitude synchronization are multi-satellites ar-
rays for self assembly structures, and resolution enhancement. Numerical results of
the synchronization behavior achievement are presented.

Keywords: dumbbell satellites; attitude synchronization; generalized Hamiltonian
systems; nonlinear observers.

Mathematics Subject Classification (2010): 34D06, 93B07, 93C10.

1 Introduction

Modern space missions involve the use of multiple small satellites, this scheme introduces
several advantages compared to single satellite missions. An interesting topic regarding
these missions, is the attitude synchronization of the satellites. This allows to handle
larger structures than what can be launched. Some interesting applications include:
resolution enhancement, interferometry or, super-sized focal length [1], this behavior is
also useful for in-orbit-self-assembly operations [2].

∗ Corresponding author: mailto:ccruz@cicese.mx
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The mathematical model considered in this paper is reported in [3] and corresponds
to a dumbbell satellite. This model represents a simple structure consisting of two point
masses connected by a mass-less rod. This dumbbell satellite model is suitable for a
straightforward investigation of the general properties of the rigid body motion in a
gravity field and has attracted the attention of scientists since the middle of the past
century [4].

For attitude synchronization of two dumbbell satellites, the approach used in this
paper is the generalized Hamiltonian systems and design of nonlinear observer presented
in [5] which has been successfully applied in synchronization of chaotic systems, see
e.g. [6–11].

The paper is arranged as follows: Section 2 describes briefly the mathematical pre-
liminaries on synchronization of nonlinear oscillators from the perspective of generalized
Hamiltonian systems and design of nonlinear observer. Section 3 describes the dumbbell
satellite mathematical model used for attitude synchronization purposes. Then, Section
4 presents the attitude synchronization of two dumbbell satellites in master-slave cou-
pling via generalized Hamiltonian forms and state observer design approach. In Section
5, numerical results are discussed and finally some conclusions are given in Section 6.

2 Synchronization Via Generalized Hamiltonian Forms and Observer Design

In this section, briefly we describe the synchronization for two nonlinear dynamical sys-
tems via generalized Hamiltonian forms and nonlinear observer design approach, for
details see [5].

2.1 Generalized Hamiltonian Systems

Consider the following nonlinear dynamical system described by the state equation

ẋ = f (x) , x ∈ R
n. (1)

Following the approach provided in [5], many physical nonliner systems described by
equation (1) can be written in the following generalized Hamiltonian canonical form,

ẋ = J (x)
∂H

∂x
+ S (x)

∂H

∂x
, x ∈ R

n, (2)

where H (x) denotes a smooth energy function which is globally positive definite in R
n.

The column gradient vector of H , denoted by ∂H/∂x, is assumed to exist everywhere.
One of the most frequently used functions H (x) is the quadratic energy function of the
form

H (x) =
1

2
xTMx (3)

with M being a symmetric, positive definite, constant matrix. In such case, ∂H/∂x =
Mx. The square matrices J (x) and S (x) , present in (2), satisfy, for all x ∈ R

n, the
following properties, which represent the energy managing structure of the system:

J (x) + J T (x) = 0, S (x) = ST (x) . (4)

The vector field J (x) ∂H
∂x exhibits the conservative part of the system and it is also

referred to as the work-less part, or work-less forces of the system. The matrix S (x)
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is, in general, a symmetric matrix describing the working or nonconservative part of the
system. For certain systems, the symmetric matrix S (x) is negative definite or negative
semidefinite, in such cases the vector field is known as the dissipative part of the system.

Sometimes, specially in the contex of state observer design, the system under obser-
vation will be written in the special form

ẋ = J (x)
∂H

∂x
+ S (x)

∂H

∂x
+ F (x) , (5)

where F (x) represents a locally destabilizing vector field and S (x) is a symmetric ma-
trix, not necesarily of definite sign. However, many physical systems are already in the
generalized Hamitlonian canonical form (2).

2.2 Nonlinear Observer Design for a Class of Systems in Generalized Hamil-
tonian Form

For a complete description of the synchronization method, the reader is encouraged to
see [5]. A special class of generalized Hamiltonian systems with destabilizing vector field
and linear output map y is given by

ẋ = J (y) ∂H
∂x + (I + S) ∂H

∂x + F (y) , x ∈ R,n

y = C ∂H
∂x , y ∈ R

m,
(6)

where S is a constant symmetric matrix, not necessarily of definite sign. The matrix I
is a constant skew symmetric matrix. The vector variable y is referred to as the system
output. The matrix C is a constant matrix.

The estimate of the state vector x is denoted by ξ, and consider the Hamiltonian
energy function H (ξ) to be the particularization of H in terms of ξ, similarly, η is
the estimated output computed in terms of the estimated state ξ. The gradient vector
∂H (ξ) /∂ξ is, naturally, of the form Mξ with M being a constant symmetric positive
definite matrix.

A dynamic nonlinear state observer for the system (6) is obtained as

ξ̇ = J (y) ∂H
∂ξ + (I + S) ∂H

∂ξ + F (y) +K (y − η) ,

η = C ∂H
∂ξ ,

(7)

where K is a constant vector, known as the observer gain. The state estimation error,
defined as e = x− ξ and the output estimation error, defined as ey = y− η, are governed
by

ė = J (y) ∂H
∂e + (I + S − KC) ∂H

∂e , e ∈ R
n,

ey = C ∂H
∂e , ey ∈ R

m,
(8)

where the vector ∂H (e) /∂e with some abuse of notation, stands for the gradient vector of
the modified energy function, ∂H (e) /∂e = ∂H (x) /∂x−∂H (ξ) /∂ξ = M (x− ξ) = Me.
In the rest of this work, when needed, it is set that I + S = W .



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (4) (2015) 334–343 337

2.3 Synchronization of dynamical systems

Definition 2.1 Synchronization problem ( [12]): We say that the slave satellite (7)
synchronizes with the master satellite (6), if

lim
t→∞

‖x (t)− ξ (t)‖ = 0, (9)

no matter which initial conditions x (0) and ξ (0) hold. Here the state estimation error
e(t) = x (t)− ξ (t) represents the synchronization error.

Theorem 2.1 ( [5]) The state x(t) of the nonlinear system (6) can be globally, ex-
ponentially, asymptotically estimated by the state ξ(t) of an observer of the form (7), if
the pair of matrices (C,W) , or the pair (C,S), is either observable or, at least, detectable.

An observability condition on either of the pairs (C,W) or (C,S) is clearly a sufficient
but not necessary condition for asymptotic state reconstruction. A necessary and suffi-
cient condition for global asymtotic stability to zero of the state estimation error e(t) is
given by the following theorem.

Theorem 2.2 ( [5]) The state x(t) of the nonlinear system (6) can be globally, ex-
ponentially, asymptotically estimated by the state ξ(t) of an observer of the form (7) if
and only if there exists a constant matrix K such that the symmetric matrix

[W −KC] + [W −KC]T = [S − KC] + [S − KC]T

= 2
[

S − 1
2

(

KC + CTKT
)]

is negative definite.

The application of this method on the field of synchronization of chaotic circuits
implies the design of a state observer of the form (7) to act as the receiver of the chaotic
system in the form (6) considered as the emitter.

Several advantages of generalized Hamiltonian systems approach over other synchro-
nization techiniques are reported in the literature, the following advantages are enumer-
ated in [5] and [12] and reproduced below:

• It enables synchronization be achieved in a systematic way and clarifies the issue
of deciding on the nature of the output signal to be transmitted.

• It can be successfully applied to several well-known chaotic systems.

• It does not require the computation of any Lyapunov exponent.

• It does not require initial conditions belonging to the same basin of attraction.

3 Dumbbell Satellite Model

Typical models of a dumbbell satellite are given in [3] and [4]. In Figure 1 a graphical
interpretation can be observed. This model consists of two point masses coupled by a
mass-less rod. In this case, θ represents the attitude of the satellite and the (r, φ)-tuple
represents the position of the satellite with respect to a reference point.
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φ

θ

r

m

m
l

l

Figure 1: Dumbbell satellite representation.

In this model, the Lagrangian of the system with a normalized universal gravitational
constant (G), is given by

L = m(ṙ2 + r2φ̇2 + l2(θ̇ − φ̇)2) +
m√

l2 + r2 − 2lrcosθ
+

m√
l2 + r2 + 2lrcosθ

. (10)

Applying the Euler-Lagrange equation for θ, we can obtain the following differential
equation

2l2(θ̈ − φ̈) +
lrsinθ

(l2 + r2 + 2lrcosθ)3/2
− lrsinθ

(l2 + r2 − 2lrcosθ)3/2
= 0 (11)

by using a binomial approximation for both denominators, and taking into account that
r ≫ l, one can derive the differential equation of the attitude dynamics of a dumbbell
satellite

θ̈ +
3sin(2θ)

2r3
= φ̈. (12)

By using a similar procedure for r and φ, the differential equations are:

r̈ − rφ̇2 = − 1

r2
, (13)

d

dt
(r2φ̇) = 0. (14)

Equations (13) and (14) describe the Keplerian motion. By using the well-known
solutions, φ̈ can be computed. The equation (12) for the attitude dynamics of a dumbbell
satellite is given by

θ̈ +
3

2

sin (2θ)

r3
= − 2ε

√
1− ε2 sinE

a3(1− ε cosE)4
. (15)

Here a and ε refer to the semi-major axis and the eccentricity of the dumbbell sate-
llite’s orbital motion, respectively. E denotes the so-called eccentric anomaly and is
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]

 

 

center of mass
m

1

m
2

Figure 2: Motion trajectory of a single dumbbell satellite.

related to time t via Kepler’s equation. If E is used eventually as an independent variable
rather than t [3], the second order differential equation for θ̈ can be obtained as follows

d2θ

dE2
− dθ

dE

ε sinE

1− ε cosE
+

3

2

sin (2θ)

1− ε cosE
= −2ε

√
1− ε2 sinE

(1− ε cosE)2
. (16)

Figure 2 shows the motion trajectory governed by the dynamics of the dumbbell
satellite model (13)-(15). Recasting the second order equation as a first order system
and writing x and t rather than θ and E, respectively, the attitude of the dumbbell
satellite is described in the state space as

ẋ1 = x2, (17a)

ẋ2 = −3

2

sin (2x1)

1− ε cos t
+

ε sin t

1− ε cos t
x2 −

2ε
√
1− ε2 sin t

(1− ε cos t)2
. (17b)

In this case, x1 represents the attitude (angular motion) while x2 represents the angular
velocity of the dumbbell satellite.

4 Synchronization of Two Dumbbell Satellites

As seen in the previous section, the equations (17) govern the attitude dynamics of the
dumbbell satellite. Therefore, take the state vector as xT = [x1, x2] and define an energy
function as H(x) = 1

2x
T Ix where I is the 2×2 identity matrix. The system (17) can be

rewritten in its generalized Hamiltonian form, according to equation (6), so in this way
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the master dummbell satellite in generalized Hamiltonian form is given by

[

ẋ1

ẋ2

]

=
1

2

[

0 1
−1 0

]

∂H

∂x
+

1

2

[

0 1
1 0

]

∂H

∂x

+

[

0

− 3
2

sin(2x1)
(1−ε cos(t)) +

ε sin(t)
1−ε cos(t)x2 − 2ε

√
1−ε2 sin(t)

(1−ε cos(t))2

]

. (18)

If we select y = x1 as the output, then the J , S, and C matrices are given by

J =
1

2

[

0 1
−1 0

]

, S =
1

2

[

0 1
1 0

]

, C =
[

1 0
]

. (19)

From equation (19) it can be seen that the pair (C,S) is observable. Therefore the
observer for the system (18) according to equation (7) (slave dumbbell satellite) has the
following form

[

ξ̇1
ξ̇2

]

=
1

2

[

0 1
−1 0

]

∂H

∂ξ
+

1

2

[

0 1
1 0

]

∂H

∂ξ

+

[

0

− 3
2

sin(2y)
(1−ε cos(t)) +

ε sin(t)
1−ε cos(t)ξ2 −

2ε
√
1−ε2 sin(t)

(1−ε cos(t))2

]

+

[

k1
k2

]

(x1 − ξ1) , (20)

where k1 and k2 are the observer gains. If the synchronization error is defined as e (t) =
x (t)− ξ (t), then the dynamics of this error are described as

[

ė1
ė2

]

=
1

2

[

−k1 1 + k2
− (1 + k2) 0

]

∂H

∂e

+
1

2

[

−k1 1− k2
1− k2 0

]

∂H

∂e
+

[

0 0

0 ε sin(t)
1−ε cos(t)

]

∂H

∂e
. (21)

Next, we examine the stability of the synchronization error (21) between the mas-
ter dumbbel satellite (18) in Hamiltonian form and slave dumbbell satellite (20) state
observer. Invoking to Theorem 2.2, we have that

2

[

S − 1

2

(

KC + CTKT
)

]

< 0,

and
[

−2k1 1− k2
1− k2 0

]

< 0 (22)

by applying the Sylvester’s criterion – which provides a test for negative definiteness of a
matrix – thus, we have the mentioned 2× 2 matrix will be negative definite matrix, if we
choose k1 and k2 such that the condition (22) holds. In the following numerical results,
we have used k1, k2 > 0 to satisfy the stability condition (22).

5 Numerical Results

In this section, numerical results are reported for synchronization of the attitude and
angular velocity of two dumbbell satellites, by using generalized Hamiltonian forms and
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Figure 3: State attitudes x1(t), ξ1(t) (left) and state angular velocities x2(t), ξ2(t) (right) for
master and slave dumbbell satellites.

0 5 10 15 20
−8

−6

−4

−2

0

2

4

6

8

10

x 1 −
 ξ

1

t
0 5 10 15 20

−10

−8

−6

−4

−2

0

2

x 2 −
 ξ

2

t

Figure 4: Error dynamics of the attitude (left) and its angular velocity (right) for the numerical
simulation in Figure 3.

observer design (equations (18) and (20), respectively). Figure 3 shows the state trajec-
tories of master and slave satellites for the following values: initial conditions x1(0) = 10,
x2(0) = 4, ξ1(0) = 1, and ξ2(0) = 9, the eccentricity of the dumbell satellites ε = 0.3,
and the gains for slave satellite dumbbell k1 = k2 = 1.

The synchronization error dynamics between the master dumbbell satellite (18) and
its slave dumbbell satellite (20) are shown in Figure 4.

Figure 5 illustrates the synchronization between two dumbbell satellites xi vs ξi,
i = 1, 2.

6 Conclusion

In this paper, we have presented synchronization between two dumbbell satellites, in
particular for the attitude and for the angular velocity, from the perspective of generalized
Hamiltonian forms and state nonlinear observer design, an approach that has proven its
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ξ1

x 1

ξ2

x 2

Figure 5: Synchronization of two dumbbell satellites for xi vs ξi, i = 1, 2.

efficiency in the literature. The numerical results reported support the control laws
designed for attitude synchronization of two dumbbell satellites.

Attitude synchronization for satellites is intended to serve as a first control loop
for large array satellite missions; in which a large number of small satellites forms a
bigger system functioning as a whole for capabilities enhancement. Thus, in future, a
formation controller and the one presented above, can be used together for this type
of synchronization space missions with small dumbbell satellites, via synchronization
approach used in this paper.
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Abstract: This paper deals with fuzzy modeling and robust control of nonlinear
systems affected by bounded uncertainties. The proposed fuzzy model is composed
of two parts: a linear uncertain part and a nonlinear one. The linear uncertain part
is obtained by the nominal system linearization around some operating points. The
nonlinear part is approximated by a Takagi-Sugeno fuzzy system whose parameters
are estimated using the descent gradient method. A robust pole assignment called
‘pole colouring‘ is used for the system control. This strategy of control is synthe-
sized based only on the linear uncertain part of the decomposed model. Finally, two
simulation examples are treated to illustrate the effectiveness of the proposed fuzzy
modeling and control approaches.
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1 Introduction

The modeling of an uncertain nonlinear system is an important step for the system anal-
ysis and control. It consists in developing a mathematical model ensuring the required
accuracy and having a useful structure. In fact, a model must reproduce correctly the
dynamics of the considered system even in the presence of nonlinearities, uncertainties
and perturbations. These constraints make the classical modeling methods limited. So
the evolutionist techniques, such as fuzzy systems [1] and neural networks [2] are con-
sidered as potential solutions for this problem. Indeed, they are considered as universal
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approximators [3, 4]. So, they can reproduce any nonlinear dynamics with an arbitrary
accuracy.

In this paper, fuzzy systems are considered for nonlinear uncertain systems model-
ing. They are classified as intelligent modeling tools. A fuzzy system is described by
a set of IF-THEN fuzzy rules. According to fuzzy rules conclusions, two types of fuzzy
systems are distinguished: Mamdani fuzzy systems [5] and Takagi-Sugeno fuzzy ones [6].
Mamadani fuzzy systems present linguistic conclusions. However, Takagi-Sugeno fuzzy
systems possess numerical ones. Two types of fuzzy rules generation approaches are
distinguished: manual and analytic ones.

Takagi-Sugeno fuzzy systems are considered as powerful modeling tools [7]. Their pa-
rameters are often identified using training algorithms such as descent gradient method
[8–10], recursive least square algorithm [11], orthogonal least square algorithm [12], ge-
netic algorithms [13, 14] and robust algorithms [15, 16]. There are several works about
fuzzy modeling of nonlinear systems [17–20] and also uncertain ones [21, 22].

A real system is by nature uncertain. So, the use of classical control methods doesn′t
guarantee the desired performance indexes. In fact, when the system parameters move
from the nominal ones, the desired performances are not satisfied whence the necessity
of the use of a robust control where uncertainties are explicitly taken into account. In
the literature, there are several researches about the robust control such as the sliding
mode [23,24], the gain scheduling [25], the H2 performance [26], the H∞ performance [27]
and the robust tracking control [28, 29]. Also, there are some researches about robust
control for linear uncertain discrete-time systems such as robust pole assignment. It is an
interesting control method for linear uncertain systems. It consists of the location of the
closed-loop system poles by considering the parameters variations. Nurges [30] proposed
the location of the characteristic equation parameters in a stable polytope, also the
uncertainties effects on characteristic equation coefficients could be minimized [31–33].
The minimization of the maximum distance between desired poles and obtained ones was
proposed by Soylemez and Munro [34]. Discrete-time pole region was approximated by
linear matrix inequality for robust pole assignment control design [35, 36].

These robust control techniques could be combined with fuzzy logic tools to benefit
from those advantages [37–43]. For example Abid et al [37] used a robust fuzzy sliding
mode controller for nonlinear discrete-time systems with parametric uncertainties. Also,
Wu [38] proposed a robust H2 fuzzy controller for the same purpose.

In this paper, fuzzy modeling and robust pole assignment control for uncertain non-
linear systems are considered. The proposed model involves two parts: (1) a linear
uncertain one whose parameters are affected by bounded uncertainties and (2) a nonlin-
ear one which is approximated by a Takagi-Sugeno fuzzy system. The linear uncertain
part parameters are obtained by the nominal system linearization around some operat-
ing points. The Takagi-Sugeno fuzzy system synthesis needs two main phases: (1) the
premises variables determination and (2) the conclusions parameters estimation. In fact,
the premises variables determination consists essentially in input space partitioning and
the conclusions parameters are estimated using the descent gradient method.

The robust pole assignment control proposed by Soylemez and Munro [34] is consid-
ered for the control of nonlinear uncertain systems. It is synthesized based only on the
linear uncertain part of the developed fuzzy model. It consists in optimizing a cost func-
tion by varying the uncertain parameters. The nonlinear part of the model is supposed
to be an additive perturbation.

This paper is organized as follows. In Section 2, the problem statement is presented.
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The proposed fuzzy modeling approach is explained in Section 3. In Section 4, the used
robust pole assignment control is detailed. In Section 5, two simulation examples are
presented to illustrate the proposed modeling and control approaches. Finally, concluding
remarks are given in Section 6.

2 Problem Statement

Consider the modeling and control problems of the class of nonlinear uncertain systems
described by the following expression:

y(k + 1) = F [y(k), . . . , y(k − n+ 1), u(k), . . . , u(k −m+ 1), p], (1)

where u and y are the system input and the system output, respectively. F is a known
nonlinear function and p is a parameters vector affected by additive uncertainties.

p = p0 +∆p, (2)

where p0 is the nominal parameters vector and ∆p is the uncertainties vector affecting
the system.

The proposed modeling approach consists in dividing the behavior of the considered
uncertain nonlinear system into two parts: a linear uncertain one yl and a nonlinear one
ynl [44, 45]

ym(k + 1) = yl(k + 1) + ynl(k + 1), (3)

where ym is the model output.
This modeling approach needs two main steps:

• Step 1: the determination of the linear uncertain part parameters.

• Step 2: the approximation of the nonlinear part ynl by a Takagi-Sugeno fuzzy
system.

In this paper, a robust pole assignment control is used for the system control. It is syn-
thesized considering only the linear uncertain part yl of the model 3. The nonlinear part
ynl is considered as an additive perturbation. In the following, the proposed techniques
for the model development will be presented. Also, the used approach for robust pole
assignment control will be detailed.

3 Fuzzy Model Identification

In this section, the proposed fuzzy modeling approach is detailed. The system dynamics
is decomposed into two terms: a linear uncertain expression and a nonlinear one. It will
be compared with a global Takagi-Sugeno fuzzy model to demonstrate its interest.

3.1 Decomposed fuzzy model

The decomposed fuzzy model identification consists in determining the linear uncertain
part yl and estimating the nonlinear part ynl by a Takagi-Sugeno fuzzy system. For each
part computation, the structure and parameters determinations are necessary.
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3.1.1 Linear uncertain part

The first part yl is a linear expression with uncertain bounded parameters.

yl(k + 1) = −
n
∑

i=1

aiu(k) y(k − i+ 1) +

m
∑

j=1

bju(k) u(k − j + 1). (4)

For aiu and bju the index u indicates uncertain parameters. aiu,i = 1, n and bju,j = 1,m
are bounded uncertain parameters. It is to be noted that the coefficients aiu and bju
are obtained by the nominal system linearization around some operating points. In fact,
around an operating point (Ul,Yl) , the dynamics of the considered system is described
by the expression

δy(k + 1) = −
n
∑

i=1

ail δy(k − i+ 1) +
m
∑

j=1

bjl δu(k − j + 1), (5)

where

ail = − ∂y(k + 1)

∂y(k − i+ 1)
|(Ul,Yl), (6)

bjl =
∂y(k + 1)

∂u(k − j + 1)
|(Ul,Yl), (7)

δy(k − i+ 1) = y(k − i+ 1)− Yl, i = 1, n, (8)

δu(k − j + 1) = u(k − j + 1)− Ul, j = 1,m, (9)

l = 1, L,

L is the considered operating points number. Using the expressions (8) and (9), the
system dynamics is represented as follows:

y(k+1) = −
n
∑

i=1

ail y(k− i+1)+

m
∑

j=1

bjl u(k− j+1)+ (Yl +

n
∑

i=1

ail Yl −
m
∑

j=1

bjl Ul). (10)

So, the linear part yl is given by the expression

yl(k + 1) = −
n
∑

i=1

ail y(k − i+ 1) +

m
∑

j=1

bjl u(k − j + 1). (11)

The nominal system must be linearized around some operating points to describe the
dynamics of the considered nonlinear system for the global operating area. The operating
points must be chosen properly. In fact, they have to be distributed on the global
operating area. So, the obtained coefficients aiu,i = 1, n and bju,j = 1,m are bounded
uncertain parameters:

aiu ∈ [minl=1···L ail ; maxl=1···L ail], bju ∈ [minl=1···L bjl ; maxl=1···L bjl].

It is to be noted that the static terms (Yl +
∑n

i=1 ail Yl −
∑m

j=1 bjl Ul) will be taken
into account for the nonlinear part ynl synthesis.
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3.1.2 Nonlinear part

The nonlinear part ynl in the expression (3) is approximated by a Takagi-Sugeno fuzzy
system. It is described by a set of IF-THEN fuzzy rules having the following form:

if u(k) is A1
r · · ·and u(k −m+ 1) is Am

r and y(k) is B1
r · · ·and y(k − n+ 1) is Bn

r ,

then ynr(k + 1) = −
n
∑

i=1

eri y(k − i+ 1) +

m
∑

j=1

f r
j u(k − j + 1), (12)

where r = 1, R, R is the rules number. It is fixed after several simulations in order to
get a compromise between a minimal error and a reasonable rules number. Consider x
the premise variable vector such as: x = [u(k),. . ., u(k −m + 1), y(k),. . ., y(k − n + 1)].
The used membership function is the Gaussian

µr(xt) = exp[− (xt − crt )
2

2(σr
t )

2
], t = 1, n+m. (13)

The dynamics of the nonlinear part ynl is described by the local models interpolation

ynl(k + 1) =

∑R
r=1 αr ynr(k + 1)

∑R
r=1 αr

, (14)

where

αr =

n+m
∏

t=1

µr(xt). (15)

Consider θp = [crt , σ
r
t , r = 1, R, t = 1, n+m] the vector of the premises parameters of

the fuzzy system. crt and σr
t are, respectively, the center and the width of the Gaussian

function relating to the rth rule and the tth member of the premise variable vector x.
They are determined manually. In fact, the centers crt are determined by the operating
area partitioning and the widths σr

t are fixed such as there is neither discontinuity nor
overlapping between the membership functions. However, the vector of the conclusions
parameters is noted θc such as θc = [eri , f

r
j , r = 1, R, i = 1, n, j = 1,m]. The con-

clusions parameters are determined automatically. Indeed, they are estimated using the
descent gradient method. The criterion to minimize is given by the expression (16). It
is minimized through the minimization of the error corresponding to each example

Jc =

N
∑

k=1

e(k), (16)

where

e(k) =
1

2
[ym(k)− y(k)]2, (17)

N is the size of the training data set.
The conclusions parameters are updated using the following expression

θc(τ) = θc(τ − 1)− ǫ
∂e(k)

∂ θc(τ − 1)
, (18)
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where τ is the iteration counter and ǫ is the learning rate. ∂e(k)
∂ θc(τ−1) is given by the

expression
∂e(k)

∂ θc(τ − 1)
= [ym(k)− y(k)]

∂ynl(k)

∂ θc(τ − 1)
. (19)

It should be noted that the linear part has been designed referring only to the nominal
nonlinear system. So, the uncertain parameters must be taken into account for the design
of the nonlinear part ynl. It is done by varying these parameters to collect the training
and the validation data sets.

3.2 Global Takagi-Sugeno fuzzy model

The Takagi-Sugeno fuzzy systems are usually used for the nonlinear systems description.
They are described by a set of IF-THEN fuzzy rules having the following form:

if u(k) is A1
r · · ·and u(k −m+ 1) is Am

r and y(k) is B1
r · · ·and y(k − n+ 1) is Bn

r ,

then ymc
r (k + 1) = −

n
∑

i=1

gri y(k − i+ 1) +
m
∑

j=1

hr
j u(k − j + 1) (20)

with r = 1, R.
The membership function is the Gaussian (13). The premises variables and the rules

number are those used for the decomposed fuzzy model (3). The dynamic of the consid-
ered system is approximated by the local models interpolation

ymc(k + 1) =

∑R
r=1 αr y

mc
r (k + 1)

∑R
r=1 αr

, (21)

where αr is given by expression (15) and ymc is the global Takagi-Sugeno fuzzy model
output.

The conclusions parameters are adjusted using the descent gradient method. The
criterion to minimize is given by the expression (16) where e(k) is the following:

e(k) =
1

2
[ymc(k)− y(k)]2. (22)

The control of nonlinear uncertain systems (1) using the prescribed decomposed fuzzy
model (3) is considered. But, the control synthesis will be based only on the linear
uncertain part yl. Otherwise, the nonlinear part ynl will be considered as an additive
perturbation. In this case, the linear robust controllers as a robust pole assignment one
can be exploited.

4 Robust Pole Assignment Control

The robust pole assignment control proposed by Soylemez and Munro [34] is adopted
for the control of linear uncertain systems. It can be used for continuous-time and also
discrete-time linear systems affected by bounded uncertainties.

Consider a linear discrete-time system affected by bounded uncertainties and de-
scribed by the following transfer function

G(q−1) =
Bu(q

−1)

Au(q−1)
=

b1uq
−1 + · · · + bmuq

−m

1 + a1uq−1 + · · · + anuq−n
, (23)
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where bju ∈ [b−ju ; b+ju], j = 1,m and aiu ∈ [a−iu ; a+iu], i = 1, n.
The proposed controller is a PID one described by the expression

u(k) = u(k − 1) + q0 e(k) + q1 e(k − 1) + q2 e(k − 2), (24)

where

e(k) = yd(k)− y(k), (25)

yd is the desired output.
When using a PID controller (24), the closed-loop system has the characteristic equa-

tion (26) which is also affected by uncertain parameters

W (q−1, p) =
∑

i

Wi(p) q
−i, (26)

where p is the vector of uncertain parameters affecting the system.
The controller parameters θ are obtained through the minimization of the following

cost function

J = min
p

(Jp), (27)

θ = [q0; q1; q2]. (28)

There are multiple choices for the criterion Jp. It can be related to desired perfor-
mances like rise time, settling time · · · The simplest choice is the minimization of the
maximum distance between the nominal poles and the corresponding perturbed ones of
the closed-loop system. So, every pole takes one place in a disc centered on the corre-
sponding nominal pole

Jp = max
i=1···M

(|λ0
i − λp

i |), (29)

where λ0
i and λp

i are the nominal pole and its corresponding perturbed one of the closed-
loop system, respectively, M is the closed-loop system order. The controller synthesis
corresponds to an optimization problem which is solved using the function fminimax

from the Matlab toolbox.

5 Simulation Results

Two simulation examples are considered to show the effectiveness of the proposed mod-
eling approach and the performances of the suggested control scheme. The first example
is a chemical reactor and the second one is an academic system.

5.1 First example: Chemical reactor

Consider the modeling and the control problems of the chemical reactor [46] whose dy-
namics are described by the expression (30).

y(k + 1) = A1+B1 u(k)+A2 y(k) +q(k)B2 u
3(k)+A3 y(k − 1) u(k − 1) u(k), (30)

where [A1, A2, A3, B1, B2] = [0.558, 0.116, −0.034, 0.583, −0.127], q is an uncertain
parameter supposed to be variable and bounded in an interval: q(k) ∈ [0.9 ; 1.1], u is the
input flow of the product A and y is the concentration of the product B.
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Chemical reactionProduct A Product B

Figure 1: Chemical reactor.

5.1.1 Fuzzy modeling

The dynamics of the chemical reactor is decomposed as in equation (3). The linear
uncertain part yl is presented by the following expression

yl(k + 1) = −a1 y(k)− a2u(k) y(k − 1) + b1u(k) u(k) + b2u(k) u(k − 1). (31)

Since ∂y(k+1)
∂y(k) is constant, a1 is a certain parameter. a2u(k), b1u(k) and b2u(k)

are uncertain bounded parameters. They are obtained by the nominal system lin-
earization around two operating points: a1 = −0.116, a2u(k) ∈ [0.0014 ; 0.0218],
b1u(k) ∈ [0.3103 ; 0.5626] and b2u(k) ∈ [−0.0288 ; −0.0052].

The nonlinear part ynl in the expression (3) is presented by a set of IF-THEN fuzzy
rules:

if u(k) is A1
r and u(k − 1) is A2

r and y(k) is B1
r and y(k − 1) is B2

r

then ynr(k + 1) = −er1 y(k)− er2 y(k − 1) + f r
1 u(k) + f r

2 u(k − 1). (32)

The obtained modeling results for the training set are given in Figure 2.

Figure 2: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the training set.

The obtained results for the validation set are presented in Figure 3.
In order to compare the proposed fuzzy modeling method to the classical one, a global

Takagi-Sugeno fuzzy model will be developed. It is described by a set of IF-THEN fuzzy
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Figure 3: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the validation set.

rules

if u(k) is A1
r and u(k − 1) is A2

r and y(k) is B1
r and y(k − 1) is B2

r

then ymc
r (k + 1) = −gr1 y(k)− gr2 y(k − 1) + hr

1 u(k) + hr
2 u(k − 1). (33)

The conclusions parameters are estimated using the descent gradient method. The
rules number is R = 16 and the learning rate is ǫ = 0.5 . For both models, the same
system input and output partitioning are considered. In addition, the same training and
validation sets are used.

The average value of the error committed by each model is evaluated in the validation
set to demonstrate the effectiveness of the proposed modeling approaches

E =

∑N
k=1 |y(k)− ym(k)|

N
. (34)

Decomposed fuzzy model Global Takgi-Sugeno fuzzy model
J (final) 0.0008 0.0008

Iteration number 6462 13740
E 0.0046 0.0049

Table 1: Comparison between the decomposed fuzzy model and the global Takagi-Sugeno fuzzy
one.

According to this table, for the same criterion value the decomposed model requires
less iterations number than the classical one. It is due to the system dynamics decom-
position effect which accelerates the training.

5.1.2 Robust pole assignment control

The chemical reactor is controlled by the PID controller (24) whose parameters are
determined using the described robust pole assignment and referring only to the linear
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uncertain part (31) of the decomposed fuzzy model. The poles are located considering the
parameter uncertainties of this part. The objective is to have a double pole z1 = z2 = 0.2
and two poles such as z3 = 0.1 and z4 = 0.3. The controller parameters are obtained
through the minimization of the cost function (27). The results of the optimization
problem resolution are the following: q0 = 0.2303, q1 = 0.1906 and q2 = 0.0118 .

For the uncertain parameter variations given in Figure 4, the results of the proposed
control scheme are illustrated in Figure 5.

Figure 4: Evolution of the uncertain parameter q(k).

Figure 5: Evolution of the robust PID control action (a), desired output and system output
(b).

For the chosen desired signal and uncertain parameter variations, the closed-loop
system has acceptable performances.
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5.2 Second example

Consider the nonlinear uncertain system described by the following expression [47]:

y(k + 1) =
y(k) y(k − 1) y(k − 2) u(k) [y(k − 2)− 1− q(k)]

1+ y2(k − 1)+ y2(k − 2)
+

u(k)

1+ y2(k − 1)+ y2(k − 2)
,

(35)
where q is a bounded uncertain parameter such as: q(k) ∈ [0 ; 0.5], u and y are the
system input and output, respectively.

5.2.1 Fuzzy modeling

The dynamics of the above system is described by the decomposed model (3). The linear
uncertain part yl is presented by the expression

yl(k + 1) = −a1u(k) y(k)− a2u(k) y(k − 1)− a3u(k) y(k − 2) + b1u(k) u(k), (36)

where a1u(k) , a2u(k), a3u(k) and b1u(k) are uncertain bounded parameters. They are
obtained by the nominal system linearization around some operating points: a1u(k) ∈
[−0.0761 ; 0.4003], a2u(k) ∈ [−0.4386 ; 0] , a3u(k) ∈ [−0.3516 ; 0.0543] and b1u(k) ∈
[0.5924 ; 1].

The nonlinear part ynl in the expression (3) is described by a set of IF-THEN fuzzy
rules

if u(k) is A1
r and y(k) is B1

r and y(k − 1) is B2
r and y(k − 2) is B3

r

then ynr(k + 1) = −er1 y(k)− er2 y(k − 1)− er3 y(k − 2) + f r
1 u(k). (37)

The rules number is R = 16 and the learning rate is ǫ = 0.2. The obtained modeling
results for the training set are given in Figure 6.

Figure 6: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the training set.

The modeling results for the validation set are illustrated in Figure 7.
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Figure 7: Evolution of the uncertain parameter (a), the input signal (b), the system and the
model outputs for the validation set.

This system can be also approximated by a global Takagi-Sugeno fuzzy system com-
posed of a set of IF-THEN fuzzy rules having the following form:

if u(k) is A1
r and y(k) is B1

r and y(k − 1) is B2
r and y(k − 2) is B3

r

then ymc
r (k + 1) = −gr1 y(k)− gr2 y(k − 1)− gr3 y(k − 2) + hr

1 u(k). (38)

The descent gradient method is applied for the estimation of the conclusions param-
eters. The rules number is R = 16 and the learning rate is ǫ = 0.2. For both models, the
same membership functions are used.

Decomposed fuzzy model Global Takgi-Sugeno fuzzy model
J (final) 0.025 0.025

Iteration number 4121 10999
E 0.0066 0.0079

Table 2: Comparison between the decomposed fuzzy model and the global Takagi-Sugeno
fuzzy one.

According to this table, the decomposed fuzzy model is slightly more accurate and
requires less time for the parameters training. It is due to the system dynamics decom-
position.

5.2.2 Robust pole assignment control

The robust PID controller (24) is applied for the control of the system (35). The PID
parameters are computed using the prescribed robust pole assignment and referring only
to the linear uncertain part (36) of the decomposed fuzzy model. The objective is to
have a double pole z1 = z2 = 0.1 and a double pole z3 = z4 = 0.2. The resulted PID
parameters are the following ones: q0 = −0.5658, q1 = 1.2047 and q2 = −0.5586.

For the uncertain parameter evolution given in Figure 8, the obtained control results
are illustrated in Figure 9.
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Figure 8: Evolution of the uncertain parameter q(k).

Figure 9: Evolution of the robust PID control (a), desired output and system output (b).

The resulted closed-loop system is stable and the static error is equal to zero for the
chosen uncertain parameter values. But, the obtained results for the transient time are
poor. So, the proposed control method is limited to the guarantee of desired perfor-
mances. In addition, there is no guarantee for the closed-loop system stability. This
may be caused by neglecting the nonlinear part of the model. So, in future works this
control approach must be robustified and a stability study must be done to guarantee
the performance and stability robustness of the closed-loop uncertain nonlinear system.

6 Conclusions

This study has developed new modeling and control schemes for nonlinear systems af-
fected by bounded uncertainties. The proposed model consists in dividing the behavior
of the considered system into two parts: a linear uncertain part and a nonlinear one. The
used techniques for the system modeling have been explained. In fact, the linear uncer-
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tain part has been obtained by the nominal system linearization around some operating
points and the nonlinear part has been approximated by a Takagi-Sugeno fuzzy system
whose parameters are estimated using the descent gradient method. A robust pole as-
signment control for the considered nonlinear system has been synthesized based only
on the linear uncertain part of the decomposed fuzzy model. Two simulation examples
have been treated to demonstrate the effectiveness of the suggested modeling approach
and to experiment the proposed control scheme.
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Abstract: Due to their distinct advantages, the variable speed multi-phase drive
systems are seen as serious contender to the existing three-phase drives. However we
present in this work the modeling and control of matrix converter feeding a double
star induction machine. In order to achieve this goal we present the model of matrix
converter, and its control strategy: based on the direct space vector modulation
(DSVM). Then we perform simulation tests for the whole converter and machine
using Matlab–Simulink. The results illustrate the proper functioning of the system.
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1 Introduction

To introduce an electric motor in high power applications, such as traction or marine
propulsion, it is often necessary to segment the power. To this end, we can intervene at
the converter level through multi-level techniques or parallel converters [7].

Another solution is to apply the segmentation level to the set converter-machine
using multiphase machines. Indeed, the total power is distributed over a larger number
of inverter arms, each of which is fed with a decreased power, which allows for a higher
switching frequency and a less important ripple current and torque [2, 11]. One of the
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most common examples of multiphase machines is the double star induction machine
(DSIM).

Such a machine has the advantage of reducing the electromagnetic torque ripples
and rotor losses significantly. The double star induction machine studied in this paper
is a machine that has two systems of coupled three-phase windings in the stator fixed
star and out of phase with each other at an γ (γ = 30◦) and a mobile rotor similar to
that of classical asynchronous machine. The two systems of stator phases are fed by
two sources of power frequency and amplitude equal but out of phase with each other
at an angle (δ = γ = 30◦). However, the machine AC (asynchronous) is traditionally
controlled by a PWM inverter control, an alternative is the matrix converter. The main
characteristics of MC are: Direct AC-AC polyphase power conversion, inherent bidi-
rectional power flow capability, input/output sinusoidal waveforms with variable output
voltage amplitude and frequency, input power factor control despite the load in the out-
put side and a simple and compact power circuit because of the elimination of bulky
reactive elements [1, 5, 6, 8]. Recently, the most popular control algorithm widely used
in matrix converters is space vector modulation (SVM) that allows input current and
output voltage to be independently controlled. The principal reason for this is the better
harmonic performance that can be achieved using different switching strategies in each
commutation period. Two versions for SVM are defined: the indirect modulation and
the direct one. In this work, we adopt the direct modulation (DSVM) which is realized
by asymmetrical switching strategy.

2 Modeling of the Double Star Asynchronous Machine

The DSIM consists of two three-phase windings in the stator shifted from each other by
an angle of 30◦ and one three-phase rotor winding. The two stator windings are fed by
two systems of voltage frequency and amplitude equal but out of phase with each other
at an angle (δ = γ = 30◦). The windings are shown in the following (Figure 1):

Figure 1: DSIM schema.

Park model of the double stator induction machines, with P pairs of poles, is defined
by the following equations system (1).
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Vsd1 = rs1isd1 +
dφsd1

dt
− ωsφsq1,

Vsq1 = rs1isq1 +
dφsq1

dt
− ωsφsd1,

Vsd2 = rs2isd2 +
dφsd2

dt
− ωsφsq2,

Vsq2 = rs2isq2 +
dφsq2

dt
− ωsφsd2,

0 = rrrrd +
dφrd

dt
− (ωs − ωr)φrq,

0 = rrrrq +
dφrq

dt
− (ωs − ωr)φrq.

(1)

The electromagnetic torque and speed are given by the following expressions (2):











Tem = p
Lm

Lm + Lr
[φrd(isq1 + isq2)− φrq(isd1 + isd2)],

J
dΩ

dt
= Cem − Cr −KfΩ.

(2)

3 Matrix Converter Fundamentals

Recently there has been considerable interest in the potential benefits of matrix con-
verter technology, especially for applications where size, weight, and long-term reliability
are important factors [8]. For a three-phase to three-phase implementation, the matrix
converter circuit consists of nine bidirectional switches so that any input line can be
connected to any output line for any given length of time. The matrix converter used in
the present work consists of two identical three-phase matrix converters. The schematic
diagram of the converter is shown in Figure 2.

Figure 2: Schematic diagram of matrix converter-DSIM.

Each matrix is driven by three phase voltages (VAk, VBk, VCk) where a power is phase-
shifted by 30◦ to each other, the double star induction motor load is connected to the
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output. The switching function of a switch SIjk is defined as (3):

SIjk =

{

1 swicths SIjk closed I = {A,B,C}, j = {a, b, c},
0 swicths SIjk closed

, k = {1, 2}. (3)

The mathematical expressions that represent the basic operation of the MC are obtained
applying Kirchhoff’s voltage and current laws to the switch array (4,5) [5, 6].





vak(t)
vbk(t)
vck(t)



 =





SAak(t) SBak(t) SCak(t)
SAbk(t) SBbk(t) SCbk(t)
SAck(t) SBck(t) SCck(t)



×





V (t)Ak

V (t)Bk

V (t)Ck



 , (4)





iAk(t)
iBk(t)
iCk(t)



 =





SAak(t) SAbk(t) SAck(t)
SBak(t) SBbk(t) SBck(t)
SCak(t) SCbk(t) SCck(t)



×





i(t)ak
i(t)bk
i(t)ck



 . (5)

where vak, vbk and vck (k = 1, 2) are the output phase voltages, and iAk, iBk and iCk

represent the input currents to the matrix. The output voltage is directly constructed
switching between the input voltages and the input currents are obtained in the same
way from the output ones. For these equations to be valid, the next expression (6) has
to be taken into consideration:

SAjk + SBjk + SCjk = 1, j = {a, b, c}, (k = 1, 2). (6)

What this expression says is that, at any time, one, and only one switch must be
closed in an output branch. If two switches were closed simultaneously, a short circuit
would be generated between two input phases. On the other hand, if all the switches in
an output branch were open, the load current would be suddenly interrupted and, due
to the inductive nature of the load, an over voltage problem would be produced in the
converter.

4 Space Vector Approach

4.1 Modulation of MC

The Space Vector Modulation for MC is based on the instantaneous space vector rep-
resentation of input currents and output voltages. SVM uses six sectors of the space,
namely 1 to 6. The valid switching states (27) are shown in Table 1 [9, 10].

The first 18 switching states of Table 1 represent the active vectors and determine
the output voltage vector vo and input current vector which are presented in Figure 3.

The magnitude of these vectors depends upon the instantaneous values of the input
current and output voltage. In these states any two output phases are connected to the
same input phase. The remaining six switching states represent the zero vectors and
each output phase is connected to a different input phase. Both the magnitude and the
phase of the resultant rotating vectors are variable in these states.

4.2 Direct space vector modulation algorithm

In principle, the SVM algorithm is based on the selection of four active configurations
which are applied for suitable time widths within each cycle period Tp. A zero config-
uration is then applied to complete Tp. At any cycle period, the output voltage vector
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Figure 3: Output voltage and input current space vector hexagons.

States Switches on | vo | ∠vo | ii | ∠ii
ABB +1 SAa SBb SBc +2/3VAB 0 +2/

√
3ia −π/6

BAA −1 SBa SAb SAc −2/3VAB 0 −2/
√
3ia −π/6

BCC +2 SBa SCb SCc +2/3VBC 0 +2/
√
3ia π/2

CBB −2 SCa SBb SBc −2/3VBC 0 −2/
√
3ia π/2

CAA +3 SCa SAb SAc +2/3VCA 0 +2/
√
3ia 7π/6

ACC −3 SAa SCb SCc −2/3VCA 0 −2/
√
3ia 7π/6

BAB +4 SBa SAb SBc +2/3VAB 2π/3 +2/
√
3ib −π/6

ABA −4 SAa SBb SAc −2/3VAB 2π/3 −2/
√
3ib −π/6

CBC +5 SCa SBb SCc +2/3VBC 2π/3 +2/
√
3ib π/2

BCB −5 SBa SCb SBc −2/3VBC 2π/3 −2/
√
3ib π/2

ACA +6 SAa SCb SAc +2/3VCA 2π/3 +2/
√
3ib 7π/6

CAC −6 SCa SAb SCc −2/3VCA 2π/3 −2/
√
3ib 7π/6

BBA +7 SBa SBb SAc +2/3VAB 4π/3 +2/
√
3ic −π/6

AAB −7 SAa SAb SBc −2/3VAB 4π/3 −2/
√
3ic −π/6

CCB +8 SCa SCb SBc +2/3VBC 4π/3 +2/
√
3ic π/2

BBC −8 SBa SBb SCc −2/3VBC 4π/3 −2/
√
3ic π/2

AAC +9 SAa SAb SCc +2/3VCA 4π/3 +2/
√
3ic 7π/6

CCA −9 SCa SCb SAc −2/3VCA 4π/3 −2/
√
3ic 7π/6

AAA 01 SAa SAb SAc 0 − 0 −
BBB 02 SBa SBb SBc 0 − 0 −
CCC 03 SCa SCb SCc 0 − 0 −

Table 1: Switching states and vectors used in DSVM.
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vo and the input current displacement angle ϕi are known as reference quantities. The
input voltage vector is known from measured source voltage, the control of ϕi can be
achieved controlling the phase angle βi of the input current vector (Figure 4).

The modulation algorithm is explained using Figure 5 [9] representing the vectors,
and ii lie in sector 1. The reference voltage vector vo is resolved into two components v

′

o

and v
′′

o along the two adjacent vectors. The v
′

o component is synthesized using their two
voltage vectors.

Figure 4: Modulation schema.

Figure 5: Modulation of the output voltage vectors and input current vectors.

The six switching states of v
′

o are ±7,±8,±9. Among the six possible switching states
(±7,±8,±9), the one that allows the modulation of the input current must be selected
i.e. ±7 and ±9. Here the switching state ±8 of v

′

o does not allow the modulation of the
input current vector because the reference input current vector has the switching states
of ±3,±6,±9 and ±1,±4,±7.

Therefore, the switching state ±8 is eliminated. From the remaining four switching
states (±7,±9), we assumed to apply the positive switching states +7 and +9. Similarly,
the switching states required to synthesize the v

′′

o component can be selected as +1
and +3. Here ±2 is eliminated. The reference current vector ii is resolved into two
components i

′

i and i
′′

i along the two adjacent vectors.

The i
′

i component is synthesized using their two current vectors. The six switching

states of i
′

i are ±3,±6,±9. Among the six possible switching states (±3,±6,±9), the
one that allows the modulation of the output voltage must be selected ±3 and ±6. Here
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the switching state ±6 of i
′

i does not allow the modulation of the output voltage vector
because the reference output voltage vector has the switching states of ±7,±8,±9 and
±1,±2,±3. Therefore, the switching state 6 is eliminated. From the remaining four
switching states (±3,±9), we assumed to apply the positive switching states as +3 and
+9. Similarly, the switching states required to synthesize the i

′′

i component can be
selected as +1 and +7. Here ±4 is eliminated.

Using the same procedure, it is possible to determine the four switches configurations
correspondent to any possible combination of output voltage and input current sectors,
which are quoted in Table 2 [10].

Ki

Kv 1 2 3 4 5 6

1 9 -7 -3 1 -6 4 9 -7 3 -1 -6 4 -9 7 3 -1 6 -4 -9 7 -3 1 6 -4

2 -8 9 2 -3 5 -6 -8 9 -2 3 5 -6 8 -9 -2 3 -5 6 8 -9 2 -3 -5 6

3 7 -8 -1 2 -4 5 7 -8 1 -2 -4 5 -7 8 1 -2 4 -5 -7 8 -1 2 4 -5

4 -9 7 3 -1 6 -4 -9 7 -3 1 6 -4 9 -7 -3 1 -6 4 9 -7 3 -1 -6 4

5 8 -9 -2 3 -5 6 8 -9 2 -3 -5 6 -8 9 2 -3 5 -6 -8 9 -2 3 5 -6

6 -7 8 1 -2 4 -5 -7 8 -1 2 4 -5 7 -8 -1 2 -4 5 7 -8 1 -2 -4 5

Duty δI δII δIII δIV δI δII δIII δIV δI δII δIII δIV δI δII δIII δIV δI δII δIII δIV δI δII δIII δIV

Table 2: Selection of active switching states for each combination of sector for output voltage
KV and input current KI .

The required modulation duty cycles for switching states δI , δII , δIII and δIV in the
last row of Table 2 are given below:

δI =
2√
3

VO

VI

cos(α̃− π
3 ) cos(α̃− π

3 )

cos(ϕi)
,

δII =
2√
3

VO

VI

cos(α̃− π
3 ) cos(α̃+ π

3 )

cos(ϕi)
,

δIII =
2√
3

VO

VI

cos(α̃+ π
3 ) cos(α̃− π

3 )

cos(ϕi)
,

δIV =
2√
3

VO

VI

cos(α̃+ π
3 ) cos(α̃+ π

3 )

cos(ϕi)
.

(7)

Equations (7) have a general validity. For any combination of the output voltage
sector Kv and the input current sector Ki (Table 2) provides the four switches configu-
rations to be used within the cycle period Tp and equations (7) give the correspondent
on-time ratios. In equations (7) the following angle limits apply:

−π

6
< α̃ <

π

6
, −π

6
< ˜β <

π

6
.

For the feasibility of the control algorithm, the sum of the four on-time ratios must
be lower than or equal to unity:

δI + δII + δIII + δIV < 1. (8)
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4.3 Asymmetric switching strategies

Switching strategies deal with the switching configuration sequence, that is, the order in
which the active and zero vectors are applied along the commutation period. The three
zero configurations produce two degrees of freedom in order to complete the zero state
switching time. In this paper one switching technique is simulated and analyzed: The
Asymmetrical SVM (ASVM). The ASVM uses only one of the three zero configurations in
the middle of the sequence so that minimum switch commutations are achieved between
one switching state and the next one. Using this technique the switching commutations
are up to 8 for each commutation period. In this way switching losses are minimized [5,6].

For example, considering both output voltage and input current reference vectors
located in sector 1 within their respective hexagons, it can be seen that these are the
only possible double-sided sequences that can be generated for ASVM techniques:

ACC-AAC-AAA-AAB-ABB |ABB-AAB-AAA-AAC-ACC

The zero configurations are obtained from Table 3 for ASVM:

iiref voref
(1,2,3,4,5 or 6)

1 or 4 AAA
2 or 5 BBB
3 or 6 CCC

Table 3: Zero configuration for ASVM.

5 Simulation Results

5.1 Performance of the association matrix converter induction motor double

star:

It directly feeds the induction machine double star by matrix converters. The simulation
departs for startup vacuum after the steady state was established; we apply a torque
load to the machine. The simulation results shown in Figure 6 represent the following
quantities:

• The electromagntique torque.

• The speed of DSIM.

• Flux (φrd ,φrq and φr).
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Figure 6: Performance of the association matrix converter double star induction machine
controlled by Asymmetrical SVM

6 Conclusion

In this paper we have used the asymmetric strategy of space vector modulation to control
directly the matrix converters, which feed a double-star induction machine. We can say
that the matrix converter operates in the four quadrants. The performances obtained
show that the proposed control strategy is distinguished by comparison with indirect
converters (AC-DC-AC) by the reversibility of the converter. We can confirm that the
benefits of using this type of converter are numerous; we include among other things, in-
creasing the power, reduction of oscillations of the switching frequency of power switches
and improved forms of output quantities.

Appendix

Double star induction machine parameters:
Pn=4.2KW, p=1, Ls1=0.011H, Ls2=0.011H, Lr=0.006H, Lm=0.3672H,
J=0.0625kG.m2, Kf=0.001 N.m.s/rad, Rs1=1.86Ω, Rs2=1.86Ω, Rr=2.12Ω.

switching frequency fs= 1/Ts = 10KHz.
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Abstract: In this paper, we have established the existence and uniqueness of so-
lution for a class of impulsive fractional integro-differential equations with nonlocal
boundary conditions. The existence results are proved by applying the theory of frac-
tional calculus and fixed point theorems. At last an application is given to verify our
results.
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1 Introduction

Fractional differential equations are the corner stone for description of memory and
hereditary properties of many materials and processes. Its useful applications include
mathematical modeling in many engineering and science disciplines like physics, chem-
istry, biophysics, biology etc. Its non local behavior is the vital characteristic that
makes it vary from its rival in classical calculus. For more details one can see the pa-
pers [1, 6, 8, 10, 13, 15, 22, 24, 25] and the references therein.

Integro-differential equations occur in probability theory, nonlinear viscoelastic bod-
ies, acoustic scattering theory and bio-logical population models and systems with sub-
stantially distributed parameters. All these problems end up with boundary value prob-
lems of integro-differential equations. For details see the paper [21].
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In recent years, the theory of impulsive differential equations for integer order comes
in various applications of mathematical modeling of phenomena and practical situations.
For instance, the impulsive differential equations captured from real world problems
describe the dynamics of processes in which sudden, discontinuous jumps occur. For
more details one can see the papers [2, 3, 6, 7, 12, 19, 20, 23, 26] and references therein.

C. Bai [4] has investigated the existence of solutions of multi-point boundary value
problem of nonlinear impulsive fractional differential equations at resonance. Further in
his subsequent study in [5] the author has extended the results for the boundary value
problem of nonlinear impulsive differential equations at resonance. The author obtained
the result of existence by using the coincidence degree theory due to Mawhin.

In [20] L. Yang et al. have proved the existence and uniqueness of solution for the
following nonlocal boundary value problem of impulsive fractional differential equations:











cDqu(t) = F (t, u(t), u′(t)), q ∈ (1, 2], t ∈ [0, 1],

∆u(tk) = Ik(u(t
−
k )), ∆(u′(tk)) = Jk(u(t

−
k )), k = 1, 2...., p,

αu(0) + βu′(0) = g1(u), αu(1) + βu′(1) = g2(u), α > 0, β ≥ 0,

(1)

by means of a fixed point theorem due to ORegan, the authors established the sufficient
conditions for the existence of at least one solution of the problem. In [7] J. Cao et
al. have established the existence and uniqueness results for the impulsive fractional
differential inclusions with a fractional order multi-point boundary condition and with
fractional order impulses and proved the results by using the multi-valued analysis of
topological fixed point theory.

In [11] X. Fu et al. concerned with the fractional separated boundary value problem
of the following fractional differential equations with fractional impulsive conditions:











cDαx(t) = F (t, x(t), t ∈ J = [0, T ], t 6= tk, α ∈ (1, 2),

∆x(tk) = Ik(x(t
−
k )), ∆(cDγx(tk)) = Ik

∗(x(t−k )), k = 1, 2....,m,

a1x(0) + b1(
cDγx(0)) = c1, a2x(T ) + b2(

cDγx(T )) = c2, γ ∈ (0, 1),

(2)

where ai, bi, ci,∈ R, i = 1, 2, with ai 6= 0 and a2T
γΓ(2−γ) 6= −b2. By using the Schaefer

fixed point theorem, Banach fixed point theorem, and nonlinear alternative of Leray
Schauder type, the authors obtained the existence results.

In [14] N. Kosmatov considered the following two impulsive problems:











cDδx(t) = F (t, x(t)), t ∈ (0, 1]\{t1, t2, ...., tm},
cDγx(t+k ))−c Dγx(t−k )) = Jk(x(tk)), k = 1, 2....,m,

x(0) = x0, x
′(0) = x1,

(3)

where cDδ is the Caputo fractional derivative of order δ ∈ (1, 2) with the lower limit
zero, 0 < γ < 1, and











LDδx(t) = F (t, x(t), t ∈ (0, 1]\{t1, t2, ...., tm},
LDγx(t+k ))−L Dγx(t−k )) = Jk(x(tk)), k = 1, 2....,m,

I1−αx(0) = x0,

(4)

where LDδ is the Riemann-Liouville fractional derivative of order δ ∈ (0, 1) with lower
limit zero and 0 < γ < δ.
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Motivated by the works [4,5,7,11,14,20] we investigate the existence and uniqueness
solutions for the following impulsive fractional integro-differential equation with nonlocal
boundary conditions:



















cDαu(t) = f(t, u(t),
∫ t

0
K(t, s)u(s)ds), t ∈ [0, T ], t 6= tk, α ∈ (1, 2),

∆u(tk) = Ik(u(t
−
k )),

∆(cDqu(tk)) = Jk(u(t
−
k )), q ∈ (0, 1), k = 1, 2, . . . ,m,

u(0) = a1 − g(u), u(T ) = a2 − h(u), a1, a2 ∈ R,

(5)

where cDα is the Caputo’s derivative, functions f : [0, T ] × X × X → X for K :
[0, T ] × [0, T ] → [0,∞) and g, h ∈ X → X are continuous. The impulsive conditions
for 0 = t0 < t1 < · · · < tm < tm+1 = T, Ik, Jk ∈ C(X,X), are bounded functions.
We have ∆u(tk) = u(t+k )− u(t−k ) and ∆(cDqu(tk)) = (cDqu(t+k ))− (cDqu(t−k )), u(t

+
k ) =

limh→0 u(tk + h) and u(t−k ) = limh→0 u(tk − h) represent the right and left-hand limits
of u(t) at t = tk respectively with u(t−i ) = u(ti), where K ∈ C(D,R+), the set of all
positive functions which are continuous on D = {(t, s) ∈ R

2 : 0 ≤ s ≤ t < T } and

K∗ = supt∈[0,T ]

∫ t

0
K(t, s)ds < ∞.

In all the above cited papers except [4,5,7,11,14,20] the authors established the exis-
tence and uniqueness results of the fractional order boundary value problems by applying
the standard fixed point theorems with the integer order impulsive conditions. In this
paper, we show the existence and uniqueness solutions for the fractional integro differ-
ential equation with fractional impulsive conditions and nonlocal boundary conditions.
The boundary value problems like (5) arise in many applications such as electromagnetic
waves in dielectric media, the mathematical modeling of various phenomena of transport
theory, the transfer of neutrons through thin plates and membranes in nuclear reactors,
in the propagation of radiation through the atmosphere of planets and stars, and in
several other transport problems.

In Section 2, we present some notations and preliminary results about fractional
calculus and differential equations to be used in the following sections. In Section 3,
we discuss existence and uniqueness results for solutions of the system (5) by using the
Banach and Schauder fixed point theorems.

2 Preliminaries

Let (X, ‖ · ‖X) be a complex Banach space of functions with the norm ‖y‖X =
supt∈[0,T ]{|y(t)| : y ∈ X}. To treat the impulsive conditions, define the following space

PCt = PC([0, t] : X), 0 ≤ t ≤ T,

be a Banach space of all such functions y : [0, T ] → X, which are continuous everywhere
except for a finite number of points ti, i = 1, 2, . . . ,m, at which y(t+i ) and y(t−i ) exist
with y(t−i ) = y(ti) and are endowed with the norm

‖y‖PCt
= sup

t∈[0,T ]

{‖y(t)‖X , y ∈ PCt},

and
PC1

t = PC1([0, t] : X), 0 ≤ t ≤ T,

be a Banach space of all such functions y : [0, T ] → X, which are continuously
differentiable everywhere except for a finite number of points ti, i = 1, . . . ,m, at
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which y′(t+i ) and y′(t−i ) exist with y′(t−i ) = y′(ti) and are endowed with the norm
‖y‖PC1

t
= supt∈[0,T ]{‖y(t)‖PCt

, ‖y′(t)‖PCt
, y ∈ PCt}. All other notations in the paper

have their usual meanings.

Definition 2.1 [15] The Riemann-Liouville fractional integral operator for order
α > 0, of a function f : R+ → R and f ∈ L1(R+, X) is defined by

J0
t f(t) = f(t), Jα

t f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0, (6)

where Γ(·) is the Euler gamma function.

Definition 2.2 [15] The Riemann Liouville fractional derivative of order α with
lower limit zero for a function f : [0,∞) → R can be written as

LDα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−n
ds, t > 0, n− 1 < α < n. (7)

Definition 2.3 [15] The Caputo’s derivative of order α for a function f : [0,∞) → R

can be written as

cDα
t f(t) =

L Dα
t

[

f(t)−
n−1
∑

k=0

tk

k!
f (k)(0)

]

, t > 0, n− 1 < α < n. (8)

Remark 2.1 [15] If f(t) ∈ Cn[0,∞), for order n− 1 < α < n then

cDα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds = In−α

t f (n)(t), t > 0. (9)

The Caputo’s derivative of constant is equal to zero.

The following results are needed to prove the existence results of the paper, relevant
references are cited.

Theorem 2.1 [18] If U is a closed, bounded, convex subset of a Banach space X
and the mapping A : U → U is completely continuous, then A has a fixed point in U.

Lemma 2.1 [1] Let α > 0, then the differential equation

cDαh(t) = 0 (10)

has solutions h(t) = c0+c1t+c2t
2+· · ·+cn−1t

n−1, ci ∈ R, i = 0, 1, . . . , n−1, n = [α]+1.

Lemma 2.2 [1] Let α > 0, then

IαDαh(t) = h(t)+c0+c1t+c2t
2+· · ·+cn−1t

n−1, ci ∈ R, i = 0, 1, . . . , n−1, n = [α]+1.

To investigate the nonlinear impulsive fractional integro differential equation (5), we
first consider the associated linear system and obtain its solution.
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Lemma 2.3 Let α < (1, 2), q < (0, 1) and σ ∈ [0, T ] → R be continuous. A function
u(t) ∈ PC1

t is a solution of the following fractional integral equation:

u(t) =











































































∫ t

0
(t−s)α−1

Γ(α) σ(s)ds+ a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) σ(s)ds+
∑m

i=1 Ii(u(t
−
i ))

+
∑m

i=1(T − ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

, t ∈ [0, t1),

.......
∫ t

0
(t−s)α−1

Γ(α) σ(s)ds+
∑k

i=1 Ii(u(t
−
i )) + a1 − g(u)− t

T

[

a1 − a2

+h(u)− g(u) +
∫ T

0
(T−s)α−1

Γ(α) σ(s)ds+
∑m

i=1 Ii(u(t
−
i ))

+
∑m

i=1(T − ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

+
∑k

i=1(t− ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
)

, t ∈ (tk, tk+1],

(11)

iff u(t) is a solution of the following BVP











cDαu(t) = σ(t), α ∈ (1, 2),

∆u(tk) = Ik(u(t
−
k )),∆(cDqu(tk)) = Jk(u(t

−
k )), q ∈ (0, 1),

u(0) = a1 − g(u), u(T ) = a2 − h(u).

(12)

Proof. Let for t ∈ [0, t1), u(t) be the solution of (12), we have

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds− c0 − c1t, (13)

using the condition u(0) = a1 − g(u) we compute c0 = −(a1 − g(u)), then we have

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+ a1 − g(u)− c1t. (14)

If t ∈ (t1, t2], we may write the solution as

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds− c2 − c3t, (15)

on applying first impulsive condition ∆u(t1) = I1(u(t
−
1 )), we get

−c2 = I1(u(t
−
1 )) + c3t1 + a1 − g(u)− c1t1. (16)

Using the value of c2 in (15), we obtain

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+ I1(u(t

−
1 )) + a1 − g(u)− c1t1 + c3(t1 − t).

From (17) and (14), we get

Dqu(t) =
1

Γ(α− q)

∫ t

0

(t− s)α−q−1σ(s)ds− c3
t1−q

Γ(2 − q)
, (17)

Dqu(t) =
1

Γ(α− q)

∫ t

0

(t− s)α−q−1σ(s)ds− c1
t1−q

Γ(2− q)
. (18)
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Using the second impulsive condition ∆(Dqu(t1)) = J1(u(t
−
1 )), we have

c3 = −Γ(2− q)

t1
1−q J1(u(t

−
1 )) + c1. (19)

Put c3 in (17), we get

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+ I1(u(t

−
1 ))

+a1 − g(u) + (t− t1)
Γ(2 − q)

t1
1−q J1(u(t

−
1 )) − c1t. (20)

For t ∈ (t2, t3], we have

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds− c4 − c5t. (21)

Applying the similar pattern we obtain the following form of the solution

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+ I1(u(t

−
1 )) + I2(u(t

−
2 )) + a1 − g(u)

+
Γ(2− q)

t1
1−q J1(u(t

−
1 ))(t− t1) +

Γ(2− q)

t2
1−q J2(u(t

−
2 ))(t− t2)− c1t. (22)

For generality, when t ∈ (tk, tk+1], we may write the solution in the following form

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+

k
∑

i=1

Ii(u(t
−
i )) + a1 − g(u)− c1t

+

k
∑

i=1

(t− ti)

(

Γ(2 − q)

ti
1−q Ji(u(t

−
i ))

)

. (23)

On using the second boundary condition, u(T ) = a2 − h(u), we compute the following
value of the constant c1:

c1 =
1

T

[

a1 − a2 + h(u)− g(u) +

∫ T

0

(T − s)α−1

Γ(α)
σ(s)ds

+

m
∑

i=1

Ii(u(t
−
i )) +

m
∑

i=1

(T − ti)

(

Γ(2 − q)

ti
1−q Ji(u(t

−
i ))

)

]

, (24)

by summarizing the above computation, we get the required result. Conversely, assume
that u satisfies the impulsive fractional integral equation (11), then by direct computa-
tion, it can be seen that the solution given by (11) satisfies (12). This completes the
proof of the lemma.

3 Existence and Uniqueness Results

The following result is based on Lemma 2.3.
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Definition 3.1 The function u : [0, T ] → X such that u ∈ PC1
t ([0, T ] : X) is said to

be the solution of the system (5) if it satisfies the following integral equation

u(t) =































































































∫ t

0
(t−s)α−1

Γ(α) f(s, u(s),
∫ s

0
K(s, τ)u(τ)dτ)ds

+a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds

+
∑m

i=1 Ii(u(t
−
i )) +

∑m
i=1(T − ti)

(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

, t ∈ [0, t1),

.......
∫ t

0
(t−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds+
∑k

i=1 Ii(u(t
−
i ))

+a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) f(s, u(s),
∫ s

0
K(s, τ)u(τ)dτ)ds

+
∑m

i=1 Ii(u(t
−
i )) +

∑m
i=1(T − ti)

(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

+
∑k

i=1(t− ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
)

, t ∈ (tk, tk+1].

(25)

Our first result is based on Banach fixed point theorem.

Theorem 3.1 Let the functions f, g, h, Ik and Jk satisfy the Lipchitz condition with
positive constants L1, L2, L3, L4, L5 and L6, such that

‖f(t, u, v)− f(t, x, y)‖X ≤ L1‖u− x‖X + L2‖v − y‖X ,

‖g(u)− g(x)‖X ≤ L4‖u− x‖X , ‖h(u)− h(x)‖X ≤ L6‖u− x‖X ,

‖Ik(x) − Ik(y)‖X ≤ L3‖x− y‖X , ‖Jk(x) − Jk(y)‖X ≤ L5‖x− y‖X ,

t ∈ [0, T ], ∀ x, y, u, v ∈ X. If the following inequality holds

∆ =
[ (L1 + L2K

∗)

Γ(α+ 1)
2Tα + 2mL3 + 2L4 + L6 + 2mT qΓ(2− q)L5

]

< 1,

then the system (5) has a unique solution.

Proof. We transform the system (5) into a fixed point problem. Consider an operator
N : PC1

t → PC1
t , defined by

(Nu)t =































































































∫ t

0
(t−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds

+a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds

+
∑m

i=1 Ii(u(t
−
i )) +

∑m
i=1(T − ti)

(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

, t ∈ [0, t1),

. . .
∫ t

0
(t−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds+
∑k

i=1 Ii(u(t
−
i ))

+a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) f(s, u(s),
∫ s

0
K(s, τ)u(τ)dτ)ds

+
∑m

i=1 Ii(u(t
−
i )) +

∑m
i=1(T − ti)

(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

+
∑k

i=1(t− ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
)

, t ∈ (tk, tk+1].

(26)
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To show that N has fixed point consider u1, u2 ∈ PC1
t . For t ∈ [0, t1), we have the

following estimate

‖N(u1)−N(u2)‖X ≤
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, u1(s),

∫ s

0

K(s, τ)u1(τ)dτ) − f(s, u2(s),

∫ s

0

K(s, τ)u2(τ)dτ)‖Xds

+‖g(u1)− g(u2)‖X +
|t|
T

[

‖h(u1)− h(u2)‖X + ‖g(u1)− g(u2)‖X

+

∫ T

0

(T − s)α−1

Γ(α)
‖f(s, u1(s),

∫ s

0

K(s, τ)u1(τ)dτ)

−f(s, u2(s),

∫ s

0

K(s, τ)u2(τ)dτ)‖Xds+

m
∑

i=1

‖Ii(u1(t
−
i ))− Ii(u2(t

−
i ))‖X

+

m
∑

i=1

|(T − ti)|
Γ(2− q)

|ti|1−q
‖Ji(u1(t

−
i ))− Ji(u2(t

−
i ))‖X

]

,

On simplifying, we obtain

‖N(u1)−N(u2)‖PC1

t

≤
[ (L1 + L2K

∗)

Γ(α+ 1)
2Tα + 2L4 + L6 +mL3 +mT qΓ(2− q)L5

]

‖u1 − u2‖PC1

t
.

For t ∈ (tk, tk+1], we have

‖N(u1)−N(u2)‖X

≤
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, u1(s),

∫ s

0

K(s, τ)u1(τ)dτ)

−f(s, u2(s),

∫ s

0

K(s, τ)u2(τ)dτ)‖Xds

+

k
∑

i=1

‖Ii(u1(t
−
i ))− Ii(u2(t

−
i ))‖X + ‖g(u1)− g(u2)‖X +

|t|
T

[

‖h(u1)− h(u2)‖X

+‖g(u1)− g(u2)‖X +

∫ T

0

(T − s)α−1

Γ(α)
‖f(s, u1(s),

∫ s

0

K(s, τ)u1(τ)dτ)

−f(s, u2(s),

∫ s

0

K(s, τ)u2(τ)dτ)‖Xds+

m
∑

i=1

‖Ii(u1(t
−
i ))− Ii(u2(t

−
i ))‖X

+

m
∑

i=1

|(T − ti)|
Γ(2 − q)

|ti|1−q
‖Ji(u1(t

−
i ))− Ji(u2(t

−
i ))‖X

]

+

k
∑

i=1

|(t− ti)|
Γ(2 − q)

|ti|1−q
‖Ji(u1(t

−
i ))− Ji(u2(t

−
i ))‖X ,

Hence we estimate as

‖N(u1)−N(u2)‖PC1

t

≤
[ (L1 + L2K

∗)

Γ(α+ 1)
2Tα + 2mL3 + 2L4 + L6 + 2mT qΓ(2− q)L5

]

‖u1 − u2‖PC1

t

≤ ∆‖u1 − u2‖PC1

t
.
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Since ∆ < 1, it follows that the operator N is a contraction mapping and has a fixed
point u ∈ PC1

t , hence the system (5) has a unique solution on the interval [0, T ]. This
completes the proof of the theorem.

Our second result is based on Schauder fixed point theorem.

Theorem 3.2 Let the functions f, g, h, Ik, Jk be continuous and there exist pos-
itive constants M1,M2,M3,M4 and M5 such that ‖f(t, u, v)‖X ≤ M1, ‖g(u)‖X ≤
M2, ‖h(u)‖X ≤ M3, ‖Ik(y)‖X ≤ M4, ‖Jk(y)‖X ≤ M5, ∀u, v, y ∈ X. Then the sys-
tem (5) has at least one solution on [0, T ].

Proof. Consider an operator N : PC1
t → PC1

t defined as in (26) in Theorem 3.1.
First, we shall show that N is continuous, let us consider a sequence un → u in PC1

t in
the interval (tk, tk+1], (k = 1, . . . ,m) we have

‖N(un)−N(u)‖X

≤
∫ t

0

(t− s)α−1

Γ(α)

(

‖f(s, un(s),

∫ s

0

K(s, τ)un(τ)dτ)

−f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖X
)

ds

+

k
∑

i=1

‖Ii(un(t
−
i ))− Ii(u(t

−
i ))‖X + ‖g(un)− g(u)‖X − |t|

T

[

‖h(un)− h(u)‖X

+‖g(un)− g(u)‖X +

∫ T

0

(T − s)α−1

Γ(α)

(

‖f(s, un(s),

∫ s

0

K(s, τ)un(τ)dτ)

−f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖X
)

ds+

m
∑

i=1

‖Ii(un(t
−
i ))− Ii(u(t

−
i ))‖X

+

m
∑

i=1

|(T − ti)|
(

Γ(2− q)

|ti|1−q
‖Ji(un(t

−
i ))− Ji(u(t

−
i ))‖X

)

]

+
k
∑

i=1

|(t− ti)|
(

Γ(2− q)

|ti|1−q
‖Ji(un(t

−
i ))− Ji(u(t

−
i ))‖X

)

.

Since the functions f, g, h, Ik, Jk are continuous, ‖N(un) − N(u)‖PC1

t
→ 0, as n → ∞

which implies that the mapping N is continuous on PC1
t .

Now, consider the space Br = {u ∈ PC1
t : ‖u‖PC1

t
≤ r}. It is obvious that Br is

closed, bounded and convex subset of PC1
t . Let u ∈ Br, then for t ∈ (tk, tk+1], we have

‖Nu(t)‖X

≤
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖Xds

+
k
∑

i=1

‖Ii(u(t−i ))‖X + a1 + ‖g(u)‖X +
|t|
T

[

a1 + a2 + ‖h(u)‖X + ‖g(u)‖X

+

m
∑

i=1

‖Ii(u(t−i ))‖X +

∫ T

0

(T − s)α−1

Γ(α)
‖f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖Xds (27)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (4) (2015) 370–382 379

+

m
∑

i=1

|(T − ti)|
(

Γ(2− q)

|ti|1−q ‖Ji(u(t−i ))‖X
)

]

+

k
∑

i=1

|(t− ti)|
(

Γ(2− q)

|ti|1−q ‖Ji(u(t−i ))‖X
)

, (28)

it can be estimated as

‖Nu(t)‖PC1

t
≤ 2M1

Tα

Γ(α+ 1)
+ 2mM4 + 2a1 + 2M2 + a2 +M3 + 2mT qΓ(2 − q)M5.

Its proves that N maps bounded set into bounded set in Br for all subintervals
(tk, tk+1], (k = 1, . . . ,m).

Finally, we shall show that N maps bounded sets into equi-continuous sets in Br. Let
l1, l2 ∈ (tk, tk+1] with l1 < l2, 1 ≤ k ≤ m, we have

‖(Nu)(l2)− (Nu)(l1)‖X

≤ ‖
∫ l2

0

(l2 − s)α−1

Γ(α)
f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)ds

−
∫ l1

0

(l1 − s)α−1

Γ(α)
f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)ds‖X

+
|(l2 − l1)|

T

[

∫ T

0

(T − s)α−1

Γ(α)
‖f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖Xds
]

+

k
∑

i=1

|(l2 − l1)|
(

Γ(2− q)

|ti|1−q ‖Ji(u(t−i ))‖X
)

.

it can be estimated as

‖(Nu)(l2)− (Nu)(l1)‖PC1

t

≤ M1

Γ(α+ 1)

(

(l2 − l1)
α + ‖ − (l2 − l1)

α + (l2 − lk)
α − (l1 − lk)

α‖
)

+
(l2 − l1)

T

[

M1
Tα

Γ(α+ 1)

]

+m(l2 − l1)

(

Γ(2− q)

T 1−q
M5

)

,

which is independent of u. Thus, N is equicontinuous. Thus all the assumptions of
Sachuder’s fixed point theorem are satisfied. Hence, the system (5) has at least one
solution on [0, T ].

4 Example

Consider the following fractional order impulsive integro- differential equation with non-
local conditions:















cD3/2u(t) = et|u(t)|
(9+et)(1+|u(t)|) +

∫ t

0
e−(s−t)

10 |u(s)|ds, t ∈ [0, 1], t 6= (1/3),

∆u(1/3) = |u(1/3)|
17+|u(1/3)| , ∆(cD1/2u(1/3)) = |u(1/3)|

19+|u(1/3)| ,

u(0) = −
∫ 1

0
|u(s)|

23+|u(s)|ds, u(T ) = −
∫ 1

0
|u(s)|

25+|u(s)|ds.

(29)
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Here f(t, u,
∫ t

0
K(t, s)u(s)ds) = et|u(t)|

(9+et)(1+|u(t)|) +
∫ t

0
e−(s−t)

10 |u(s)|ds. Let x, y ∈ X and

t ∈ [0, 1] then we have

|f(t, x,
∫ t

0

K(t, s)x(s)ds) − f(t, y,

∫ t

0

K(t, s)y(s)ds)|

= | e−t

(9 + et)

[ |x(t)|
1 + |x(t)| −

|y(t)|
1 + |y(t)|

]

|+ |
∫ t

0

K(t, s)[x(s)− y(s)]ds|

= | e−t

(9 + et)
[
|x(t)(1 + |y(t)|)− |y(t)|(1 + |x(t)|)|

(1 + |x(t)|)(1 + |y(t)|) ]|

+|
∫ t

0

e−(s−t)

10
(x(s) − y(s))ds| = | e−t

(9 + et)
[

|x(t)| − |y(t)|
(1 + |x(t)|)(1 + |y(t)|) ]|

+|
∫ t

0

e−(s−t)

10
(x(s) − y(s))ds|.

By taking sup norm we estimate it as follows

||f(t, x,
∫ t

0

K(t, s)x(s)ds) − f(t, y,

∫ t

0

K(t, s)y(s)ds)||X ≤ 1

10
‖x− y‖X .

In similar way we can verify the following estimates

‖g(x)− g(y)‖X ≤ 1

23
‖x− y‖X , ‖h(x)− h(y)‖X ≤ 1

25
‖x− y‖X , ∀ x, y ∈ X,

‖Ik(x)− Ik(y)‖X ≤ 1

17
‖x− y‖X , ‖Jk(x) − Jk(y)‖X ≤ 1

19
‖x− y‖X , ∀ x, y ∈ X.

The rest of the parameters used in Theorem 3.1 are computed as q = 1
2 , α = 3

2 , (L1 +
L2K

∗) = 1
10 , L3 =

1
17 , L4 = 1

23 , L5 =
1
19 , L6 = 1

25 , and the inequality
[

(L1+L2K
∗)

Γ(α+1) 2Tα + 2mL3 + 2L4 + L6 + 2mT qΓ(2− q)L5

]

= 0.48834 < 1.

Thus, all the conditions of Theorem 3.1 are satisfied. Hence, the impulsive fractional
boundary value problem (5) has a unique solution on [0, 1].

5 Conclusion

At the foundation of this paper, one can consider the fractional integro-differential equa-
tion of order α ∈ (1, 2) with nonlocal boundary conditions and fractional impulsive
conditions. For the solution of the system (5) we follow the concept from the recent con-
tributions on impulsive fractional differential equations by M. Feckan et al. [12, 16, 19].
The existence and uniqueness of solutions for the system (5) are treated with the help of
Banachs and Schauders fixed point theorems.
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1 Introduction

Kinematic synchronization of systems is the matching of motion between two moving
systems. The synchronization of any two rotating systems can be as simple as physically
placing a joining spring or damper between the systems or may require sophisticatedly
controlled actuators that augment natural system dynamics. Here, we focus on dissimilar
rotating systems without any physical coupling. Our passive kinematic matching
technique allows two independent systems to generate the same motion without any
physical system coupling or actuator control law. To validate this method, this passive
synchronization technique is applied to two open-ended rotating kinematic chains: single-
and double- link pendulums with different masses at different mass locations along links.
Even though double-link pendulums are highly nonlinear systems that are sensitive to
changes in initial conditions and system parameters, our passive matching technique
enables the same generated motion on dissimilar double-link pendulums.

The practical application of such a passive matching technique is the flexibility in
mechanical design as one is able to describe the same kinematics with a variety of
parameters (i.e., masses and mass distributions). In essence, one is able to decouple
the mass and the first moment and second moment of inertia so systems with dissimilar
masses and mass distributions will have the same motion. For example, the motion of a
double-link pendulum modeled as two links with one mass per link can only be described
by one unique combination of masses and mass locations along the links. However,
having two masses per link allows the kinematics to be described with an infinite number
of distinct systems with distinct masses and mass distribution that all have the same
resulting motion. In fact, the minimum number of masses per rotating link to describe
any arbitrary rotational kinematics is two masses, yet many models only include one
mass. Using only one mass per link inherently couples the moments of inertia so that
any change in the location of the mass necessarily affects both the first and second
moments of inertia.

The modeling method to derive our synchronization technique can be used to simplify
complicated rotational kinematics problems by simplifying the dynamics model of the
system by assuming a finite distribution of point masses along swinging members. For
example, the rotation of a fan blade can be represented with two masses distributed
as specified using this method instead of finding detailed masses, mass distributions,
or moments of inertias of the continuous system. This type of modeling can also be
applied to human or robotic limbs and in prosthesis design. It is stressed that this
point-mass modeling technique is not novel, however is used to develop our novel passive
synchronization method that matches the rotational kinematics of two dissimilar and
uncoupled rotational systems.

The only requirements for our passive kinematic synchronization of dissimilar systems
are: identical degrees of freedom, initial conditions, and torques applied to the systems.
These same requirements are also needed to cause two identical systems to have the same
motion.

In the proceeding sections we will derive the essential and general model for an
open-ended multi-degree of freedom rotational system, define the kinematic matching
coefficients needed for system synchronization, and outline the step-by-step instructions
on how to passively match the kinematics of newly created or already available systems.

We further form two examples providing proof and application of this system
representation and unique passive matching method of dissimilar systems by
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mathematically and experimentally analyzing three dissimilar one-degree-of-freedom
systems and also two dissimilar two-degree-of-freedom systems.

2 Background

2.1 Coupled synchronization

In 1657, in the quest to improve nautical navigation, Dutch mathematician Christiaan
Huygenes invented the first pendulum clock [2]. Pendulum clocks were astounding
mechanisms of their day. An interesting aspect is that they tend to synchronize and
operate in phase or anti-phase when hung on the same wall with another pendulum
clock. He deduced that the clocks were coupled by their common supporting structures
which transferred small movements between clocks. This clock can be considered the
first observation of a synchronized coupled oscillator.

The kinematic synchronization of two or more coupled mechanical systems such as
Huygen’s clock has been extensively studied since the time of Huygen himself. More
recent such studies include the synchronization of coupled nonlinear oscillators [3],
analysis of coupled multi-pendulum systems [5], and synchronization of double
pendulums under the effects of external forces [18]. Osipov et al. [24] published a
thorough review on synchronization in oscillatory networks, which mainly discusses
different aspects of synchronization in chains and lattices of interconnected oscillatory
elements.

As part of the rise of faster computing power came the ability to actively synchronize
coupled mechanical systems with linear, nonlinear, passivity-based, or active control
laws. There are hundreds of publications which demonstrate such control laws, some of
these publications are on controlled motion synchronization for gyroscopes [23], inverted
pendulum systems [22], and chaotic systems [19].

2.2 Uncoupled synchronization

Passive kinematic synchronization of physically uncoupled systems has been studied
significantly less and the authors were only able to find two examples of uncoupled
passive synchronization, both of which are rooted in sports science.

A golfer’s technique as well as familiar equipment play an essential role in a golfer’s
performance. It is for this reason that all golf clubs in a set are matched (synchronized)
statically and dynamically, so when swung, each club behaves and feels the same to
the golfer [1]. Statically a golf club is matched by simply balancing it on a fulcrum,
however dynamically matching the golf club can be achieved by matching the moment
of inertia for each club in the set about the swinging axis [4]. Jorgensen presents a golf
club dynamic synchronization technique by modeling the swing arm and golf club and
matching overall moments of inertia about the wrist axis [17]. In these examples the
kinematics of each uncoupled system (golf club) is synchronized given the same input
torque (the golfer’s swing). While this technique of golf club matching is practical in
its specific application, it lacks generalization and flexibility to apply to other rotating
systems to be synchronized.

Although very little can be found in the field of passive synchronization of uncoupled
systems, a generalized passive synchronization method for physically uncoupled rotating
systems has practical implications for locomotion robotics, lower limb gait analysis, and
prosthetics. For instance, an individual’s walk can largely be modeled as two inverted
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Figure 1: (a) General Rotating System Model. (b) The general rotating systems model can
be adjusted to represent various configurations for rotating systems. These configurations can
represent a sea-saw/rotor, double pendulum, cam, or a continuous mass distribution along
rotating members.

pendulums (left and right step) rotating about the stance foot and progressing down a
decline with gravity as the only source of energy [20]. Such models are called passive
dynamic walkers (PDW) and have been shown to predict certain aspects of human
gait dynamics [7, 13, 14]. Honeycutt et. al [16] used a brute force search through a
numerical PDW model to show that asymmetric limbs can have symmetric kinematics,
and moving a prosthetic knee joint lower while lowering the prosthetic mass can result
in a spatially symmetric gait. Gregg [10, 11] examined symmetry from the other point
of view by finding symmetric PDW parameters that yielded asymmetric kinematics. A
leg synchronization technique for PDWs, general walking robots, and individuals can
be helpful to design and implement devices and methods which either even out gait
asymmetries [8], or intentionally exaggerate gait asymmetries for rehabilitation [12, 25].
These gait asymmetries can also arise from the asymmetric size and weight of a prosthetic
limb [15].

3 Passive Kinematic Synchronization Technique Derivation

This section outlines the equations used to derive the kinematics of a two-dimensional
general rotating system essential for our passive synchronization method. Subsequently
we will use this generalized model to draw out a method to synchronize two or more
dissimilar rotating systems with the same degrees of freedom, initial conditions, and
torque input.
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3.1 General rotating system model description

We begin by deriving the equation of motion for a general rotating system with ň degrees
of freedom and m̌ masses per degree of freedom. Variable notation m symbolizes each
individual mass whereas m̌ symbolizes the total number of masses per rotating member
(or link). This generalized model is shown in Figure 1a, and can be described using
Lagrangian mechanics where the Lagrangian is defined as the difference of kinetic and
potential energy. Note that this following formulation of the generalized equation of
motion is not novel, however it is used in the subsequently described kinematic matching
technique

L(θ, θ̇, t) = K(θ, θ̇, t)− U(θ, t). (1)

To find the equation of motion, the Euler-Lagrange expression is applied:

d

dt

(

∂L(θ, θ̇, t)

∂θ̇1,2...ň

)

=
∂L(θ, θ̇, t)

∂θ1,2...ň
. (2)

Equation (2) produces ň equations for ň degrees of freedom of the system. After
differentiating and collecting coefficients, the equations of motion of this general dynamic
system are a set of ň number of first order nonlinear ordinary differential equations shown
in matrix coefficient form in equation (3)

[M ] Θ̈ + [N ] Θ̇2 + [G] = [T ], (3)

where the coefficient matrices [M], [N], and [G] are given in equations (4), (7), and (8),
respectively. [M] is the inertia matrix coefficient, [N] is the velocity matrix coefficient,
and [G] is the position/gravity coefficient matrix. [T] can represent any applied or non-
conservative torque functions applied to the system such as actuator torque, joint friction
torque, or air resistance experienced by a swinging member,

[M ]ň,ň
sym

=

















M1,1 M1,2 cos(θ1 − θ2) · · · M1,j cos(θ1 − θj)

M1,2 cos(θ1 − θ2) M2,2

...

...
. . . Mi−1,j cos(θi−1 − θj)

M1,j cos(θ1 − θj) · · · Mi,i

















.

(4)
Here, each of the coefficients on the diagonal are given by

Mi,i =
m̌
∑

p=1

l2i,pmi,p + l2i

ň
∑

q=i+1

m̌
∑

p=1

mq,p (5)

and the remaining non-diagonal coefficients are given by

Mi,j = li

[

m̌
∑

p=1

lj,pmj,p +

{

lj
∑ň

q=j+1

∑m̌

p=1
mq,p j < ň

0 j ≥ ň

]

. (6)
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The subscripts i and j represent the matrix entry indexes for matrix row and matrix
column, respectively,

[N ]ň,ň =















0 M1,2 sin(θ1 − θ2) · · · M1,j sin(θ1 − θj)

−M1,2 sin(θ1 − θ2) 0
...

...
. . . Mi−1,j sin(θi−1 − θj)

−M1,j sin(θ1 − θj) · · · 0















,

(7)

[G]ň =











































m̌
∑

p=1

l1,pm1,psin(α1,p + θ1) + (l1

ň
∑

q=2

m̌
∑

p=1

mq,p) sin(θ1)

...
m̌
∑

p=1

li,pmi,p sin(αi,p + θi) + (li

ň
∑

q=i+1

m̌
∑

p=1

mq,p) sin(θi)

...
m̌
∑

p=1

lň,pmň,psin(θň,p + θň)











































g. (8)

These are the coefficient matrices for the equations of motion of a general rotating
system model with ň degrees of freedom and m̌ masses per degree of freedom. The [M]
matrix is a symmetric matrix, while the [N] matrix is a negatively mirrored matrix with
a zero diagonal. Note that the coefficients [equations (5) and (6)] are all unique matrix
components in the [N ] matrix that all appear in the [M ] matrix. Also note that the
last row of [G] (i = ň) is different since there are no masses from links further down the
kinematic chain sequence. Masses (m) and mass distributions (l) are shown in Figure 1a.

Equation (3) can model any degree of rotating system or rotating system links.
Degrees of freedom (links), mass, and mass distribution within each link can be easily
modified to create models for such systems as shown in Figure 1b. These modified
models can represent rotors, pendulums, cams, or rotating kinematic systems and open
kinematic chains.

3.2 Passive kinematic synchronization using kinematically matched
coefficients

Now that we have defined the general point-mass model for a rotational open-ended
swinging system, we are able to utilize to create synchronized motion between two
dissimilar systems.

Given the same torque input and initial conditions, two or more systems with the same
degrees of freedom will exactly match in dynamics if all four coefficient matrices, [M ], [N ],
[G], and [T ] in equation (3) are matched between the systems. Since only the computed
end values of these coefficients determine the dynamic behavior of the rotating systems,
the masses and mass distribution do not have to match between them. This allows for two
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or more systems with dissimilar mass and mass distribution parameters to kinematically
behave identically, that is, have identical dynamic coefficients [M ], [N ], [G] and [T ]. For
instance, assuming identical torque input and initial conditions, a swinging single link
pendulum with two masses can be designed to swing identically to another single link
pendulum with two or more masses, where the masses are distributed differently along
the pendulum link. This concept allows for the first and second moments of inertia to
be decoupled and greater design flexibility is obtained. Given that each link has two
or more masses distributed along the link (m̌ ≥ 2), there are infinite combinations of
kinetmatically matched systems, that is, there is an infinite number of ways the masses
can be distributed such that the four coefficient matrices in equation (3) match another
system.

When the coefficient matrices are generalized for systems with ň degrees of freedom
with m̌ masses per link (equations 4, 7 and 8), a pattern of repeating matrix entries
emerges. It is seen that for the coefficient matrices to match between two rotating
systems and cause synchronized dynamics, only unique parts of the coefficient matrices
need to be matched between systems. We will call each unique term that appears
in the coefficient matrices a kinematically matched coefficient (KMC). The KMCs are

represented in equations (5), (6) and (8) and are written in bold and highlighted font.
The total number of KMCs that have to be matched between kinematically synchronized
systems is given in Table 1. For example, to synchronize the dynamics of a pair of one
degree of freedom rotating systems, two KMCs need to be matched, while for a pair of
three degree of freedom systems to be synchronized, nine KMCs need to be matched.

In the following section, we will review step-by-step instructions on how to apply the
passive kinematic synchronization technique for dissimilar and rotating systems, while
in Sections 4 and 5 we present two examples of this matching technique for one and two
degree-of-freedom systems with experimental validation.

4 Example 1: Passive Single Link Pendulum

In this section, we utilize the method derived in Section 3 and experimentally demonstrate
its validity. We start with creating two matched variations of a traditional passive ([T ] =
0) single mass (m̌=1) single link (ň=1) pendulum that is shown in Figure 2a. Our created
variations of the single link pendulum have two masses per link (m̌=2) (Figure 2b).

Although more masses could be utilized to match the motion of this single link
pendulum, two masses are sufficient to describe any number of masses and mass

Table 1: Number of Kinematically Matched Coefficients For Synchronized Uncoupled Motion
between Two or More Systems.

DOF (ň) Number of KMCs

1 2
2 5
3 9
. .. .. .
ň KMCň−1 + (ň+ 1)
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Figure 2: Single link and double (2-link) pendulum representation model. (a), (b), and (d)
were used experimentally.

distributions. The parameters of all three dissimilar single link pendulums are shown
in Table 2. Since a single link pendulum is one degree of freedom, only two KMCs had
to be matched between systems (M1,1=33,600 g-cm2 and G1=1,260 g-cm).

4.1 Experiment description

The three dissimilar single link pendulum systems were constructed from rigid foam
board that was light (1.125g per link) relative to the entire pendulum. Mass and mass
distributions were calculated using KMCs in equation 4, 7, and 8. Lead weights were
used as pendulum masses and attached to the link at appropriate positions. The mass
values listed in Table 2 were rounded to whole grams for the experimental pendulums. To
ensure precise link dimensions, each pendulum was cut with a 60W laser cutter (Universal
Systems VLS4.60).

The links were attached to a short and rigid 0.375in (0.9525cm) aluminum rod using

Table 2: Single Pendulum (ň=1) System Synchronization Coefficient Equations and System
Experimental Parameters.

Coefficient Coefficient System 1 System 2 System 3

Index Value (m̌=1) (m̌=2) (m̌=2)

KMCs M1,1 33,600 g-cm2 m11l
2
11 m11l

2
11 +m12l

2
12

G1 1,260 g-cm m11l11 m11l11 +m12l12

Masses (g) m11=47.3 m11=35.0 m11=49.0
m12=21.0 m12=31.8

Lengths (cm) l11=26.7 l11=15.0 l11=5.0
l12=35.0 l12=31.9
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Figure 3: Release mechanism used for all pendulum measurements. (1) Ball Bearing (2) Rigid
Foam Link (3) Lead Weights (4) Extension Spring (5) Release Pin.

a precision steel ball bearing to reduce friction. To minimize variability due to friction
(negative torque), the exact same bearing was used for each system. Each pendulum
system was dropped from the same initial position with an adjustable spring loaded
release mechanism. This complete setup can be seen in Figure 3.

The pendulums were video recorded at 50 frames/second (50 Hertz) using a Cannon R©

T3i digital camera with a Cannon R© EF 50mm f/1.8 II lens. Link angular position was
interpreted with Matlab R©, which was used to load video frames and identify each link’s
distinct color while in motion.

4.2 Results

Five videos of each pendulum were recorded (15 total). The recorded angular position
was averaged and filtered using a low pass 2nd order Butterworth filter at 6 Hz. This
angular position data is presented in Figure 4 and compared with ideal predicted model
behavior. Modeled systems have the same masses and mass distribution as measured
physical systems. As predicted, all three ideal modeled systems have the same temporal
kinematics and exactly overlap in Figure 4. Spectral analysis shows the same frequency
peak between all measured physical systems, while all three modeled systems peaked
0.06Hz below the measured system peaks.

While the recorded physical systems were affected by non-conservative forces, such as
air resistance and friction, all three dissimilar pendulums matched kinematically. Their
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Figure 4: Temporal and spectral motion of three kinematically synchronized single link
pendulums (ň=1) with dissimilar masses and mass distributions. The motion of the dissimilar
modeled systems (dashed line) is matched exactly and overlaps while the measured motion of
the three physical system is matched as well. The discrepancy of the modeled and physical
system is due to non-conservative forces.

slight difference in amplitude can be explained by the variable mass and mass distribution
in the pendulums that leads to variable weight and centripetal forces on the bearing,
which in turn increases rotational friction. Similarly, the effect of the friction torque
is affected by the inertia of the system. Although the kinematics are matched, the
kinetics in these dissimilar systems does not match; the different masses will generate
different forces. Despite these small effects, all three physically dissimilar pendulums had
a frequency of 0.88± 0.04Hz.

When comparing the collected and model data, the effects of damping become
distinct. As a result, the amplitude and period decrease over time for the actual systems
as shown in Figure 4. As previously explained, the model derivation did not include a
damping coefficient, thus its effects on motion were not predicted. Despite this difference,
the model and all three physically dissimilar pendulums have very similar motion.

5 Example 2: Passive Double (Two-Link) Pendulum

We further investigate our kinematic matching technique by passively synchronizing two
passive ([T ] = 0) dissimilar two degree-of-freedom (ň=2) systems with two masses per
link (m̌=2). This double pendulum model is depicted in Figure 2c and 2d and KMCs
are shown in Table 3. Either step-by-step kinematic synchronization matching technique
could have been used to generate identical motion of these systems. That is, the second
system may have been newly created or already available and subsequently matched by
adding an additional mass.

Traditionally the double pendulum is modeled in Figure 2c, however this model is
impractical from a design perspective considering that the pivot point between the upper
and lower link is exactly where the mass is placed and the link is massless. Hence, for
our comparison, we add design flexibility and utilize two masses per link.
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Table 3: Double Pendulum (ň=2) Synchronization Coefficient Equations and Experimental
System Parameters.

Coefficient Coefficient System 1 System 2
Index Value (m̌=2) (m̌=2)

KMCs M1,1 28,175 g-cm2 l211m11 + l212m12 + l21(m21 +m22)
M1,2 23,800 g-cm2 l1(l21m21 + l22m22)
M2,2 32,900 g-cm2 l221m21 + l222m22

G1 1,715 g-cm l11m11 + l12m12 + l1(m21 +m22)
G2 1,190 g-cm l21m21 + l22m22

Masses (g) m11= 5.0 m11=52.6
m12=35.0 m12=29.1
m21=14.0 m21=23.0
m22=35.0 m22=28.0

Lengths (cm) l1=20.0 l1=20.0
l11=7.0 l11=5.0
l12=14.0 l12=15.0
l21=10.0 l21=12.4
l22=30.0 l22=32.4

5.1 Experiment description

Two double pendulums were created using the same fabrication technique and material
as the single pendulum experiment in Section 4. An additional small ball bearing was
placed at the pivot point between the upper and lower link with a 0.25in (6.25mm)
wooden pin. Both small bearing and pin had a combined weight less than 2 grams.

The links were attached to the same aluminum rod, ball bearing, and were released
with the same release mechanism shown in Figure 3. Specific colors were placed on
each link to track their angular positions. Due to greater acceleration of links, the
double pendulum nonlinear motion was again recorded at 50 frames/second with the
same camera.

5.2 Results

As before, each pendulum’s angular kinematics were recorded five times (10 total),
averaged, and filtered with a 2nd order Butterworth filter at 6 Hz. The results of
these angular positions are illustrated in Figure 5 and compared with the ideal predicted
systems.

The motion for both link 1 (upper link) and link 2 (lower link) was in agreement
with model conditions through around 4 seconds, but were in good agreement between
experimental measurements throughout the whole trial, which was 12 seconds. This
movement of the two dissimilar systems can be seen in Figure 6 and in the accompanying
video. All collected data deviated less for link 1 than link 2, which can be explained by
the more chaotic movement of the lower link and also because of more variability due to
friction in the additional middle pivot. In summary, we have demonstrated two dissimilar
chaotic systems that have the same motion by kinematically matching the two systems.
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Figure 5: Double pendulum (ň=2) model and experimental rotational link position and spectral
analysis.

6 Practical Application

The preceding sections presented the derivation and validation of the kinematic
synchronization technique. In this section we present a step-by-step tutorial for passive
synchronization of two dissimilar and rotating systems and some possible applications of
this method.

6.1 Creating a rotating system that is synchronized to an existing system

When one complete rotating system is available and another rotating system is to
be created to precisely match the rotational kinematics of the available systems, the
following steps can be applied to accomplish this.

Step 1: Determine the degrees of freedom for the original and available system (A)
(ňA). For example, a swinging arm as a whole may be represented as a single
degree of freedom rotating system, while a swinging leg may be represented as a
double degree of freedom system as it bends at the knee. This is the number of
degrees of freedom the newly created and synchronized rotation system will have
(ňA = ňB).

Step 2: Measure and represent the mass distribution of this system as lumped point
masses along each link. Make sure that each link in a system has the same number
of masses (m̌) as any other link in that system, even though some may be set to
zero. For example, for a three degree of freedom system, link one, two, and three
each has five point mass representations along each link. However, link one and
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m  10 m  20 m  35 m  5 m  0

System 1

System 2

Figure 6: Temporal and spectral motion of two kinematically synchronized double link
pendulums (ň=2) with dissimilar masses and mass distributions. The motion both dissimilar
modeled systems is exactly the same, while of both dissimilar physically measured systems
are also synchronized. The discrepancy of the modeled and physical system is due to non-
conservative forces.

two could be represented as five masses along each link, but link three may be
represented as four non-zero masses and one mass set to zero.

Step 3: Calculate the total numerical values of KMCs of the available system (A) using
equations 4, 7, and 8. For example:
MA

1,1 = 30,000 g-cm2

GA
1 = 1000 g-cm

(see Table 2 and Table 3 for other KMC examples)

Step 4: Model a newly created rotational system (B) with the same degrees of freedom
(ňA = ňB) and represent the mass distribution of each link with the same number
of masses per link. The number of masses per link must be equal to or greater
than two masses (m̌B ≥2). As before in Step 2, some masses on links may be set
to zero.

Step 5: Set the numerical KMCs of the available system (A) equal to the symbolic
KMCs of the newly created system (B). For example:
M1,1 = 30,000 g-cm2 = mB

11l
2B
11 +mB

12l
2B
12

G1 = 1,000 g-cm = mB
11l

B
11 +mB

12l
B
12

etc.

Step 6: Input approximate values for the masses, mass locations, and link lengths of the
newly created system (B). Leave as many unknown parameter variables as variables
as there are KMCs. That is, the number of variables to be found should equal the
number of KMCs. For example:
M1,1 = 30,000 g-cm2 = (35g)l2B11 +m2B

12 (31.9cm)
G1 = 1,000 g-cm = (35g)lB11 +mB

12(31.9cm)
etc.

Step 7: Solve for the unknown system parameter for the newly created system (B).

6.2 Synchronizing two existing rotating systems

Two already available, dissimilar, and rotating systems with equal degrees of freedom
can be passively synchronized in their independent rotational motion by augmenting one
of the systems to match the other. The following succession of steps describes how to
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passively synchronize two such independent, dissimilar, and uncoupled systems.

Step 1: Verify that the first system (A), the reference system, and second system (B)
are of equal degrees of freedom (ňA = ňB). For example, the kinematics of a one
degree of freedom rotational system such as a rotating blade may only be matched
to the motion of another one degree of freedom rotational system.

Step 2: Measure and represent the mass distribution of this system as lumped point
masses along each link. Make sure that each link in a system has the same number
of masses (m̌) as any other link in that system, even though some may be set
to zero. For example, for a three degree of freedom system, link one, two, and
three each has five point mass representation along each link. However, link one
and two could be represented as five masses along each link, but link three may be
represented as four masses with one mass set to zero.

Step 3: Calculate the total numerical values of KMCs of the available system (A) using
equations 4, 7, and 8. For example:
MA

1,1 = 30,000 g-cm2

GA
1 = 1,000 g-cm

etc.

Step 4: For the second system (B), add one additional mass for each link. This
additional mass per link and its location on the link are to be determined
subsequently.

Step 5: Using equations 4, 7, and 8, find the KMC equations for the second system (B)
(MB

1,1, G
B
1 , etc.), and input the known (measured) lumped point masses and their

locations.

Step 6: Set the numerical KMC values for the first system (A) equal to the KMC
equations found for the second system (B) For example:
M1,1 = 30,000 g-cm2 = mB

11l
2B
11 +mB

12l
2B
12

G1 = 1,000 g-cm = mB
11l

B
11 +mB

12l
B
12

etc.

Step 7: Solve for the added and unknown point masses and their locations (from Step
4) for each link of the second system (B). There should be as many unknown
parameters (added masses, mass locations, and link lengths) as there are KMCs.

6.3 Kinematic system simplification technique

We have shown that given the same degrees of freedom and torque input, two dissimilar
rotating systems can be motion matched. A minimum of two masses per degree of
freedom are required to mimic the motion of a matching system. In essence, this
kinematic matching technique can be used to simplify a complicated rotating system.
For example, a rotating fan blade, gear, or cam of arbitrary shape can be modeled as
one link with two masses, while an open ended chain with any number of links can be
modeled as two masses per link. This can greatly simplify computation resulting in the
same kinematics.
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6.4 Gait pattern manipulation

In humans [7, 13, 14], animals [6], and some insects [21], the limbs can be modeled as
swinging pendulums that swing in accordance to their masses and mass distribution. It is
possible to manipulate limb movements by simply changing mass and mass distributions
such as adding mass to a specific location of the limb. For example, a gait asymmetry
(walking limp) can be created in an individual by attaching an extra weight to one
leg [14], while in contrast a symmetric gait can be restored from an asymmetric walking
pattern by adding weight to a specific location [8]. With the presented kinematic
matching technique, we can match two swinging limbs, such as human legs, so they
move symmetrically, but out 180◦ out of phase. While walking kinematics are the most
obvious application, other parts of the body can be synchronized such as swinging arms
during walking or moving fingers while playing an instrument or typing on a keyboard.
This technique can also be used for the kinematic behavior prediction of swinging robotic
limbs [6, 9].

6.5 Prosthetics

Wearing a prosthesis that does not have the exact size and weight of the missing limb
can create gait asymmetries [15]. Prosthetics research commonly tries to mimic the
lost limb in regards to size, weight, and length; however this design constraint can
often times seem unrealistic and overconstraining. Using a numerical passive dynamic
walker model, Sushko et. al [26] showed that this design constraint can be alleviated by
changing left and right limb mass and mass distribution parameters to obtain symmetric
gait with asymmetric limb parameters. As previously stated the presented kinematic
matching technique can analytically match two limbs with symmetric limb mass and
mass distribution parameters. That is, we can apply this technique to match the healthy
limb with the other limb with a prosthetic by adding masses to one or both limbs, yielding
a symmetric gait.

7 Conclusions and Future Work

We derived a general equation of motion for two-dimensional ň degree-of-freedom m̌
masses per degree of freedom open ended rotating systems. Further we developed a
passive kinematic matching technique that is applicable to such systems. In order
to match the same rotating kinematics, only two masses per degree of freedom are
necessary. The motion analysis of three matched one-degree-of-freedom unactuated single
link pendulums with dissimilar masses and mass distribution showed that these dissimilar
systems were kinematically identical, although unmodeled nonconservative forces created
slight deviations between ideal model predictions and actual measurements. While
chaotic in motion, the same results were shown in the motion analysis of two two-degree-
of-freedom unactuated double link pendulums with synchronous motion lasting for about
4 seconds before nonconservative forces caused deviation. Measured kinematics of the
two dissimilar experimental double pendulums matched for more than 12 seconds.

It is possible to alter the mass distribution of a rotating system by moving masses
along system links in order to kinematically match it to another system. It is also
possible to add or remove masses at key locations along a rotating link. These methods
could be utilized to synchronize the kinematics of two swinging legs while walking.
However, although dissimilar kinematically synchronized systems move identically, the
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kinetics can vary. This was seen in our first example between three dissimilar single
link pendulums. While system kinematics matched, pendulum bearing reaction forces
varied, yielding dissimilar damping forces. Unless mass and mass distribution parameters
are exactly matched, the internal forces throughout the system will not match. Future
work includes the analysis and possible synchronization of inter-system kinetics. The
authors hypothesis is that either the kinematics or kinetics can be matched, but not
both simultaneously in dissimilar systems.

It is also presumed that similar passive synchronization techniques can also be derived
in all three dimensions; further derivations are needed.
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Abstract: In this paper, a new type of synchronization, called Θ−Φ synchronization,
is introduced for different chaotic discrete-time systems using two scaling matrices.
The proposed synchronization approach allows us to study synchronization between
two different dimensional discrete-time chaotic systems in different dimensions. By
using Lyapunov stability theory and stability property of linear discrete-time systems,
some control schemes are proposed and new synchronization results are derived. To
verify the effectiveness of our approach, numerical example and simulations are given.
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1 Introduction

Over the last two decades, many scholars have proposed various control schemes in chaos
synchronization [1–6], but the most of works have concentrated on continuous-time rather
than discrete-time chaotic systems. Recently, synchronization of chaotic and hyperchaotic
maps has attracted a great deal of interest of applied scientists and engineers due to it’s
potential applications in cryptology and secure communication [7–10]. Different methods
have been developed to study the synchronization in discrete-time chaotic dynamical
systems [11–13].
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Until now, a variety of approaches have been proposed for the synchronization of
discrete chaotic such as synchronization and anti-synchronization [14,15], adaptive func-
tion projective synchronization [16,17], full-state hybrid projective synchronization [18],
Lag synchronization [19], impulsive synchronization [20], function cascade synchroniza-
tion [21], generalized synchronization [22, 23] and Q-S synchronization [24]. Among
all types of synchronization, matrix projective synchronization (MPS) is effective ap-
proach for achieving the synchronization of chaotic and hyperchaotic discrete-time sys-
tems [25, 26]. In (MPS), the drive chaotic system and the response chaotic system are
synchronized up to scaling constant matrix.

In this paper, we generalize the (MPS) type to a new type of synchronization using
two scaling constants matrices (Θ−Φ synchronization). The aim of this work is to present
constructive schemes to synchronize n-dimensional drive system and m-dimensional re-
sponse system in m-D and n-D, respectively. The derived results are based on Lyapunov
stability theory, stability property of linear discrete-time systems and nonlinear control
laws. To verify the validity and the feasibility of the new synchronization results, the
proposed control schemes are applied to 2D Lorenz discrete time system and 3D discrete-
time Rössler system in different dimensions.

This paper is organized as follows. In Section 2, the problem of Θ − Φ synchro-
nization is formulated. In section 3, the Θ − Φ synchronization is studied in m-D. The
n-dimensional Θ − Φ synchronization is investigated in Section 4. In Section 5, nu-
merical simulations are given to illustrate the effectiveness of the main results. Finally,
conclusions are drawn in Section 6.

2 Θ− Φ Synchronization in Discrete-Time Systems

The drive and the response chaotic systems are in the following forms

X(k + 1) = AX(k) + f(X(k)), (1)

Y (k + 1) = BY (k) + g(Y (k)) + U, (2)

where X(k) ∈ Rn, Y (k) ∈ Rm are state vectors of the drive system and the response
system, respectively, A ∈ Rn×n, B ∈ Rm×im are linear parts of the drive system and the
response system, respectively, f : R n → Rn, g : Rm → Rm are nonlinear parts of the
drive system and the response system, respectively, and U ∈ Rm is a vector controller.

Definition 2.1 The drive system (1) and the response system (2) are said to be
synchronized in dimension d, with respect to scaling matrices Θ and Φ, respectively, if
there exists a controller U = (ui)1≤i≤m ∈ Rm and given matrices Θ = (Θ)d×m and
Φ = (Φ)d×n such that the synchronization error

e(k) = ΘY (k)− ΦX(k) (3)

satisfies the condition lim k−→+∞ ‖e (k)‖ = 0.

3 Θ− Φ Synchronization in m-D

In this case, we assume that the synchronization dimension d = m. The error system
between the drive system (1) and the response system (2) can be derived as

e (k + 1) = ΘY (k + 1)− ΦX(k + 1)

= ΘBY (k) + Θg(Y (k)) + ΘU − ΦAX(k)− Φf(X(k)), (4)
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where Θ = (Θij) ∈ Rm×m and Φ = (Φij) ∈ Rn×m are the scaling matrices.

Theorem 3.1 The drive system (1) and the response system (2) are globally synchro-
nized, with respect to scaling matrices Θ and Φ, if the following conditions are satisfied:

(i) U = −Θ−1 × [(L1 −B) e (k) + ΘBY (k) + Θg(Y (k))− ΦAX(k)− Φf(X(k))],
where Θ−1 is the inverse of the matrix Θ.

(ii) (B − L1)
T (B − L1) − I is a negative definite matrix, where L1 ∈ Rm×m is a

control matrix.

Proof. Then, the error system (4) can be described as

e (k + 1) = (B − L1) e (k) + ΘU + (L1 −B) e (k) + ΘBY (k)

+Θg(Y (k))− ΦAX(k)− Φf(X(k)), (5)

where L1 ∈ R m×m is a control matrix. By substituting (i) into equation (5), the error
system can be written as

e (k + 1) = (B − L1) e (k) . (6)

Construct the candidate Lyapunov function in the form V (e(k)) = eT (k)e(k), we
obtain

∆V (e(k)) = eT (k + 1)e(k + 1)− eT (k)e(k)
= eT (k)(B − L1)

T (B − L1)e(k)− eT (k)e(k)
= eT (k)

[

(B − L1)
T (B − L1)− I

]

,

and by using (ii) we get ∆V (e(k)) < 0. Thus, from the Lyapunov stability theory, it is
immediate that limk→∞ ei (k) = 0, i = 1, 2, ..., n. That is the zero solution of the error
system (6) is globally asymptotically stable and therefore, the systems (1) and (6) are
globally Θ− Φ synchronized in m-D.

4 Θ− Φ Synchronization in n-D

Now, the synchronization dimension d = n. The error system between the drive system
(1) and the response system (2) can be derived as

e (k + 1) = (A− L2) e (k) + ΘU + (L2 −A) e (k)

+ΘBY (k) + Θg(Y (k))− ΦAX (k)− Φf(X(k)), (7)

where Θ = (Θij) ∈ Rn×m and Φ = (Φij) ∈ Rn×n are the scaling matrices. In this case,
we assume that m > n and we take the controller components vi, where i > n, as

ui = 0, i = n+ 1, n+ 2, ...,m. (8)

Then, the error system (7) can be written as

e (k + 1) = (A− L2) e (k) + Θ̂Û + R, (9)

where Θ̂ = (Θij)m×m , Û = (ui)1≤i≤n,

R = (L2 −A) e (k) + ΘBY (k) + Θg(Y (k))− ΦAX (k)− Φf(X(k)), (10)

and L2 ∈ Rn×n is a control matrix.
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Theorem 4.1 The drive system (1) and the response system (2) are globally syn-
chronized, with respect to the scaling matrices Θ and Φ, if the following conditions are
satisfied:

(i) Û = −Θ̂−1 ×R, where Θ̂−1 is the inverse of the matrix Θ̂.
(ii) All the eigenvalues of A− L2 lie inside the unit disk.

Proof. By substituting (i) into equation (9), the error system can be written as

e (k + 1) = (A− L2) e (k) . (11)

With respect to the asymptotic stability property of linear discrete-time systems, if
all eigenvalues of A−L2 are strictly inside the unit disk, it is immediate that all solutions
of error system (11) go to zero as k → ∞. Therefore, the systems (1) and (2) are globally
Θ− Φ synchronized in n-D.

5 Numerical Application and Simulations

In this section, a numerical example is given to illustrate the effectiveness of the theoret-
ical results derived in the previous sections. Thus, we consider the 2D Lorenz discrete
time system as the drive system and the controlled 3D discrete-time Rössler system as
the response system. The Lorenz discrete time system is described by

x1 (k + 1) = (1 + ab)x1 (k)− bx1 (k)x2 (k) , (12)

x2 (k + 1) = (1− b)x2 (k) + bx2
1 (k) ,

which has a chaotic attractor, for example, when (a, b) = (1.25, 0.75) [27].
The controlled discrete-time Rössler system can be described as:

y1 (k + 1) = αy1 (k) (1− y1 (k))− β (y3 (k) + γ) (1− 2y2 (k)) + u1, (13)

y2 (k + 1) = δy2 (k) (1− y2 (k)) + ςy3 (k) + u2,

y3 (k + 1) = η ((y3 (k) + γ) (1− 2y2 (k))− 1) (1− θy1 (k)) + u3,

where U = (u1, u2, u3)
T

is the vector controller. When α = 3.8, β = 0.05, γ = 0.35,
δ = 3.78, ς = 0.2, η = 0.1 and θ = 1.9, the discrete-time Rössler system (i.e., the system
map (18) with u1 = 0, u2 = 0 and u3 = 0) has a hyperchaotic attractor [28].

The linear part A and the nonlinear part f of the Lorenz discrete time system are
given by

A =

(

1 + ab 0
0 1− b

)

, f =

(

−bx1 (k)x2 (k)
bx2

1 (k)

)

.

The linear part B and the nonlinear part g of the discrete-time Rössler system are
given by

B =





α 2βγ −β
0 δ ς

ηθ (1− γ) −2γη η



 ,

g =





2βy3 (k) y2 (k)− αy21 (k)− βγ
−δy22 (k)

η (γ − 1)− ηy3 (k) (θy1 (k) + 2y2 (k)) + 2θy1 (k) y2 (k) (γ + ηy3 (k))



 .
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5.1 Synchronization of the Lorenz discrete time system and the discrete-
time Rössler system in 3D

In this case, the scaling matrices are chosen as

Θ =





2 0 0
0 1 0
0 0 3



 , Φ =





1 2
2 3
1 1



 ,

so,

Θ−1 =





1
2 0 0
0 1 0
0 0 1

3



 .

The control matrix L1 is selected as

L1 =





3α
4 2βγ −β
0 4δ

5 ς
ηθ (1− γ) −2γη 0



 . (14)

Using simple calculations, we can show that (B − L1)
T (B − L1) − I is a negative

definite matrix. According to our approach presented in Section 3, the vector controller
U = (u1, u2, u3)

T
can be obtained as

u1 = −α

8
e1 (k)− αy1 (k)− 2βγy2 (k) + βγ (15)

+βy3 (k)− 2βy3 (k) y2 (k) + αy21 (k)

+
1

2
(1 + ab)x1 (k)−

1

2
bx1 (k)x2 (k) ,

u2 = − δ

5
e2 (k)− δy2 (k)− ςy3 (k) + δy22 (k)

+3 (1− b)x2 (k) + bx2
1 (k) ,

u3 = −η

3
e3 (k)− ηθ (1− γ) y1 (k) + 2γηy2 (k)− ηy3 (k)

+ηy3 (k) (θy1 (k) + 2y2 (k))− 2θy1 (k) y2 (k) (γ + ηy3 (k))

+
1

3
(1 + ab)x1 (k)−

b

3
x1 (k)x2 (k) +

1

3
(1− b)x2 (k) +

b

3
x2
1 (k)

−η (γ − 1) ,

where e1 (k) = 2y1 (k)− x1 (k)− 2x2 (k) , e2 (k) = y2 (k)− 2x1 (k)− 3x2 (k) and e3 (k) =
3y3 (k)− x1 (k)− x2 (k) . Therefore, the systems (12) and (13) are globally synchronized
in 3D, with respect to the scaling matrices Θ and Φ. In this case, the error system can
be described as: e1 (k + 1) = α

4 e1 (k) , e2 (k + 1) = δ
5e2 (k) and e3 (k + 1) = ηe3 (k) . The

time evolution of errors e1(k), e2(k) and e3(k) between the maps (12) and (13) in 3D is
shown in Figure 1.

5.2 Synchronization of the Lorenz discrete time system and the discrete-
time Rössler system in 2D

In this case, the scaling matrices are chosen as

Θ =

(

2 0 1
0 4 1

)

, Φ =

(

2 0
1 3

)

,
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Figure 1: Time evolution of errors e1(k), e2(k) and e3(k) between the maps (12) and (13) in
3D.

so,

Θ̂ =

(

2 0
0 4

)

, Θ̂−1 =

(

1
2 0
0 1

5

)

.

The control matrix L2 is selected as

L1 =

(

1 0
0 1

)

. (16)

Simply, we can see that all eigenvalues of A − L2 are strictly inside the unit
disk. According to the control scheme proposed in Section 4, the vector controller
U = (u1, u2, u3)

T
can be designed as follows

u1 =
1

2
abe1 (k)−

1

2
η ((y3 (k) + γ) (1− 2y2 (k))− 1) (1− θy1 (k)) (17)

−αy1 (k) (1− y1 (k)) + β (y3 (k) + γ) (1− 2y2 (k))

+ (1 + ab)x1 (k)−
1

2
bx1 (k)x2 (k) ,
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u2 = −1

5
be2 (k)−

1

5
η ((y3 (k) + γ) (1− 2y2 (k))− 1) (1− θy1 (k))

−4
1

5
δy2 (k) (1− y2 (k))−

1

5
ςy3 (k) +

1

5
(1 + ab)x1 (k)

−1

5
bx1 (k)x2 (k) +

1

5
3 (1− b)x2 (k) +

1

5
3bx2

1 (k) ,

u3 = 0,

where e1 (k) = 2y1 (k) + y3 (k)− 2x1 (k) and e2 (k) = 4y2 (k) + y3 (k)− x1 (k)− 3x2 (k) .
Therefore, the systems (12) and (13) are globally synchronized in 2D, with respect to the
scaling matrices Θ and Φ. In this case, the error system can be written as: e1 (k + 1) =
abe1 (k) and e2 (k + 1) = −be2 (k) . The time evolution of errors e1(k) and e2(k) between
the maps (12) and (13) in 2D is shown in Figure 2.

Figure 2: Time evolution of errors e1(k) and e2(k) between the maps (12) and (13) in 2D.

6 Conclusion

In this paper, the Θ − Φ synchronization was proposed to synchronize n-dimensional
drive system and m-dimensional response system. To derive new results, two control
schemes were proposed using two constants scaling matrices Θ and Φ. The first scheme
was presented when the synchronization dimension d = m, (Θ − Φ synchronization in
m-D) and the second one was constructed when the synchronization dimension d = n,
(Θ−Φ synchronization in n-D). Numerical example and simulation results were used to
verify the effectiveness of the proposed schemes.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (4) (2015) 400–408 407

References

[1] Fu, S.H. and Pei, L.J. Synchronization of chaotic systems by the generalized hamiltonian
systems approach. Nonlinear Dynamics and Systems Theory 10 (4) (2010) 387–396.

[2] Vincent, U. E. and Guo, R. Adaptive synchronization for oscillators in φ6 potentials. Non-
linear Dynamics and Systems Theory 13 (1) (2013) 93–106.

[3] Olusola, O.I., Vincent, U.E., Njah, A.N. and Idowu, B.A. Global stability and synchroniza-
tion criteria of linearly coupled gyroscope. Nonlinear Dynamics and Systems Theory 13 (3)
(2013) 258–269.

[4] Khan, A. and Pal, R. Adaptive hybrid function projective synchronization of Chaotic Space-
Tether System. Nonlinear Dynamics and Systems Theory 14 (1) (2014) 44–57.

[5] Ouannas, A. Chaos synchronization approach based on new criterion of stability. Nonlinear
Dynamics and Systems Theory 14 (4) (2014) 395–401.

[6] Ojo, K.S., Njah, A.N., Ogunjo, S.T. and Olusola, O.I. Reduced order function projective
combination synchronization of three Josephson functions using backstepping technique.
Nonlinear Dynamics and Systems Theory 14 (2) (2014) 119–133.

[7] Aguilar–Bustos, A.Y., Cruz–Hernández, C., Lopez–Gutierrez, R.M. and Posadas–Castillo,
C. Synchronization of different hyperchaotic maps for encryption. Nonlinear Dynamics and
Systems Theory 8 (3) (2008) 221–236.

[8] Aguilar-Bustos, A. Y. y C. Cruz Hernandez. Synchronization of discrete-time hyperchaotic
systems: An apllication in communications. Chaos, Solitons and Fractals 41 (3) (2009)
1301–1310.
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Abstract: Based on the general Struble’s technique, a simple analytical technique
has been presented to investigate nonlinear oscillations of an elastic pendulum. The
method is illustrated by swinging spring pendulum in the resonance cases (frequencies
ratio is equal to 1 : 2). Solutions not only show a good coincidence with the corre-
sponding numerical solution but also give better result than multiple scales (MS)
method.
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1 Introduction

Struble’s technique [1], Krylov-Bogoliubov-Mitropolskii (KBM) method [2, 3], multiple
time-scales method [4] are usually applied to determine the approximation solutions
of weakly nonlinear differential equations. Popov [5] extended the KBM method to
a damped system. Bojadziev [6] studied second order nonlinear system with strong
damping effect by the two time scales method and justified that the solution is similar
to that obtained by Popov [5]. Sometimes, all classical perturbation techniques [1–3]
are useless to solve some nonlinear differential equations. In this regard, Shamsul [7]
presented a general Struble’s techniques to determine approximate solution of n-th order
weakly non-linear differential systems. It is easy to apply the general Struble’s technique
to solve nonlinear differential equations with various damping effect.
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In this paper, we have partially used this method [7] to solve nonlinear oscillations
of elastic pendulum, in which the internal resonance occurs. In particular, a swinging
spring pendulum without or with damping force has been investigated. Earlier Gorelik
and Witt [8] studied this nonlinear oscillator in the case without damping. Then Kane
and Kahn [9] studied the character of resonant case. Some authors studied similar type
of swinging spring by the method of averaging [4, 10–12]. Latter, Nayfeh and Mook
[13] studied two-degree-of freedom system by multiple scales (MS) method. Zaripov and
Petrov [14]; Awrejcewicz and Petrov [15] investigated a spring type swinging pendulum
in the resonance case by using Poincare–Birkhoff normal form method. Recently, some
authors [16–19] have studied nonlinear differential equations. The solution obtained by
the presented method is not only a better result than that by MS method [13] but also
shows a nice coincidence with the corresponding numerical solution.

2 The Method

Consider a nonlinear oscillator of two degree-of-freedoms with strong damping effect

ẍ+ 2k1ẋ+ ω2
1x = εf(x, θ, ẋ, θ̇), (1)

θ̈ + 2k2θ̇ + ω2
2θ = εΦ(x, θ, ẋ, θ̇), (2)

where over dot denotes the derivatives with respect to t, ω1, ω2 ≥ 0, k1, k2, ν are
constants, ε denotes small parameter, ω1 and ω2 are natural frequency, f(x, θ, ẋ, θ̇) and
Φ(x, θ, ẋ, θ̇) are nonlinear functions.

When ε = 0, equations (1)–(2) become a linear equation and there are two eigenvalues
of that two equations, say λ1 = −k1 + iω∗

1 , λ2 = −k1 − iω∗
1 , where ω

∗
1 =

√

ω2
1 − k21 and

µ1 = −k2 + iω∗
2 , µ2 = −k2 − iω∗

2 , where ω
∗
2 =

√

ω2
2 − k22 , respectively.

On the other hand when ε 6= 0, the first approximation solution of equations (1)–(2)
is chosen in the form [7]

x = a1e
λ1t + a2e

λ2t + εu1 (3)

and
θ = b1e

µ1t + b2e
µ2t + εv1. (4)

Equations (1)–(2) can be rewritten in the following form:

(D − λ1)(D − λ2)x = εf, (5)

(D − µ1)(D − µ2)θ = εΦ. (6)

Substituting equations (3)–(4) into equations (5)–(6), we obtain the following results,
respectively as

(D − λ1)(D − λ2)(a1e
λ1t + a2e

λ2t + ε u1) = εf

or
(D − λ2)(ȧ1 e

λ1t) + (D − λ1)(ȧ2 e
λ2t) + (D − λ1)(D − λ2)(εu1) = εf ; (7)

(D − µ1)(D − µ2)(b1e
µ1t + b2e

µ2t + εv1) = εΦ

or
(D − µ2)(ḃ1 e

µ1t) + (D − µ1)(ḃ2 e
µ2t) + (D − µ1)(D − µ2)(εv1) = εΦ, (8)

since (D − λ1)(a1 e
λ1t) = ȧ1 e

λ1t, (D − λ2)(a2 e
λ2t) = ȧ2 e

λ2t, (D − µ1)(b1 e
µ1t) = ḃ1 e

µ1t

and (D − µ2)(b2 e
µ2t) = ḃ2 e

µ2t.
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Herein the nonlinear functions f and Φ can be expanded in a Taylor series as

f =

∞, ∞
∑

m1=0, m2=0

Fm1,m2
e(m1λ1+m2λ2)t, Φ =

∞, ∞
∑

r1=0, r2=0

Φr1,r2e
(r1µ1+r2µ2)t

and the unknown functions u1 and v1 can be obtained in terms of the variables a1, a2 and
t; b1, b2 and t under the condition that u1 and v1 exclude the terms Fm1,m2

e(m1λ1+m2λ2)t

of f and Φr1,r2e
(r1µ1+r2µ2)t of Φ where, m1 − m2 = ±1 and r1 − r2 = ±1. On the

other hand, both ȧ1 and ȧ2 respectively, contain the terms Fm1,m2
e(m1λ1+m2λ2)t where

m1−m2 = 1 and m1−m2 = −1. This assumption takes u1 free from secular terms, i.e.,
t cos t, t sin t. Similarly, both ḃ1 and ḃ2 respectively contain the terms Φr1,r2e

(r1µ1+r2µ2)t

where r1 − r2 = 1 and r1 − r2 = −1. This assumption makes v1 free from secular terms.
Now, separating equation (7) into three parts for ȧ1, ȧ2 and u1 we get

(D − λ2)(ȧ1 e
λ1t) =

∞, ∞
∑

m1=0, m2=0

Fm1,m2
e(m1λ1+m2λ2)t, m1 −m2 = 1, (9)

(D − λ1)(ȧ2 e
λ2t) =

∞, ∞
∑

m1=0, m2=0

Fm1,m2
e(m1λ1+m2λ2)t, m1 −m2 = −1, (10)

(D − λ1)(D − λ2)u1 =

∞, ∞
∑

m1=0, m2=0

Fm1,m2
e(m1λ1+m2λ2)t, m1 −m2 6= ±1. (11)

Similarly, separating equation (8) into three parts for ḃ1, ḃ2 and p1 we get

(D − µ2)(ḃ1 e
µ1t) =

∞, ∞
∑

r1=0, r2=0

Φr1,r2e
(r1µ1+r2µ2)t, r1 − r2 = 1, (12)

(D − µ1)(ḃ2 e
µ2t) =

∞, ∞
∑

r1=0, r2=0

Φr1,r2e
(r1µ1+r2µ2)t, r1 − r2 = −1, (13)

(D − µ1)(D − µ2)v1 =

∞, ∞
∑

r1=0, r2=0

Φr1,r2e
(r1µ1+r2µ2)t, r1 − r2 6= ±1. (14)

Under transformation a1 = a
2 e

iϕ1 , a2 = a
2 e

−iϕ1 , b1 = b
2 e

iϕ2 , b2 = b
2 e

−iϕ2 , equations
(9)–(14) are transformed to amplitude and phase equations. On the other hand, this
transformation keeps u1 and v1 in an amplitude and phase form. Therefore, the first
approximate solution is clearly found.

3 Example

Consider a swinging spring pendulum with damping force whose governing equation [4]
is given by

ẍ+ δ1ẋ+
k

m
x+ g(1− cos θ) − (l + x)θ̇2 = 0, (15)

θ̈ + δ2θ̇ +
g

l + x
sin θ +

2

l+ x
ẋθ̇ = 0, (16)
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where l is a length of swinging spring, ω2
1 = k

m ≈ 4ω2
2 = 4g

l and k is constant.
If x≪ l, then equations (15) and (16) become

ẍ+ 2k1ẋ+ ω2
1x+ ω2

2 θ
2 l/2− l θ̇2 = 0, (17)

θ̈ + 2k2θ̇ + ω2
2θ − ω2

2 x θ/l + 2 ẋ θ̇/l = 0. (18)

Substituting x = εx and θ = εθ in equations (17)–(4) , we obtain

ẍ+ 2k1ẋ+ ω2
1 x = −εω2

2 θ
2l/2 + εl θ̇2, (19)

θ̈ + 2k2θ̇ + ω2
2θ = εω2

2xθ/l − 2εẋθ̇/l, (20)

where δ1 = 2k1, δ2 = 2k2.
Equations (19)–(20) can be written as

(D − λ1)(D − λ2)x = −ε(ω2
2 θ

2l/2− l θ̇2), (21)

(D − µ1)(D − µ2)θ = εω2
2xθ/l − 2εẋθ̇/l. (22)

When ε = 0, equation (21) becomes a linear equation and there are two eigenvalues, say
λ1 = −k1 + iω∗

1 , λ2 = −k1 − iω∗
1 , where ω

∗
1 =

√

ω2
1 − k21 and x = a1e

λ1t + a2e
λ2t + εu1;

θ = b1e
µ1t + b2e

µ2t + εp1; and

f = −(ω2
2θ

2l/2− lθ̇2) = −lω2
2b

2
1e

2µ1t/2− lω2
2b

2
2e

2µ2t/2− 2lb1b2ω
2
2e

(µ1+µ2)t/2

+ lb21µ
2
1e

2µ1t + 2lb1b2µ1µ2e
(µ1+µ2)t + lb22µ

2
2e

2µ2t + · · ·

Therefore, equation (21) becomes

(D − λ2)(ȧ1e
λ1t) + (D − λ1)(ȧ2e

λ2t) + ε(D − λ1)(D − λ2)u1

= −εlω2
2b

2
1e

2µ1t/2− εlω2
2b

2
2e

2µ2t/2− 2εlb1b2ω
2
2e

(µ1+µ2)t/2

+ εlb21µ
2
1e

2µ1t + 2εlb1b2µ1µ2e
(µ1+µ2)t + εlb22µ

2
2e

2µ2t + · · · ,
(23)

It is mentioned that λ1 = −k1 + iω∗
1 , λ2 = −k1 − iω∗

1 , µ1 = −k2 + iω∗
2 , µ2 = −k2 − iω∗

2

in the case of under-damped systems. For the resonance case, we have used ω∗
1 ≈ 2ω∗

2 .
Since eλ1t and e2µ1t contain eiω

∗

1
t, we equate the terms with eλ1t and e2µ1t of equation

(23). In a similar way, we equate the terms with eλ2t and e2µ2t of equation (23). On the
other hand, u1 contains the term e(µ1+µ2)t.

Now, separating equation (23) into three parts for ȧ1, ȧ2 and u1 we get (see paper
[7])

(D − λ2)(ȧ1e
λ1t) = −εlω2

2b
2
1e

2µ1t/2 + εlb21µ
2
1e

2µ1t, (24)

(D − λ1)(ȧ2e
λ2t) = −εlω2

2b
2
2e

2µ2t/2 + εlb22µ
2
2e

2µ2t, (25)

and

(D − λ1)(D − λ2)u1 = −lω2
2b1b2e

(µ1+µ2)t + 2lb1b2µ1µ2e
(µ1+µ2)t. (26)

From equation (24), we obtain

ȧ1e
λ1t = −εlω

2
2b

2
1e

2µ1t

2(D − λ2)
+
εlb21µ

2
1e

2µ1t

(D − λ2)
= εlb21

(

µ2
1 −

ω2
2

2

)

e2µ1t/(2µ1 − λ2). (27)
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Equation (27) can be written as

ȧ1 = εlb21

(

µ2
1 −

ω2
2

2

)

e(2µ1−λ1)t/(2µ1 − λ2). (28)

Substituting a1 = a
2 e

iϕ1 , a2 = a
2 e

−iϕ1 , b1 = b
2e

iϕ2 , b2 = b
2e

−iϕ2 , λ1 = −k1 + iω∗
1 ,

λ2 = −k1 − iω∗
1 , and µ1 = −k2 + iω∗

2 , µ2 = −k2 − iω∗
2 into equation (28), we obtain

(ȧ+ iaϕ̇1)/2 =
εlb2(2(−k2 + iω∗

2)
2 − ω2

2)e
(2(−k2+iω∗

2
)−(−k1+iω∗

1
))t+2iϕ2−iϕ1

8(2(−k2 + iω∗
2)− (−k1 − iω∗

1))

=
εlb2e(k1−2k2)t

4((k1 − 2k2)2 + (2ω∗
2 + ω∗

1)
2)

[(4k22 − 3ω2
2)(k1 − 2k2)− 4k2ω

∗
2(2ω

∗
2 + ω∗

1)

− i(4k2ω
∗
2(k1 − 2k2) + (4k22 − 3ω2

2)(2ω
∗
2 + ω∗

1))]e
iγ ,

(29)
where γ = (2ω∗

2 − ω∗
1)t+ 2ϕ2 − ϕ1.

Separating the real and imaginary parts from both sides of equation (29), we obtain

ȧ =
εlb2e(k1−2k2)t

4((k1 − 2k2)2 + (2ω∗
2 + ω∗

1)
2)
[(4k22 − 3ω2

2)(k1 − 2k2)− 4k2ω
∗
2(2ω

∗
2 + ω∗

1) cos γ

+ (4k2ω
∗
2(k1 − 2k2) + (4k2

2
− 3ω2

2)(2ω
∗
2 + ω∗

1)) sin γ],

(30)

ϕ̇1 =
εlb2e(k1−2k2)t

4a((k1 − 2k2)2 + (2ω∗
2 + ω∗

1)
2)
[(4k2

2
− 3ω2

2)(k1 − 2k2)− 4k2ω
∗
2(2ω

∗
2 + ω∗

1) sin γ

− (4k2ω
∗
2(k1 − 2k2) + (4k22 − 3ω2

2)(2ω
∗
2 + ω∗

1)) cos γ].

(31)

Similarly, equation (22) becomes

(D − µ1)(ḃ2e
µ2t) + (D − µ2)(ḃ1e

µ1t) + ε(D − µ1)(D − µ2)v1

= εω2
2(a1b1e

(λ1+µ1)t + a1b2e
(λ1+µ2)t + a2b1e

(λ2+µ1)t

+ a2b2e
(λ2+µ2)t)/l− 2ε(a1b1λ1µ1e

(λ1+µ1)t + a1b2λ1µ2e
(λ1+µ2)t

+ a2b1λ2µ1e
(λ2+µ1)t + a2b2λ2µ2e

(λ2+µ2)t)/l.

(32)

Herein we have used ȧ1 = 0, ḃ1 = 0.
Applying the separation rule to equation (32), we obtain the following equations for

ḃ1, ḃ2 and v1

(D − µ2)(ḃ1e
µ1t) = εω2

2a1b2e
(λ1+µ2)t/l− 2ε a1b2λ1µ2e

(λ1+µ2)t/l, (33)

(D − µ1)(ḃ2e
µ2t) = εω2

2a2b1e
(λ2+µ1)t/l− 2ε a2b1λ2µ1e

(λ2+µ1)t/l (34)

and
(D − µ1)(D − µ2)v1 = (ω2

2a1b1e
(λ1+µ1)t + ω2

2a2b2e
(λ2+µ2)t)/l

− 2(a1b1λ1µ1e
(λ1+µ1)t + 2a2b2λ2µ2e

(λ2+µ2)t)/l
(35)

From equation (33), we obtain

ḃ1e
µ1t =

εω2
2a1b2e

(λ1+µ2)t

l(D − µ2)
− 2ε a1b2λ1µ2e

(λ1+µ2)t

l(D − µ2)

=
εω2

2a1b2e
(λ1+µ2)t

lλ1
− 2ε a1b2λ1µ2e

(λ1+µ2)t

lλ1
.

(36)
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From equation (36), we obtain

ḃ1 =
εω2

2a1b2e
(λ1+µ2−µ1)t

lλ1
− 2ε a1b2λ1µ2e

(λ1+µ2−µ1)t

lλ1
. (37)

Using a transformation a1 = a
2 e

iϕ1 , a2 = a
2 e

−iϕ1 , b1 = b
2e

iϕ2 , b2 = b
2e

−iϕ2 for equation
(37), we obtain

ḃ+ ibφ̇2 =
εabe−k1t

2lω2
1

[(2ω2
1k2 − ω2

2k1) + i(2ω2
1ω

∗
2 − ω2

2ω
∗
1)] e

−iγ , (38)

where γ = (2ω∗
2 − ω∗

1)t+ 2ϕ2 − ϕ1.
Separating the real and imaginary parts from both sides of equation (38), we obtain

ḃ =
ε a be−k1t

2lω2
1

[(2ω2
1k2 − ω2

2k1) cos γ + (2ω2
1ω

∗
2 − ω2

2ω
∗
1) sin γ], (39)

ϕ̇2 =
ε a e−k1t

2lω2
1

[(2ω2
1ω

∗
2 − ω2

2ω
∗
1) cos γ − (2ω2

1k2 − ω2
2k1) sin γ]. (40)

Therefore, the first approximate solution of equations (15)–(16) becomes

x = εae−k1t cos(ω1t+ ϕ1) +O(ε2), (41)

θ = εbe−k2t cos(ω2t+ ϕ2) +O(ε2). (42)

If the damping force is absent i.e. k = 0, then equations (30)–(31) and (39)–(40) become

ȧ = −3εlb2ω2
2 sinψ/(4(2ω2 + ω1)), (43)

ϕ̇1 = 3εlb2ω2
2 cosψ/(4a(2ω2 + ω1)), (44)

and

ḃ =
εabω2(2ω1 − ω2) sinψ

2lω1
, (45)

ϕ̇2 =
εaω2(2ω1 − ω2) cosψ

2lω1
, (46)

where ψ = (2ω2 − ω1)t+ 2ϕ2 − ϕ1.
In this case (undamped), the first approximate solution of equations (15)–(16) is

x = εa cos(ω1t+ ϕ1) +O(ε2), (47)

θ = εb cos(ω2t+ ϕ2) +O(ε2). (48)

4 Results and Discussion

Usually a nonlinear problem is solved by a perturbation method [5, 20–23]. In this paper,
a simple analytical technique has been developed based on the general Struble’s technique
[7] to investigate nonlinear oscillations of an elastic pendulum. The technique is very easy
and straightforward. Nonlinear oscillations of the swinging spring pendulum in the case
of resonance ω1 : ω2 = 1 : 2 have been considered. The solutions have been obtained
without and with damping effect and presented respectively in Figure 1 and Figure 3.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (4) (2015) 409–417 415

On the other hand, the corresponding perturbation solutions have been obtained by MS
method and shown in Figure 2 and Figure 4. To compare our solution with existing
perturbation solutions, we have provided the numerical solutions in all the figures.

From Figure 2 and Figure 4, we see that the solutions by MS method deviate from
numerical solution after a certain time. On the other hand, our solutions (see Figures 1,
3) show a good coincidence with the numerical solutions.

Comparing all the results of swinging spring pendulum in the case of resonance ω1 :
ω2 = 1 : 2, we observe that the general Struble’s technique provides more correct solution
than other perturbation solutions especially those obtained by the multiple time scale
method [13].

5 Conclusion

Based on the general Struble’s technique [7], a simple analytical technique has been
presented to investigate nonlinear oscillations of an elastic pendulum in which damping
effect is present. Nonlinear oscillations of the swinging spring pendulum with or without
damping effect in the case of resonance are considered. Previously, some authors (see
[9, 14–15]) investigated swinging spring pendulum without damping effect. On the other
hand, some perturbation methods especially MS methods are not suitable to investigate
nonlinear oscillations of elastic pendulum. In this paper, a simple perturbation method
has been presented and has given better result than MS method. The method also
provides a good result compared to the numerical solution (considered to exact).

Fig 1: Solution of equations (15) and (16) obtained by the presented method has been
presented (denoted by dots) when k1 = k2 = 0, , ω2 = 0.5ω1, l = 1, ε = 0.1 with initial
conditions [x(0) = 1, ẋ(0) = 0, θ(0) = 0.1, θ̇(0) = 0]. Corresponding numerical solution
(obtained by fourth-order Runge-Kutta method) has been presented (represented by solid
line) to be compared with the present solution.

Fig 2: Solution of equations (15) and (16) obtained by MS method has been presented
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(denoted by dots) when k1 = k2 = 0, ω2 = 0.5ω1, l = 1, ε = 0.1 with initial conditions
[x(0) = 1, ẋ(0) = 0, θ(0) = 0.1, θ̇(0) = 0]. Corresponding numerical solution (obtained
by fourth-order Runge-Kutta method) has been presented (represented by solid line) to
be compared with MS method solution.

Fig 3: Solution of eqations (30) and (31) by the present method has been presented
(denoted by dots) when ω2 = 0.5ω1,l = 1, ε = 0.1,k1 = δ1/2 = 0.002, k2 = δ2/2 = 0.002
and the initial conditions [x(0) = 1, ẋ(0) = 0, θ(0) = 0.1, θ̇(0) = 0]. Corresponding
numerical solution (obtained by fourth-order Runge-Kutta method) has been presented
(represented by solid line) to be compared with the present solution.

Fig 4: Solution of eqations (30) and (31) by MS method has been presented (denoted
by dots) when ω2 = 0.5ω1,l = 1, ε = 0.1,k1 = δ1/2 = 0.002, k2 = δ2/2 = 0.002 and the
initial conditions [x(0) = 1, ẋ(0) = 0, θ(0) = 0.1, θ̇(0) = 0]. Corresponding numerical so-
lution (obtained by fourth-order Runge-Kutta method) has been presented (represented
by solid line) to be compared with MS method solution.

References

[1] Struble, R. A. The geometry of the orbits of artificial satellities. Arch. Rational Mech. Anal.
7 (1961) 87–104.

[2] Krylov, N. N. and Bogoliubov, N. N. Introduction to Nonlinear Mechanics. Princeton Uni-
versity Press, New Jersey, 1947.

[3] Bogoliubov, N. N. and Mitropolskii, Yu. A. Asymptotic Methods in the Theory of Non-linear
Oscillations. Gordan and Breach, New York, 1961.

[4] Nayfeh, A. H. Perturbation Methods. John Wiley & Sons, New York, 1973.

[5] Popov, I. P. A generalization of the Bogoliubov asymptotic method in the theory of non-
linear oscillation. Dokl. Akad. Nauk. SSSR 111 (1956) 308–310.

[6] Bojadziev, G. N. Two variables expansion method applied to the study of damped nonlinear
oscillations. Nonlinear Vib. Probl. 21 (1981) 11–18.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (4) (2015) 409–417 417

[7] Shamsul Alam, M., Azad, M. A. K., and Haque, M. A. A general Struble’s technique for
solving an n-th order weakly nonlinear differential system with damping. Int. J. Nonlinear
Mech. 41 (2006) 905–918.

[8] Gorelik, G. and Witt, A. Swing of an elastic pendulum as an example of two parametrically
bound linear vibration systems. J. Tech. Phys. (USSR) 3 (1933) 244–307.

[9] Kane, T. R. and Kahn, M. E. On a class of two-degree-of-freedom oscillations. J. Appl.
Mech. 35 (1968) 547–552.

[10] Mettler, E. Stabilitatsfragen bei freien Schwingungen mechanischer Systeme. Ingenieur-
Archiv. 28 (1959) 213–228.

[11] Sethna, P. R. Vibrations of dynamical systems with quadratic nonlinearities. J. Appl. Mech.
32 (1965) 576–582.

[12] Bogaevskii, V. N. and Povzner, A. Y. Algebraic Methods in Non-linear Theory of Pertur-
bation. Nauka, Moscow, 1987.

[13] Nayfeh, A. H. and Mook, D. T. Nonlinear Oscillations. John Wiley & Sons, New York,
1979.

[14] Zaripov, M.N. and Petrov, A. G. Nonlinear oscillations of a swinging spring. Doklady
Physics 49 (2004) 691–696.

[15] Awrejcewicz, J. and Petrov, A. G. Nonlinear oscillations of an elastic two-degrees-of-
freedom pendulum. Nonlinear Dyn. 53 (2008) 19–30.

[16] Desale, B. S. and Dasre, N. R. Numerical solutions of system of non-linear ODEs by Euler
modified method. Nonlinear Dynamics and Systems Theory 12 (3) (2012) 215–236.

[17] Tunc, C. Instability for nonlinear differential equations of fifth order subject to delay.
Nonlinear Dynamics and Systems Theory 12 (2) (2012) 207–214.

[18] Denk, A. and Topal, S. Existence and uniqueness of a nontrivial solution for second order
nonlinear m-point eigenvalue problems on time scales. Nonlinear Dynamics and Systems
Theory 13 (4) (2013) 389–399.

[19] Korkmaz, E. and Tunc. C. On the convergence of solutions of some nonlinear differential
equations of fourth order. Nonlinear Dynamics and Systems Theory 14 (4) (2014) 313–322.

[20] Bojadziev, G. N. Damped nonlinear oscillations modeled by a 3-dimensional differential
system. Acta Mech. 48 (1983) 193–201.

[21] Osiniskii, Z. Longitudinal, torsional and bending vibrations of a uniform bar with nonlinear
internal friction and relaxation. Nonlinear Vib. Probl. 4 (1962) 159–166.

[22] Mulholland, R. J. Nonlinear oscillations of third-order differential equation. Int. J. Nonlin-
ear Mech. 6 (1971) 279–294.

[23] Murty, I. S. N., Deekshatulu, B. L., and Krisna, G. On asymptotic method of Krylov-
Bogoliubov for over damped nonlinear systems. J. Franklin Inst. 288 (1969) 49–64.



Nonlinear Dynamics and Systems Theory, 15 (4) (2015) 418–427

Mathematical Analysis in a Model of Primary

Succession

R.V. Ruzich ∗

Department of Applied Mathematics and Social Informatics, Khmelnitsky National University,
Khmelnitsky, Ukraine

Received: October 29, 2014; Revised: June 24, 2015

Abstract: This paper is concerned with a long-term ecological primary succession.
The model of open Eigen’s hypercycle has been used for modeling of the process. The
multi-dimension case is analyzed. It is shown that consideration of system’s dynamics
can be simplified by partial reduction to the cases of lower dimension. The dynamics
of ecological system can be considered as a self-organizing process with quasi-discrete
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the system, that produce step-by-step changing of system’s structure.
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1 Introduction

Since the second half of the 20th century, illusion of happiness with regard to the de-
velopment of a technocratic society disappears, while the number and severeness of the
ecological crises increase. At this time researchers began to pay more attention to the
study of ecological processes [2, 7, 17, 25, 26, 30].

The main object of the study is biogeocoenosis (as a collection of fauna and flora
that exist in some area), and in particular a succession that takes place in it. In classical
ecological theory there are two main types of succession: primary and secondary succes-
sion [26]. Note that a lot of works [5,15,19,21,28] are concerned with the mathematical
modeling of the second type of ecological process. As to the first type, the works are
mostly descriptive, of non-formalized character [12,24,27]. In this paper we examine the
behavior of ecological systems during primary succession.
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Ecological processes (including the succession) are complex and characterized by os-
cillating processes, processes of self-organization, abrupt change of the mode of a sys-
tem, the effects of histereses and others. The experience of using linear models showed
that they can not adequately describe the behavior of real systems, but only reflect
some common trends. Often the stochastic models are used to describe succession pro-
cesses [1, 12, 20, 22, 23]. The basic parameter that determines the dynamics of biogeo-
coenosis in such models is the probability of transition. It represents probability of some
association to become dominant. Such approach can be useful for simulation of system
dynamics, but does not reflect driving forces of the process.

Another tool that is used to describe the succession are differential equations, in par-
ticular of the Volltarian type [8, 29]. In such models competition between associations
is considered as the basic driving force of ecological process. Note that quite a number
of researchers adhere this point of view [16, 25, 26]. However, these models have several
weaknesses: they do not reflect the interaction between biotic elements and inert com-
ponents of the ecosystem; it is possible that associations do not compete, but reach the
optimum number. These flaws can be corrected by using a special modification (called an
“open hypercycle” [10]) of the famous Eigen hypercycle [14] for description of primary
successions. This model is similar,but not equivalent to Lotka-Volterra models of the
competition or is of the “predator-prey” type.

2 The Model

Let us consider the behavior of biological associations x (t) = (x1 (t) , ..., xn (t)) that is
described by the model of open Eigen’s hypercycle:

dxi

dt
=



Fi (t)−
1

S0

n
∑

j=0

xjFj (t)



xi, i = 1, n, (1)

where S0 is a capacity of environment (size of ecological niche), S0 > 0.
Suppose that the coefficients of propagation and interaction between associations are

defined by Allen’s functions:

Fi (t) = ai−1xi−1 (t)− xi (t) , i = 1, n,

here a1 > 0, i = 1, n− 1, x0 = 1, a0 = N ; N is a coefficient which determines the
equilibrium size of the first association, when it develops alone; a1 is a coefficient which
describes a level of dependence of the (i+ 1)th association on the previous one, i =
1, n− 1. Allen’s functions reflect the nature of the relationship between associations
where associations are included into a system at certain level of development of stagnant
environment.

3 The Jacobi Matrix

The structure of a Jacobi matrix row of system (1) can be represented as

f1 . . . f1
︸ ︷︷ ︸

m

f2 . . . f2
︸ ︷︷ ︸

l

f3 f4 . . . f4
︸ ︷︷ ︸

d

, (2)

where f1 = −xiS
−1
0 (ak−1xk−1 − 2xk + akxk+1),
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f2 = ai−1xi − xiS
−1
0 (ai−2xi−2 − 2xi−1 + ai−1xi),

f3 =















ai−1xi−1 − 2xi − S−1
0

∑n

j=1

(

aj−1xj−1xj − x2
j

)

−
−xiS

−1
0 (ai−1xi−1 − 2xi + aixi+1) , k < n;

ai−1xi−1 − 2xi − S−1
0

∑n

j=1

(

aj−1xj−1xj − x2
j

)

− xiS
−1
0 (ai−1xi−1 − 2xi) ,

k = n;

f4 =

{

−xiS
−1
0 (ak−1xk−1 − 2xk + akxk+1) , k < n;

−xiS
−1
0 (ak−1xk−1 − 2xk) , k = n;

m = ϕ (i− 2), l =

{

1, i > 1;
0, i = 1;

, d = n−m − l − 1, ϕ (x) =

{

x, x ≥ 10;
0, x < 0;

, k, i are a

number of column and a row of the Jacobi matrix respectively, k = 1, n, i = 1, n.

Theorem 3.1 If the coordinate xp of a stationary point is zero, then one of eigen-

values of the Jacobi matrix of the system (1) at this stationary point can be calculated

as

ap−1xp−1 − S−1
0

n
∑

j=1

(

aj−1xj−1xj − x2
j

)

, (3)

if xp−1 is not zero or p = 1. Otherwise the eigenvalue equals

− S−1
0

n
∑

j=1

(

aj−1xj−1xj − x2
j

)

. (4)

Proof. If some coordinate xp of the stationary point is zero, than row p of the Jacobi
matrix can be written as (taking into account (2))

0 . . . 0
︸ ︷︷ ︸

p−1

ap−1xp−1 − S−1
0

n
∑

j=1

(

aj−1xj−1xj − x2
j

)

0 . . . 0
︸ ︷︷ ︸

n−p

.

Write the characteristic equation of this matrix

|J − ΛI| = 0,

here I is an identity matrix, Λ is a matrix of eigenvalues, J is the Jacobi matrix.
Expanding the determinant in algebraic complement to the row p, we find that the

eigenvalues are computed as
[

λ = ap−1xp−1 − S−1
0

∑n

j=1

(

aj−1xj−1xj − x2
j

)

,

Ap = 0,

here Ap is determinant of minor on diagonal item of row p. Apparently if xp−1 = 0, then

λ = −S−1
0

n
∑

j=1

(

aj−1xj−1xj − x2
j

)

.

Thus, the theorem is proved. ✷

Considering the set of stationary points of the model of open Eigen’s hypercycle
one can see that there is a subset of points whose first coordinates are equal to the
corresponding coordinates of stationary points of lower dimension model and all the
other (the last) coordinates are zero. These stationary points are called the “points-
descendants”.
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Theorem 3.2 n − 1 eigenvalues of the Jacobi matrix at the “points-descendants”

of n-dimensional model of open Eigens hypercycle are the same as at the corresponding

stationarity points of (n− 1)-dimensional model, and the last one is calculated as

an−1xn−1 − S−1
0

n
∑

j=1

(

aj−1xj−1xj − x2
j

)

. (5)

Proof. According to Theorem 3.1 one eigenvalue of the Jacobi matrix of system (1)
at the “point-descendant” equals

an−1xn−1 − S−1
0

n
∑

j=1

(

aj−1xj−1xj − x2
j

)

.

Consider the (n−1)×(n−1) cell of Jacobi matrix (which is the algebraic complement
of the matrix). From the analysis of the formula (2) it is obvious that the cell of Jacobi
matrix, that contains the first n− 2 rows and n− 2 cells, is not different from the general
case. The elements of the main diagonal are calculated as

ai−1xi−1 − 2xi − S−1
0

∑n

j=1

(

aj−1xj−1xj − x2
j

)

− xiS
−1
0 (ai−1xi−1 − 2ai + a1xi+1) ,

i = 1, n− 2.

The first (n− 1) elements of the (n− 1)th row of Jacobi matrix are calculated as

−xn−1S
−1
0 (ak−1xk−1 − 2ak + akxk+1) , k = 1, n− 3,

an−2xn−1 − xn−1S
−1
0 (an−3xn−3 − 2an−2 + an−2xn−1) ,

an−2xn−2 − 2xn−1 − S−1
0

∑n

j=1

(

aj−1xj−1xj − x2
j

)

− xn−1S
−1
0 (an−2xn−2 − 2xn−1) ,

and the elements of the (n− 1)th cell as

−xn−1S
−1
0 (an−2xn−2 − 2xn−1) .

Thus (n− 1)× (n− 1) cell that is considered, is the Jacobi matrix of (n− 1)-dimensional
model of open Eigen’s hypercycle at the point formed by discarding the last coordinates
(which are zero) of n-dimensional model’s “point-descendant”. Hence, n− 1 eigenvalues
of the Jacobi matrix at the “points-descendant” of n-dimensional model are determined
from this cell. Thus, the theorem is proved. ✷

Corollary 3.1 n − k eigenvalues of the Jacobi matrix at the “points-descendants”

where the last k coordinates are zero, are the same as for (n − k)-dimensional model,

(k − 1) of the rest k ones are determined by the formula (4), and the last one can be

calculated as

an−kxn−k − S−1
0

n−k
∑

j=1

(

aj−1xj−1xj − x2
j

)

. (6)

Proof of Corollary 3.1 is similar to the proof of Theorem 3.2.

Theorem 3.3 If a stationary point with the last zero coordinate of n-dimensional

model of open Eigen’s hypercycle is stable, then the “point-descendant” of higher dimen-

sion model is stable too and the intervals of parameters, for which the points are stable,

are the same. Otherwise, the “point-descendant” is unstable.
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Proof. Consider the stationary point of n-dimensional model where the last k(k ≥ 2)
coordinates are zero. According to Corollary 3.1 n−k eigenvalues of the Jacobi matrix at
this point are the same as for (n−k)-dimensional model at the corresponding point. Thus,
if the stationary point of (n − k)-dimensional model is stable, then (n − k) eigenvalues
are negative. According to formulas (4) and (5) other k ones are calculated as

λ1 = an−kxn−k − S−1
0

∑n−k

j=1

(

aj−1xj−1xj − x2
j

)

,

λi = −S−1
0

∑n−k

j=1

(

aj−1xj−1xj − x2
j

)

, i = 2, k.

As only nonnegative sector of phase space is considered, then the difference λ1 − λi =
an−kxn−k, i = 1, k − 1 is positive. Thus the inequality λ1 ≥ λi is correct. Thus, if
the eigenvalue λ1 is negative, then all the other eigenvalues λi(i = 2, k) are negative
too. It means that if the stationary point with the last zero coordinates of (n − k + 1)-
dimensional model is stable, then the “point-descendant” of n-dimensional model is stable
too. Moreover, the interval of parameters, for which the point is stable, is not changed.
Thus, the theorem is proved. ✷

Theorem 3.4 If the stationary point of (n − 1)-dimensional model of open Eigen’s

hypercycle is stable, then the coresponding “point-descendant” of n-dimensional model is

stable when the inequality is correct:

xn−2

xn−1
>

an−1 + 1

an−2
.

Proof. Consider the stationary “point-descendant” of (n)-dimensional model with
only one (the last) zero coordinate. Then according to Theorem 3.2 n − 1 eigenvalues
of Jacobi matrix at this point are defined as the eigenvalues of Jacobi matrix at the
corresponding point of (n−1)-dimensional system, and one eigenvalue is λ = an−1xn−1−
S−1
0

∑n−1
j=1

(

aj−1xj−1xj − x2
j

)

. If this point of (n− 1)-dimensional system is stable, then
(n− 1) eigenvalues are negative.

Consider the eigenvalue λ. Note that the coordinates of the stationary point are
determined by the system

ak−1xk−1 − xk − S−1
0

n
∑

j=1

(

aj−1xj−1xj − x2
j

)

= 0, 1 ≤ k ≤ n− 1,

here k are the numbers of nonzero coordinates. Therefore, we can write the expression

λ = an−1xn−1 − (an−2xn−2 − xn−1) .

Then, the eigenvalue λ is negative, if the following inequality is correct

xn−2

xn−1
>

an−1 + 1

an−2
.

The theorem is proved. ✷

Obviously if coordinate xn−2 of the point from Theorem 3.4 is zero, then this point
is unstable.
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Example 3.1 It is obvious that there is a subset

{

(x1, . . . , xk, 0 . . . , 0)|xj = N

j−1
∏

i=1

ai, j = 1, n, 1 < k < n
}

of the set of stationary points of model (1). Using Theorems 3.3 and 3.4 it is easy to
show that each point of this set is unstable.

4 The Two-dimensional Model of Open Eigen’s Hypercycle

It was determined in [10] that the two-dimensional model of open Eigen’s hypercycle has

6 stationary points: (0, 0), (0, S0), (N, 0), (S0, 0),
(

S0+N
a1+2 ,

S0(a1+1)−N

a1+2

)

, (N, a1N). The

Lyapunov direct method is used for definition of their type and stability. The results are
presented in Table 1.

Points S0 ∈
(

0, 1
a1+1

) (

1
a1+1 , 1

)

(1, a1 + 1) (a1 + 1,+∞)

(0, S0) Unstable
node

Unstable
node

Unstable
node

Unstable
node

(N, 0) Unstable
node

Unstable
node

Saddle Saddle

(S0, 0) Stable node Saddle Unstable
node

Unstable
node

(

S0+N
a1+2 ,

S0(a1+1)−N

a1+2

)

Saddle Stable node Stable node Saddle

(N, a1N) Saddle Saddle Saddle Stable node

Table 1: The stability of the stationary points.

The method described in [3] is used for definition of behavior of trajectories near
complex (degenerate) stationary point. Thus, (0, 0) is a complex stationary point of
“saddle-node” type for any positive values of the parameters; (N, 0) if S0 = N ; (S0, 0) if
S0 = N(a1 + 1)−1; (N, a1N) if S0 = (a1 + 1)N .
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Theorem 4.1 There are no limit cycles in the phase portrait of two-dimentional

model of open Eigen’s hypercycle.

Proof. It is easy to show that points (0, 0), (0, S0), (N, 0), (S0, 0),
(

S0+N
a1+2 ,

S0(a1+1)−N

a1+2

)

are on the integral lines x1 = 0, x2 = 0, x1+x2 = S0. So there is no

a limit cycle around these points. As for the point (N, a1N), it is saddle or node-saddle
if S0

N
∈ (0, a1 +1] (there is no a limit cycle around this point). If S0

N
∈ (a1 +1,+∞) then

it is a stable node. Consider this case. If S0

N
∈ (a1 + 1,+∞) then (N, a1N) is inside the

triangle formed by the integral lines x1 = 0, x2 = 0, x1 + x2 = S0.
Use Dulac theorem. Take F (x1, x2) = x−2

1 x−2
2 as Dulac function, then

∂(PF )

∂x1
+

∂(QF )

∂x2
= −NS0 − x1(N − S0a1)

S0x2
1x

2
2

.

Here P and Q are the left-hand sides of equations of the two-dimensional model of open
Eigen’s hypercycle. As we consider only the triangle, then x1 6 S0. Hence

−NS0 − x1(N − S0a1)

S0x2
1x

2
2

6 −NS0 − S0(N − S0a1)

S0x2
1x

2
2

= −S0a1
x2
1x

2
2

.

This expression has a constant sign in the triangle, hence there is no a limit cycle in the
triangle. Therefore there is no a limit cycle in the phase portrait. The theorem is proved.
✷

There is only one attractor, namely node, in the system for any positive values of
the parameters. The stable point is always in the first quarter of the phase portrait. If
0 < S0 < (a1 + 1)−1N , only one association is able to exist in the ecosystem. When
S0 = (a1 + 1)−1N , there is a bifurcation (if we consider only the first quarter). It is
interpreted as the inclusion of the second association in the ecological system and it
defines a new stage of succession process.

If (a1 + 1)−1N < S0 < (a1 + 1)N ,
(

S0+N
a1+2 ,

S0(a1+1)−N

a1+2

)

is a stable point. Note that

the first association is dominant, if a1 < 1. If a1 > 1, the first or the second one is
dominant depending on the size of the ecological niche.

If S0 > (a1 + 1)N , there is an excess of resources in the system. Both associations
reach maximum capacity. Moreover the first association is dominant if a1 < 1. Otherwise
the second association is dominant.

5 The Three-Dimensional Model of Open Eigen’s Hypercycle

It was determined that there are 11 stationary points of phase space of three-
dimensional model of open Eigen hypercycle: P1 : (0, 0, 0), P2 : (N, 0, 0), P3 :
(N, a1N, 0), P4 : (N, a1N, a1a2N), P5 : (S0, 0, 0), P6 : (0, S0, 0), P7 : (0, 0, S0),

P8 :
(

N+S0

a1+2 ,
S0(a1+1)−N

a1+2 , 0
)

, P9 :
(

S0+N
2 , 0, S0−N

2

)

, P10 :
(

0, S0

a2+2 ,
S0(a2+1)

a2+2

)

, P11 :
(

S0+N(a2+2)
a1a2+a1+a2+3 ,

(a1+1)S0+N(a1−1)
a1a2+a1+a2+2 , (a1a2+a2+1)S0−N(a1+a2+1)

a1a2+a1+a2+3

)

.

Using Theorems 3.1, 3.2 and 3.4 it can be shown that points P1 and P2 are complex
(degenerate) stationary points; point P3 is a saddle with two-dimension unstable subspace
if S0/N ∈ (0, a1+1), or two-dimension stable sub-space if S0/N ∈ (a1+1,+∞); point P5

is a stable node if S0/N ∈ (0, (a1 + 1)−1), a saddle with two-dimension stable subspace
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if S0/N ∈ ((a1 + 1)−1, 1), and an unstable node if S0/N ∈ (1,+∞); point P6 is unstable

node; point P8 is stable node if S0/N ∈
(

(1 + a1)
−1, 1+a1+a2)

1+a2+a1a2

)

, a saddle with two-

dimension stable subspace if S0/N ∈ (0, (a1 + 1)−1) ∪
(

1+a1+a2)
1+a2+a1a2

, 1 + a1

)

, and a saddle

with two-dimension unstable subspace if S0/N ∈ (1 + a1,+∞).
The Lyapunov method is used for definition of the type and stability of the last five

stationary points: point P7 is an unstable point; point P10 is a saddle with two-dimension

unstable subspace if

{

S0/N ∈
(

1−a1

1+a1

, 1
)

∪ (1,+∞),

a1 ∈ (0, 1),
∪

{

S0/N ∈ (0, 1) ∪ (1,+∞),
a1 ∈ [1,+∞),

and a saddle with two-dimension stable subspace if

{

S0/N ∈
(

0, 1−a1

1+a1

)

∪ (1,+∞),

a1 ∈ (0, 1),

point P11 is a stable stationary point if S0/N ∈
(

1+a1+a2

1+a2+a1a2

, 1 + a1 + a1a2

)

, an unsta-

ble point with two-dimension unstable subspace if

{

S0/N ∈
(

0, 1−a1

1+a1

)

∪ (1,+∞),

a1 ∈ (0, 1),
an

unstable point with two-dimension stable subspace if

{

S0/N ∈
(

1−a1

1+a1

, 1+a1+a2

1+a2+a1a2

)

,

a1 ∈ (0, 1),
∪

{

S0/N ∈
(

0, 1+a1+a2

1+a2+a1a2

)

,

a1 ∈ [1,+∞),
∪ S0/N ∈ (1 + a1 + a1a2,+∞); point P4 is a stable sta-

tionary point if S0/N ∈ (1 + a1 + a1a2,+∞), and an unstable stationary point if
S0/N ∈ (0, 1 + a1 + a1a2).

The bifurcation diagram is shown in Figure 1 ( a) , b) ) on the basis of the analysis
of stationary points. If a2 = 1, the curve 3 and line 2 merge. Solid curves illustrate
bifurcation values of parameters.

a) a2 ∈ (0, 1) b) a2 ∈ (1,+∞)

Figure 1: Sections of the parametric surfaces
(

1.S0/N = (1 + a1)
−1, 2.S0/N = 1, 3.S0/N =

(1 + a1 + a2)/(1 + a2 + a1a2), 4.S0/N = 1 + a1 + a1a2).

Point P5 is a stable stationary point for the values of the parameters from region I
(0 < S0/N < (1 + a1)

−1). In this case the size of ecological niche is so small, that only
one association is able to exist in the ecosystem. When (1+ a1)

−1 < S0/N < 1+a1+a2

1+a2+a1a2

,
point P8 appears in the first octant (regions II and III in case a) or region II in case b)
). In this case the second association can compete with the less demanding first one. If
S0/N > 1+a1+a2

1+a2+a1a2

, the size of the ecological niche is so big, that three associations are



426 R.V. RUZICH

able to coexist in the biogeocoenose (region IV in case a) or regions III and IV in case b) ).
Note, that they use all resourses if 1+a1+a2

1+a2+a1a2

< S0/N < 1+a1+a1a2 (point P11 is stable);
there is an excess of resourses if S0/N > 1+a1+a1a2 (point P4 is stable, region V). So, the
appearance of each new association in the system corresponds to the bifurcation of the
first octant of phase space. During the bifurcations the stationary points that correspond
to the neighboring states of ecological systems, merge and “exchange stability”.

6 Conclusion

The main focus in this paper is to study the evolution of biogeocoenose during primary
succession. It can be seen from the study of two- and three-dimentional models that
there are self-organizing processes in the system. When ecological niche reaches certain
size (it is smaller than the limit of occurrence of resources excess), new association is
included in the system. Thus, under the influence of the flow of matter and energy the
ecosystem evolves. A control parameter is the size of the ecological niche.

Note that similar process is described in the papers on theoretical ecology [18]: first,
poor soil is ocuppied by lichens, further by mosses, grass and etc. Moreover, climatic
conditions determine the maximum number of primary succession stages and flora forms
soil, and thus it determines the time of transition to a new stage.

Note that the described dynamics is typical for natural ecological systems: volcano in
Kamchatka [13], sulfur deposits in Lviv region, Ukraine [6], coal mining dumps of Donetsk
and Chervonograd industrial areas, Ukraine [4], wetland [24], Glacier Bay, Alaska [9].

Also we can observe a discrete change of state of the ecological system, although the
process is described by the continuous model. Discreteness of the process is explained
by the presence of bifurcation phenomena in nonlinear models.
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Abstract: In this paper, we propose a new approach to design a reduced observer
based state feedback control for bounded linear time variant systems by means of
shifted Legendre polynomials. The main objective is to force the controlled LTV

system output to follow that of a linear reference model. On these grounds, aug-
mented state modeling and useful Kronecker product properties are applied. Hence,
an optimization problem is derived. Once the observation and control gains are deter-
mined by solving the latter problem, the stability of the closed loop system is checked
through LMIs conditions. Simulation results illustrate the pertinence of the proposed
method.

Keywords: LTV systems; state observer; tracking; shifted Legendre polynomials,
LMIs.
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1 Introduction

Modeling a physical process is a crucial step toward its analysis and adapted control
synthesis. Indeed, the chosen mathematical model should be accurate enough in order to
describe correctly dynamics of the system evolution. Moreover, most physical systems are
described by nonlinear models which are not easy to study. A simplification alternative
consists in linearizing the systems around some operating points, the procedure remains a
very conservative approach. A global method consists in a linearization along a trajectory,
that often leads to a linear time varying system (LTV) [2]. Thus, this type of models
offer a good compromise between simplicity and ability to reproduce with fidelity the
behavior of some real processes namely, highway vehicle [1], electronic circuit design [3]
and biochemical systems [8]. Accordingly, several studies have focused on poles and zeros
definition for these particular systems [4], also problems related to the controllability
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and observability analysis [9], the identification [13,14], the stability analysis [7] and the
control [11, 12] of LTV systems have been the subject of many publications.

Orthogonal functions are a well developed mathematical tool for dynamic systems
analysis and control. In fact, it had been firstly introduced for optimal control [6] and
identification [16] of LTI systems. Lately, in literature there appeared extended works
to cover nonlinear systems identification [20], stabilization analysis [27] and optimal
control [25]. LTV systems have been also among the fields of application of that wise
approximation tool, namely, for model order reduction [22], state analysis [23], identifica-
tion [15] and optimal control [24]. Indeed, the projection of the state differential equation
of the dynamic system over an orthogonal basis and introducing useful properties of the
latter tool such as operational matrices jointly used with the Kronecker product may
transform the time depending differential equation into stationary algebraic relations.

In this work, shifted Legendre polynomials are basically used to deduce an observer
based state feedback control, the latter tool may have advantages over other orthogo-
nal functions. This was shown by examples [16] where shifted Legendre polynomials
converge to the exact solution of a differential equation faster than the other types of or-
thogonal functions, as, for example Walsh functions, Hermite and Laguerre polynomials.
We underline that the derived control law has to ensure, not only stability but also a
performance level dictated by a linear reference model used for tracking purposes, which
is effectively the main contribution of the proposed study compared to major methods
in literature which focused only on stabilization problem [17]. Consequently, a mathe-
matical development will be exposed which is based on the use of interesting properties
of shifted Legendre polynomials. The final result is given as a nonlinear criterion whose
minimization with optimization Toolbox routines of MATLAB leads to the desired con-
trol gains. The last step is to check the asymptotic stability of the closed loop system
through Bounded Real Lemma.

The paper is organized as follows. In Section 2, we introduce the studied systems
and explain the main objective of the work. In Section 3, the proposed development
for a reduced observer based control law applied to time variant linear systems using
shift Legendre polynomials is carried out. In Section 4, stability analysis is handled
using existing LMIs results for polytopic systems. In Section 5, the effectiveness of the
developed method is checked out by a DC motor benchmark.

2 Problem Statement

In this work we consider the linear time variant system described by the following state
equations:







ẋ(t) = A(t)x(t) +B(t)u(t),
y(t) = Cx(t),
x(0) = x0,

(1)

where u ∈ R
m is the control vector, x ∈ R

n is the state vector and y ∈ R
l is the output

vector. Matrices A(t), B(t), C and the vector x(t) have the following forms:

A(t) =

[

A11(t) A12(t)
A21(t) A22(t)

]

, B(t) =

[

B1(t)
B2(t)

]

, x(t) =

[

x1(t)
x2(t)

]

, C =
[

Il O1

]

with

O1 = 0(l, n− l), x1(t) ∈ R
l, B1(t) ∈ R

l,m.
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System (1) matrices could be written as ∀t > 0, A(t) = [aij(t)] and B(t) = [bij(t)] and
each term verifies the following boundedness:

aij 6 aij(t) 6 aij and bij 6 bij(t) 6 bij , (2)

where aij , bij and aij , bij are some constant values corresponding respectively to the

minimum and maximum of aij(t) and bij(t).
We assume that such system satisfies the controllability and observability conditions

[9]. Our objective is then to design both reduced order observer and state feedback
control law in order to ensure desired performances for the controlled system.

2.1 The state observer structure

We choose to design a reduced order observer which reproduces the non measurable state
component x2(t). Such observer is then described by state model of the following form:







ẇ(t) = (A22(t)− LrA12(t))w(t) + (B2(t)− LrB1(t))u(t)
+((A22(t)− LrA12(t))Lr + (Ā21(t)− LrA11(t)))y(t),
x̂2(t) = w(t) + Lry(t).

(3)

In these equations w(t) ∈ R
n−l is the state observer vector and x̂2(t) is the observation

of x2(t). Lr is the gain of the order observer.
Let us define the observation error by:

εr(t) = x2(t)− x̂2(t). (4)

It comes out then:

ε̇r(t) = ẋ2(t)− ˙̂x2(t) = (A22(t)− LrA12(t)) εr(t). (5)

The observation gain Lr is determined such that the observation error has the same
dynamics as a chosen observation reference model described by a linear state equation

ε̇r,ref(t) = Mrεr,ref (t), (6)

where Mr is a ((n− l)× (n− l)) matrix chosen such that the observer be faster than the
controlled system.

2.2 Strategy of control

The control strategy that we plan to develop uses the desired output yc(t), measured
and observed components of the state vector (y(t) and x̂2(t)). It can be expressed in the
following form:

u(t) = Nyc(t)−K1x1(t)−K2x̂2(t) (7)

with

N ∈ R
m×m,K1 ∈ R

m×l and K2 ∈ R
m×(n−l).

We can express the control law by the following equation:

u(t) = Nyc(t)−K1x1(t)−K2x̂2(t) = Nyc(t)−K1x1(t)−K2x2(t) +K2εr(t). (8)
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The gain matrices N , K1 and K2 are determined such that the controlled system presents
the same behavior of a chosen reference linear model:

{

ż(t) = Ez(t) + Fyc(t),
yr(t) = Gz(t),

(9)

where yc ∈ R
m is the input vector, z ∈ R

r is the state vector and yr ∈ R
l is the output

vector.

3 Proposed Observation and Control Approach

By taking into account, equations (1) and (8), state variables could be written as folows:







ẋ1(t) = (A11(t)−B1(t)K1)x1(t)+(A12(t)−B1(t)K2)x2(t)+B1(t)Nyc(t)+B1(t)K2εr(t),
ẋ2(t) = (A21(t)−B2(t)K1)x1(t)+(A22(t)−B2(t)K2)x2(t)+B2(t)Nyc(t)+B2(t)K2εr(t),
y(t) = x1(t).

(10)
The augmented state is defined by the concatenation of states related to the original
system and the observation error:

x̃(t) =





x1(t)
x2(t)
εr(t)



 .

Hence, equations of the closed loop system take the following form:

{

˙̃x(t) = Ã(t)x̃(t) + B̃(t)yc(t),

ỹ(t) = C̃x̃(t),
(11)

with

Ã(t) =





ã11 ã12 ã13
ã21 ã22 ã23

0(n− l, l) 0(n− l, n− l) ã33



 , B̃(t) =





B1(t)N
B2(t)N

O2



 , C̃ =
[

Il O3

]

,

where

ã11 = A11(t)−B1(t)K1, ã12 = A12(t)−B1(t)K2, ã21 = A21(t)−B2(t)K1,
ã22 = A22(t)−B2(t)K2, ã13 = B1(t)K2, ã23 = B2(t)K2, ã33 = A22(t)− LrA12(t),
O2 = 0(n− l,m), O3 = 0(l, 2(n− l)).

The projection of the matrices A11(t), A12(t), A21(t), A22(t), B1(t) and B2(t) in a basis of
shifted Legendre polynomials truncated to an order N (See Section 7.3 of the Appendix)
can be written as:

A11(t) =
N−1
∑

i=0

A11,iNsi(t), A12(t) =
N−1
∑

i=0

A12,iNsi(t), A21(t) =
N−1
∑

i=0

A21,iNsi(t),

A22(t) =
N−1
∑

i=0

A22,iNsi(t), B1(t) =
N−1
∑

i=0

B1,iNsi(t), B2(t) =
N−1
∑

i=0

B2,iNsi(t).

(12)
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We can deduce now the projection of the matrice Ã(t) and B̃(t) in the same basis of
shifted Legendre polynomials truncated to an order N , with:

ÃiN =





ã11,iN ã12,iN ã13,iN
ã21,iN ã22,iN ã23,iN

0(n− l, l) 0(n− l, n− l) ã33,iN



 , B̃iN =





B1,iNN
B2,iNN

O2



 ,

where

ã11,iN = A11,iN −B1,iNK1, ã12,iN = A12,iN −B1,iNK2, ã21,iN = A21,iN − B2,iNK1,
ã22,iN = A22,iN −B2,iNK2, ã13,iN = B1,iNK2, ã23,iN = B2,iNK2,
ã33,iN = A22,iN − LrA12,iN .

The control law defined by the equation (8) has to carry the dynamics of the closed
loop system to reproduce as perfectly as possible that of a reference model which may
be defined as follows:

{

˙̃z(t) = Ẽz̃(t) + F̃ yc(t),

ỹr(t) = G̃z̃(t),
(13)

with

z̃ =

[

z
εref

]

, Ẽ =

[

E O4

OT
4 Mr

]

, F̃ =

[

F
O5

]

, G̃ =
[

G O6

]

,

O4 = 0(nr, n− l), O5 = 0(n− l,m) and O6 = 0(l, nr + n− 2l), where nr is the order of
the reference model defined by the equation (9).

The integration of the equation (11) on the time interval [0, t] leads to:

x̃(t)− x̃(0) =

t
∫

0

Ã(τ)x(τ)dτ +

t
∫

0

B̃(τ)yc(τ)dτ , (14)

where x̃(0) denotes the initial conditions vector.
The projection of the state vector x̃(t) and the order output yc(t) on the basis of

shifted Legendre polynomials leads to:

X̃NSN (t)− X̃0NSN (t) =
t
∫

0

N−1
∑

i=0

ÃiNsi(t)X̃NSN (t) +
t
∫

0

N−1
∑

i=0

B̃iNsi(t)ycNSN (t) (15)

Introducing now the product operational matrix (See Section 7.2 of Appendix) in equa-
tion (15) yields:

X̃NSN (t)− X̃0NSN (t) =
t
∫

0

N−1
∑

i=0

ÃiN X̃NMiSN (t) +
t
∫

0

N−1
∑

i=0

B̃iNycNMiSN (t). (16)

The use of the integration operational matrix (See Section 7.2 of the Appendix) yields:

X̃NSN (t)− X̃0NSN (t) =
N−1
∑

i=0

ÃiN X̃NMiPNSN (t) +
N−1
∑

i=0

B̃iNycNMiPNSN(t). (17)

Simplifying by the vector SN (t) and making use of the vec operator, which transforms a
matrix structure into a vector one and the specific property [21]

vec(ABC) =
(

CT ⊗A
)

vec(B), (18)
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equation (17) could be written as follows:

vec(X̃N )− vec(X̃0N ) =
N−1
∑

i=0

(

(MiPN )
T ⊗ ÃiN

)

vec(X̃N )

+
N−1
∑

i=0

(

(MiPN )
T ⊗ B̃iN

)

vec(ycN),

(19)

it comes out:

vec(X̃N) =









[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )T ⊗ ÃiN

)

]−1

×
[

vec(X̃0N ) +

[

N−1
∑

i=0

(

(MiPN )
T ⊗ B̃iN

)

]

vec(ycN )

]









. (20)

In the same way the projection of the closed loop reference model (13), and the use of
the operational matrix of integration yield:

vec(Z̃N ) =









[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1

×
[

vec(Z̃0N ) +

[

N−1
∑

i=0

(

PN
T ⊗ F̃

)

]

vec(ycN)

]









. (21)

The condition permitting to have a similar behavior of the controlled system (11) and
reference model (13) can be written mathematically as follows:

ỹ(t) = ỹr(t) ⇔ C̃X̃(t) = G̃Z(t) ⇔
(

IN ⊗ C̃
)

vec(X̃N) =
(

IN ⊗ G̃
)

vec(Z̃N). (22)

It comes out:









(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )
T ⊗ ÃiN

)

]−1

×
[

vec(X̃0N ) +

[

N−1
∑

i=0

(

(MiPN )
T ⊗ B̃iN

)

]

vec(ycN)

]









=









(

IN ⊗ G̃
)

[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1

×
[

vec(Z̃0N ) +

[

N−1
∑

i=0

(

PN
T ⊗ F̃

)

]

vec(ycN)

]









.

(23)

Notice that

Z̃0N =

[

Z0N

εr,ref,0N

]

=

[

Inr

OT
4

]

Z0N +

[

O4

In−l

]

εr,ref,0N

and

X̃0N =

[

X0N

εr,0N

]

=





X1,0N

X2,0N

εr,0N



 =

[

Il
O7

]

X1,0N +





O8

In−l

O9



X2,0N

[

O10

In−l

]

εr,0N ,

where O7 = 0(2(n− l), l),O8 = 0(l, n− l), O9 = 0(n− l, n− l) and O10 = 0(n, n− l).
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In order to simplify the control problem, let us consider null initial condition for the
reference model (Z0N = 0) and null initial condition for the measurable components state
part (X1,0N = 0).

Moreover, intial conditions of the observation error, which are a priori unkown, should
meet those of the reference observation error model in order to minimize the distance
between both models (εr,0N = εr,ref,0N ). Consquently, equation (23) could be written
as follows:





















(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )
T ⊗ ÃiN

)

]−1

×














IN ⊗





O8

In−l

O9







 vec(X2,0N) +

(

IN ⊗
[

O10

In−l

])

vec(εr,ref,0N )

+

[

N−1
∑

i=0

(

(MiPN )T ⊗ B̃iN

)

]

vec(ycN)

































=









(

IN ⊗ G̃
)

[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1

×
[ (

IN ⊗
[

O4

In−l

])

vec(εr,ref,0N ) +

[

N−1
∑

i=0

(

PN
T ⊗ F̃

)

]

vec(ycN)

]









.

(24)

The relation (24) can be written as:

∆1vec(ycN) + ∆2vec(X2,0N ) + ∆3vec(εr,ref,0N ) = 0, (25)

where

∆1 =



























(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )
T ⊗ ÃiN

)

]−1

×
[

N−1
∑

i=0

(

(MiPN )
T ⊗ B̃iN

)

]









−
[

(

IN ⊗ G̃
)

[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1 [N−1
∑

i=0

(

PN
T ⊗ F̃

)

]

]



















,

∆2 =





(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )T ⊗ ÃiN

)

]−1


IN ⊗





O8

In−l

O9











 ,

∆3 =













[

(

IN ⊗ C̃
)

[

I((n−l)+n)×N −
N−1
∑

i=0

(

(MiPN )T ⊗ ÃiN

)

]−1 (

IN ⊗
[

O10

In−l

])

]

−
[

(

IN ⊗ G̃
)

[

I(nr+(n−l))×N −
N−1
∑

i=0

(

PN
T ⊗ Ẽ

)

]−1 (

IN ⊗
[

O4

In−l

])

]













In order to verify such relation for any initial conditions X2,0N , εr,ref,0N and for any
output order ycN , we must ensure:

∆1 = 0, ∆2 = 0 and ∆3 = 0.

However, these conditions could not be totally realized. Hence, we have to look for
a pseudo-solution of this problem by minimizing the norms of matrices ∆1, ∆2 and ∆3,
denoted respectively δ1, δ2 and δ3, using optimization MATLAB routines.
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4 Stability Analysis of Closed Loop System

Once observation control parameters Lr, N , K1 and K2 are determined, the LTV model
defined by the equation (11) can be expressed in the following polytopic form such as

M =
[

Ã
∣

∣

∣
B̃
]

belongs to a polytope of matrices M defined by [5]:

M =

{

M =
[

Ã(θ)
∣

∣

∣
B̃(θ)

]

/M(θ) =
v

∑

i=1

(

θi

[

Ãi

∣

∣

∣
B̃i

])

}

,

where

θ ∈ Θ =



















θ =











θ1
θ2
...
θv











/

v
∑

i=1

θi = 1



















.

The closed loop system (11) is mean square asymptotically stable with anH∞ disturbance
attenuation γ if and only if there exists a (n+ (n− l))× (n+ (n− l)) matrix P ≻ 0 such
that i = 1 . . . v, [10]:





ÃT
i P + PÃi PB̃i C̃T

B̃T
i P −γ2Im 0

C̃ 0 −Ip



 ≺ 0. (26)

5 Simulation Example

Let us consider the separated excitation DC motor described by the following equation
[26]:



























dΩ(t)
dt = − fΩ(t)

J + KmΦ(t)I(t)
J ,

dI(t)
dt = −KeΦ(t)Ω(t)

L − RI(t)
L + V (t)

L ,

x(0) =
[

0 0.2
]T

,

where y = Ω(t) denotes rotational speed of rotor as measured output, I(t) and V (t) are
respectively the current and voltage of rotor, Φ(t) is the rotor flux. For this example, we
will assume the values for the physical parameters given in Table 1.

The rotor flux is considered as a time depending function defined by the following
relation:

Φ(t) = Φ0(1 + 0.1 sin(πt))

with Φ0 = 1.
The considered reference model of the controlled system is a second order system

characterized by the following parameter matrices:

E =

[

−10.5 −2.4
2 −14.75

]

, F =

[

0
1.5

]

, G =
[

0 10.15
]

.

The reference model of the observation error is characterized by the matrix:

Mr = −5.
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Table 1: Motor parameters.

L: rotor inductance 0.5 H
R: rotor resistance 2 Ω

Ke: electromotive force against 0.1 NmWb−1A−1

Km: electromagnetic torque 0.1 NmWb−1A−1

J : rotor and load inertias 0.006 kgm−2s−2

f : viscous friction coefficient 0.01 Nms
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controlled DC motor
reference model

Figure 1: Step response of controlled DC motor and the considered reference model.

For N = 10 ( number of elementary SLPs functions) and T=5s, the obtained control
gains are the following:

N = 175.3, K1 = 158.6, K2 = 160.5, Lr = 1.8.

The norms of matrices ∆1, ∆2 and ∆3 are given by the following:

δ1 = 0.0446, δ2 = 0.0298, and δ3 = 0.0335.

Figure 1 illustrates step responses of controlled DC motor and the considered reference
model over an interval [0, T ] . Figure 2 shows the free motion of the current of rotor
and the observer. The asymptotic stability with an H∞ disturbance attenuation γ of the
closed loop system is verified by the feasible solution of the LMI defined in relation (26).
Obtained LMI variables were:

γ = 2.3547,

P =





0.8258 0.0418 0.0278
0.0418 0.0114 0.0048
0.0278 0.0048 0.0100



 .
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Figure 2: Free motion of the current of rotor and the observer.

6 Conclusions

In this paper, a new analytical approach was introduced for the synthesis of a reduced
observed feedback control for linear time variant systems by using shift Legendre poly-
nomials as an approximation tool. The use of the operational matrix of integration and
operational matrix of product has allowed the transformation of differential equations
into algebraic ones depending on gains of regulators. The main contribution of the paper
can be summarized as the system performance guaranty jointly with stability which is
obviously ensured. This is done by tracking a linear reference model. The effectiveness
of the developed method is checked out by a DC motor benchmark. The simulations re-
sults obtained show clearly the accuracy of the synthesized control law. In future works,
we intend to extend our development to handle the synthesis of observed state feedback
control for nonlinear systems via orthogonal functions.

7 Appendix

7.1 Legendre polynomials

Legendre polynomials denoted by LPs in litterature, have been the most used ones in
continuous control problems due to their high accuracy and a unit weighting function.
That is why we use them in our work. They are defined over the time interval τ ∈ [−1, 1]
and given by the recursive formula [18]:

(n+ 1)Pn+1(τ) = (2n+ 1) τPn(τ) − nPn−1(τ), for n = 1, 2, · · · (27)

with P0(τ) = 1 and P1(τ) = τ .
In order to obtain orthogonal Legendre polynomials on the interval [0, tf ], the follow-

ing change of variable is performed:

τ =
2t

tf
− 1 with 0 ≤ t ≤ tf (28)
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for 0 ≤ t ≤ tf , the shifted Legendre polynomials, denoted by SLPs, sn(t) are thus given
by:

(n+ 1) sn+1(t) = (2n+ 1)

(

2t

tf
− 1

)

sn(t)− nsn−1(t) (29)

with s0(t) = 1 and s1(t) =
2t
tf

− 1.

The principle of orthogonality of shifted Legendre polynomials is expressed by the
following equation [19]:

tf
∫

0

si(t)sj(t)dt =
tf

2i+ 1
δij . (30)

So, any integrable function on 0 ≤ t ≤ tf can be developed into a series of shifted
Legendre polynomials with a truncation to an order N under the following relation:

f(t) ∼=
N−1
∑

i=0

fisi(t) = FNSN (t) (31)

with
FN =

[

f0 f1 · · · fN−1

]

and
SN (t) =

[

s0(t) s1(t) · · · sN−1(t)
]T

.

7.2 Operational matrices

In the SLPs case, the operational matrix of integration PN could be built through the
following recurrent relation:

t
∫

0

sn(τ)dτ =
tf
2

× 1

2n+ 1
(sn+1(t)− sn−1(t)) (32)

and
t

∫

0

s0(τ)dτ =
tf
2
(s0(t) + s1(t)). (33)

Hence, the following algebraic relation for integral calculus could be stated:

t
∫

0

SN (t)dt ∼=PNSN (t). (34)

The operational vectors of product Kij have constant coefficients and verify the property
[20]:

∀i, j ∈ {0, 1, . . . , N − 1 } , si(t)sj(t) ∼= KT
ijSN (t). (35)

From the relationship (35), we can readily get the operational matrix of product:

MiN =







KT
i,0

...
KT

i,N−1






(36)
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that allows the approximation:

si(t)SN (t) ∼= MiNSN (t). (37)

7.3 Matrix functions approximation

Any time dependent matrix function A(t) ∈ R
n×m given by A(t) = [aij(t)] where aij(t)

are integrable over an interval 0 ≤ t ≤ tf can be developed into a series of shifted
Legendre polynomials with a truncation to an order N under the following relation:

A(t) ∼=
N−1
∑

i=0

AiNsi(t), (38)

where AiN ∈ R
n×m for i ∈ {0, 1, ..., N − 1} are matrices with constant coefficients.
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Analytical and Experimental Investigation of Vertical Vibration of a Freight Wagon in the
Presence of Mechanical Asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

F.N. Nangolo, J. Soukup, A. Petrenko and J. Skocilas

Researches Defining the Characteristics of Hyperelastic and Composite Materials with Gas
Phase in the Vehicle–Pedestrian System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

J. Osinski and P. Rumianek

Mathematical Modeling of the Hydro-Mechanical Fluid Flow System on the Basis of the
Human Circulatory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

W. Parandyk, D. Lewandowski and J. Awrejcewicz

Six-Legged Robot Gait Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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