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Abstract: This paper is concerned with a long-term ecological primary succession.
The model of open Eigen’s hypercycle has been used for modeling of the process. The
multi-dimension case is analyzed. It is shown that consideration of system’s dynamics
can be simplified by partial reduction to the cases of lower dimension. The dynamics
of ecological system can be considered as a self-organizing process with quasi-discrete
characteristic. The quasi-discrete dynamics is explained by bifurcation properties of
the system, that produce step-by-step changing of system’s structure.
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1 Introduction

Since the second half of the 20th century, illusion of happiness with regard to the de-
velopment of a technocratic society disappears, while the number and severeness of the
ecological crises increase. At this time researchers began to pay more attention to the
study of ecological processes [2, 7, 17, 25, 26, 30].

The main object of the study is biogeocoenosis (as a collection of fauna and flora
that exist in some area), and in particular a succession that takes place in it. In classical
ecological theory there are two main types of succession: primary and secondary succes-
sion [26]. Note that a lot of works [5,15,19,21,28] are concerned with the mathematical
modeling of the second type of ecological process. As to the first type, the works are
mostly descriptive, of non-formalized character [12,24,27]. In this paper we examine the
behavior of ecological systems during primary succession.
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Ecological processes (including the succession) are complex and characterized by os-
cillating processes, processes of self-organization, abrupt change of the mode of a sys-
tem, the effects of histereses and others. The experience of using linear models showed
that they can not adequately describe the behavior of real systems, but only reflect
some common trends. Often the stochastic models are used to describe succession pro-
cesses [1, 12, 20, 22, 23]. The basic parameter that determines the dynamics of biogeo-
coenosis in such models is the probability of transition. It represents probability of some
association to become dominant. Such approach can be useful for simulation of system
dynamics, but does not reflect driving forces of the process.

Another tool that is used to describe the succession are differential equations, in par-
ticular of the Volltarian type [8, 29]. In such models competition between associations
is considered as the basic driving force of ecological process. Note that quite a number
of researchers adhere this point of view [16, 25, 26]. However, these models have several
weaknesses: they do not reflect the interaction between biotic elements and inert com-
ponents of the ecosystem; it is possible that associations do not compete, but reach the
optimum number. These flaws can be corrected by using a special modification (called an
“open hypercycle” [10]) of the famous Eigen hypercycle [14] for description of primary
successions. This model is similar,but not equivalent to Lotka-Volterra models of the
competition or is of the “predator-prey” type.

2 The Model

Let us consider the behavior of biological associations x (t) = (x1 (t) , ..., xn (t)) that is
described by the model of open Eigen’s hypercycle:

dxi

dt
=



Fi (t)−
1

S0

n∑

j=0

xjFj (t)



xi, i = 1, n, (1)

where S0 is a capacity of environment (size of ecological niche), S0 > 0.
Suppose that the coefficients of propagation and interaction between associations are

defined by Allen’s functions:

Fi (t) = ai−1xi−1 (t)− xi (t) , i = 1, n,

here a1 > 0, i = 1, n− 1, x0 = 1, a0 = N ; N is a coefficient which determines the
equilibrium size of the first association, when it develops alone; a1 is a coefficient which
describes a level of dependence of the (i+ 1)th association on the previous one, i =
1, n− 1. Allen’s functions reflect the nature of the relationship between associations
where associations are included into a system at certain level of development of stagnant
environment.

3 The Jacobi Matrix

The structure of a Jacobi matrix row of system (1) can be represented as

f1 . . . f1
︸ ︷︷ ︸

m

f2 . . . f2
︸ ︷︷ ︸

l

f3 f4 . . . f4
︸ ︷︷ ︸

d

, (2)

where f1 = −xiS
−1
0 (ak−1xk−1 − 2xk + akxk+1),
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f2 = ai−1xi − xiS
−1
0 (ai−2xi−2 − 2xi−1 + ai−1xi),

f3 =







ai−1xi−1 − 2xi − S−1
0

∑n

j=1

(
aj−1xj−1xj − x2

j

)
−

−xiS
−1
0 (ai−1xi−1 − 2xi + aixi+1) , k < n;

ai−1xi−1 − 2xi − S−1
0

∑n

j=1

(
aj−1xj−1xj − x2

j

)
− xiS

−1
0 (ai−1xi−1 − 2xi) ,

k = n;

f4 =

{
−xiS

−1
0 (ak−1xk−1 − 2xk + akxk+1) , k < n;

−xiS
−1
0 (ak−1xk−1 − 2xk) , k = n;

m = ϕ (i− 2), l =

{
1, i > 1;
0, i = 1;

, d = n−m − l − 1, ϕ (x) =

{
x, x ≥ 10;
0, x < 0;

, k, i are a

number of column and a row of the Jacobi matrix respectively, k = 1, n, i = 1, n.

Theorem 3.1 If the coordinate xp of a stationary point is zero, then one of eigen-
values of the Jacobi matrix of the system (1) at this stationary point can be calculated
as

ap−1xp−1 − S−1
0

n∑

j=1

(
aj−1xj−1xj − x2

j

)
, (3)

if xp−1 is not zero or p = 1. Otherwise the eigenvalue equals

− S−1
0

n∑

j=1

(
aj−1xj−1xj − x2

j

)
. (4)

Proof. If some coordinate xp of the stationary point is zero, than row p of the Jacobi
matrix can be written as (taking into account (2))

0 . . . 0
︸ ︷︷ ︸

p−1

ap−1xp−1 − S−1
0

n∑

j=1

(
aj−1xj−1xj − x2

j

)
0 . . . 0
︸ ︷︷ ︸

n−p

.

Write the characteristic equation of this matrix

|J − ΛI| = 0,

here I is an identity matrix, Λ is a matrix of eigenvalues, J is the Jacobi matrix.
Expanding the determinant in algebraic complement to the row p, we find that the

eigenvalues are computed as
[

λ = ap−1xp−1 − S−1
0

∑n

j=1

(
aj−1xj−1xj − x2

j

)
,

Ap = 0,

here Ap is determinant of minor on diagonal item of row p. Apparently if xp−1 = 0, then

λ = −S−1
0

n∑

j=1

(
aj−1xj−1xj − x2

j

)
.

Thus, the theorem is proved. ✷

Considering the set of stationary points of the model of open Eigen’s hypercycle
one can see that there is a subset of points whose first coordinates are equal to the
corresponding coordinates of stationary points of lower dimension model and all the
other (the last) coordinates are zero. These stationary points are called the “points-
descendants”.
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Theorem 3.2 n − 1 eigenvalues of the Jacobi matrix at the “points-descendants”
of n-dimensional model of open Eigens hypercycle are the same as at the corresponding
stationarity points of (n− 1)-dimensional model, and the last one is calculated as

an−1xn−1 − S−1
0

n∑

j=1

(
aj−1xj−1xj − x2

j

)
. (5)

Proof. According to Theorem 3.1 one eigenvalue of the Jacobi matrix of system (1)
at the “point-descendant” equals

an−1xn−1 − S−1
0

n∑

j=1

(
aj−1xj−1xj − x2

j

)
.

Consider the (n−1)×(n−1) cell of Jacobi matrix (which is the algebraic complement
of the matrix). From the analysis of the formula (2) it is obvious that the cell of Jacobi
matrix, that contains the first n− 2 rows and n− 2 cells, is not different from the general
case. The elements of the main diagonal are calculated as

ai−1xi−1 − 2xi − S−1
0

∑n

j=1

(
aj−1xj−1xj − x2

j

)
− xiS

−1
0 (ai−1xi−1 − 2ai + a1xi+1) ,

i = 1, n− 2.

The first (n− 1) elements of the (n− 1)th row of Jacobi matrix are calculated as

−xn−1S
−1
0 (ak−1xk−1 − 2ak + akxk+1) , k = 1, n− 3,

an−2xn−1 − xn−1S
−1
0 (an−3xn−3 − 2an−2 + an−2xn−1) ,

an−2xn−2 − 2xn−1 − S−1
0

∑n

j=1

(
aj−1xj−1xj − x2

j

)
− xn−1S

−1
0 (an−2xn−2 − 2xn−1) ,

and the elements of the (n− 1)th cell as

−xn−1S
−1
0 (an−2xn−2 − 2xn−1) .

Thus (n− 1)× (n− 1) cell that is considered, is the Jacobi matrix of (n− 1)-dimensional
model of open Eigen’s hypercycle at the point formed by discarding the last coordinates
(which are zero) of n-dimensional model’s “point-descendant”. Hence, n− 1 eigenvalues
of the Jacobi matrix at the “points-descendant” of n-dimensional model are determined
from this cell. Thus, the theorem is proved. ✷

Corollary 3.1 n − k eigenvalues of the Jacobi matrix at the “points-descendants”
where the last k coordinates are zero, are the same as for (n − k)-dimensional model,
(k − 1) of the rest k ones are determined by the formula (4), and the last one can be
calculated as

an−kxn−k − S−1
0

n−k∑

j=1

(
aj−1xj−1xj − x2

j

)
. (6)

Proof of Corollary 3.1 is similar to the proof of Theorem 3.2.

Theorem 3.3 If a stationary point with the last zero coordinate of n-dimensional
model of open Eigen’s hypercycle is stable, then the “point-descendant” of higher dimen-
sion model is stable too and the intervals of parameters, for which the points are stable,
are the same. Otherwise, the “point-descendant” is unstable.
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Proof. Consider the stationary point of n-dimensional model where the last k(k ≥ 2)
coordinates are zero. According to Corollary 3.1 n−k eigenvalues of the Jacobi matrix at
this point are the same as for (n−k)-dimensional model at the corresponding point. Thus,
if the stationary point of (n − k)-dimensional model is stable, then (n − k) eigenvalues
are negative. According to formulas (4) and (5) other k ones are calculated as

λ1 = an−kxn−k − S−1
0

∑n−k

j=1

(
aj−1xj−1xj − x2

j

)
,

λi = −S−1
0

∑n−k

j=1

(
aj−1xj−1xj − x2

j

)
, i = 2, k.

As only nonnegative sector of phase space is considered, then the difference λ1 − λi =
an−kxn−k, i = 1, k − 1 is positive. Thus the inequality λ1 ≥ λi is correct. Thus, if
the eigenvalue λ1 is negative, then all the other eigenvalues λi(i = 2, k) are negative
too. It means that if the stationary point with the last zero coordinates of (n − k + 1)-
dimensional model is stable, then the “point-descendant” of n-dimensional model is stable
too. Moreover, the interval of parameters, for which the point is stable, is not changed.
Thus, the theorem is proved. ✷

Theorem 3.4 If the stationary point of (n − 1)-dimensional model of open Eigen’s
hypercycle is stable, then the coresponding “point-descendant” of n-dimensional model is
stable when the inequality is correct:

xn−2

xn−1
>

an−1 + 1

an−2
.

Proof. Consider the stationary “point-descendant” of (n)-dimensional model with
only one (the last) zero coordinate. Then according to Theorem 3.2 n − 1 eigenvalues
of Jacobi matrix at this point are defined as the eigenvalues of Jacobi matrix at the
corresponding point of (n−1)-dimensional system, and one eigenvalue is λ = an−1xn−1−

S−1
0

∑n−1
j=1

(
aj−1xj−1xj − x2

j

)
. If this point of (n− 1)-dimensional system is stable, then

(n− 1) eigenvalues are negative.

Consider the eigenvalue λ. Note that the coordinates of the stationary point are
determined by the system

ak−1xk−1 − xk − S−1
0

n∑

j=1

(
aj−1xj−1xj − x2

j

)
= 0, 1 ≤ k ≤ n− 1,

here k are the numbers of nonzero coordinates. Therefore, we can write the expression

λ = an−1xn−1 − (an−2xn−2 − xn−1) .

Then, the eigenvalue λ is negative, if the following inequality is correct

xn−2

xn−1
>

an−1 + 1

an−2
.

The theorem is proved. ✷

Obviously if coordinate xn−2 of the point from Theorem 3.4 is zero, then this point
is unstable.
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Example 3.1 It is obvious that there is a subset

{

(x1, . . . , xk, 0 . . . , 0)|xj = N

j−1
∏

i=1

ai, j = 1, n, 1 < k < n
}

of the set of stationary points of model (1). Using Theorems 3.3 and 3.4 it is easy to
show that each point of this set is unstable.

4 The Two-dimensional Model of Open Eigen’s Hypercycle

It was determined in [10] that the two-dimensional model of open Eigen’s hypercycle has

6 stationary points: (0, 0), (0, S0), (N, 0), (S0, 0),
(

S0+N
a1+2 ,

S0(a1+1)−N

a1+2

)

, (N, a1N). The

Lyapunov direct method is used for definition of their type and stability. The results are
presented in Table 1.

Points S0 ∈

(

0, 1
a1+1

) (
1

a1+1 , 1
)

(1, a1 + 1) (a1 + 1,+∞)

(0, S0) Unstable
node

Unstable
node

Unstable
node

Unstable
node

(N, 0) Unstable
node

Unstable
node

Saddle Saddle

(S0, 0) Stable node Saddle Unstable
node

Unstable
node

(
S0+N
a1+2 ,

S0(a1+1)−N

a1+2

)
Saddle Stable node Stable node Saddle

(N, a1N) Saddle Saddle Saddle Stable node

Table 1: The stability of the stationary points.

The method described in [3] is used for definition of behavior of trajectories near
complex (degenerate) stationary point. Thus, (0, 0) is a complex stationary point of
“saddle-node” type for any positive values of the parameters; (N, 0) if S0 = N ; (S0, 0) if
S0 = N(a1 + 1)−1; (N, a1N) if S0 = (a1 + 1)N .
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Theorem 4.1 There are no limit cycles in the phase portrait of two-dimentional
model of open Eigen’s hypercycle.

Proof. It is easy to show that points (0, 0), (0, S0), (N, 0), (S0, 0),(
S0+N
a1+2 ,

S0(a1+1)−N

a1+2

)

are on the integral lines x1 = 0, x2 = 0, x1+x2 = S0. So there is no

a limit cycle around these points. As for the point (N, a1N), it is saddle or node-saddle
if S0

N
∈ (0, a1 +1] (there is no a limit cycle around this point). If S0

N
∈ (a1 +1,+∞) then

it is a stable node. Consider this case. If S0

N
∈ (a1 + 1,+∞) then (N, a1N) is inside the

triangle formed by the integral lines x1 = 0, x2 = 0, x1 + x2 = S0.
Use Dulac theorem. Take F (x1, x2) = x−2

1 x−2
2 as Dulac function, then

∂(PF )

∂x1
+

∂(QF )

∂x2
= −

NS0 − x1(N − S0a1)

S0x2
1x

2
2

.

Here P and Q are the left-hand sides of equations of the two-dimensional model of open
Eigen’s hypercycle. As we consider only the triangle, then x1 6 S0. Hence

−
NS0 − x1(N − S0a1)

S0x2
1x

2
2

6 −
NS0 − S0(N − S0a1)

S0x2
1x

2
2

= −
S0a1
x2
1x

2
2

.

This expression has a constant sign in the triangle, hence there is no a limit cycle in the
triangle. Therefore there is no a limit cycle in the phase portrait. The theorem is proved.
✷

There is only one attractor, namely node, in the system for any positive values of
the parameters. The stable point is always in the first quarter of the phase portrait. If
0 < S0 < (a1 + 1)−1N , only one association is able to exist in the ecosystem. When
S0 = (a1 + 1)−1N , there is a bifurcation (if we consider only the first quarter). It is
interpreted as the inclusion of the second association in the ecological system and it
defines a new stage of succession process.

If (a1 + 1)−1N < S0 < (a1 + 1)N ,
(

S0+N
a1+2 ,

S0(a1+1)−N

a1+2

)

is a stable point. Note that

the first association is dominant, if a1 < 1. If a1 > 1, the first or the second one is
dominant depending on the size of the ecological niche.

If S0 > (a1 + 1)N , there is an excess of resources in the system. Both associations
reach maximum capacity. Moreover the first association is dominant if a1 < 1. Otherwise
the second association is dominant.

5 The Three-Dimensional Model of Open Eigen’s Hypercycle

It was determined that there are 11 stationary points of phase space of three-
dimensional model of open Eigen hypercycle: P1 : (0, 0, 0), P2 : (N, 0, 0), P3 :
(N, a1N, 0), P4 : (N, a1N, a1a2N), P5 : (S0, 0, 0), P6 : (0, S0, 0), P7 : (0, 0, S0),

P8 :
(

N+S0

a1+2 ,
S0(a1+1)−N

a1+2 , 0
)

, P9 :
(
S0+N

2 , 0, S0−N
2

)
, P10 :

(

0, S0

a2+2 ,
S0(a2+1)

a2+2

)

, P11 :
(

S0+N(a2+2)
a1a2+a1+a2+3 ,

(a1+1)S0+N(a1−1)
a1a2+a1+a2+2 , (a1a2+a2+1)S0−N(a1+a2+1)

a1a2+a1+a2+3

)

.

Using Theorems 3.1, 3.2 and 3.4 it can be shown that points P1 and P2 are complex
(degenerate) stationary points; point P3 is a saddle with two-dimension unstable subspace
if S0/N ∈ (0, a1+1), or two-dimension stable sub-space if S0/N ∈ (a1+1,+∞); point P5

is a stable node if S0/N ∈ (0, (a1 + 1)−1), a saddle with two-dimension stable subspace
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if S0/N ∈ ((a1 + 1)−1, 1), and an unstable node if S0/N ∈ (1,+∞); point P6 is unstable

node; point P8 is stable node if S0/N ∈
(

(1 + a1)
−1, 1+a1+a2)

1+a2+a1a2

)

, a saddle with two-

dimension stable subspace if S0/N ∈ (0, (a1 + 1)−1) ∪
(

1+a1+a2)
1+a2+a1a2

, 1 + a1

)

, and a saddle

with two-dimension unstable subspace if S0/N ∈ (1 + a1,+∞).
The Lyapunov method is used for definition of the type and stability of the last five

stationary points: point P7 is an unstable point; point P10 is a saddle with two-dimension

unstable subspace if

{

S0/N ∈
(

1−a1

1+a1

, 1
)

∪ (1,+∞),

a1 ∈ (0, 1),
∪

{
S0/N ∈ (0, 1) ∪ (1,+∞),
a1 ∈ [1,+∞),

and a saddle with two-dimension stable subspace if

{

S0/N ∈
(

0, 1−a1

1+a1

)

∪ (1,+∞),

a1 ∈ (0, 1),

point P11 is a stable stationary point if S0/N ∈
(

1+a1+a2

1+a2+a1a2

, 1 + a1 + a1a2

)

, an unsta-

ble point with two-dimension unstable subspace if

{

S0/N ∈
(

0, 1−a1

1+a1

)

∪ (1,+∞),

a1 ∈ (0, 1),
an

unstable point with two-dimension stable subspace if

{

S0/N ∈
(

1−a1

1+a1

, 1+a1+a2

1+a2+a1a2

)

,

a1 ∈ (0, 1),
∪

{

S0/N ∈
(

0, 1+a1+a2

1+a2+a1a2

)

,

a1 ∈ [1,+∞),
∪ S0/N ∈ (1 + a1 + a1a2,+∞); point P4 is a stable sta-

tionary point if S0/N ∈ (1 + a1 + a1a2,+∞), and an unstable stationary point if
S0/N ∈ (0, 1 + a1 + a1a2).

The bifurcation diagram is shown in Figure 1 ( a) , b) ) on the basis of the analysis
of stationary points. If a2 = 1, the curve 3 and line 2 merge. Solid curves illustrate
bifurcation values of parameters.

a) a2 ∈ (0, 1) b) a2 ∈ (1,+∞)

Figure 1: Sections of the parametric surfaces
(

1.S0/N = (1 + a1)
−1, 2.S0/N = 1, 3.S0/N =

(1 + a1 + a2)/(1 + a2 + a1a2), 4.S0/N = 1 + a1 + a1a2).

Point P5 is a stable stationary point for the values of the parameters from region I
(0 < S0/N < (1 + a1)

−1). In this case the size of ecological niche is so small, that only
one association is able to exist in the ecosystem. When (1+ a1)

−1 < S0/N < 1+a1+a2

1+a2+a1a2

,
point P8 appears in the first octant (regions II and III in case a) or region II in case b)
). In this case the second association can compete with the less demanding first one. If
S0/N > 1+a1+a2

1+a2+a1a2

, the size of the ecological niche is so big, that three associations are
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able to coexist in the biogeocoenose (region IV in case a) or regions III and IV in case b) ).
Note, that they use all resourses if 1+a1+a2

1+a2+a1a2

< S0/N < 1+a1+a1a2 (point P11 is stable);
there is an excess of resourses if S0/N > 1+a1+a1a2 (point P4 is stable, region V). So, the
appearance of each new association in the system corresponds to the bifurcation of the
first octant of phase space. During the bifurcations the stationary points that correspond
to the neighboring states of ecological systems, merge and “exchange stability”.

6 Conclusion

The main focus in this paper is to study the evolution of biogeocoenose during primary
succession. It can be seen from the study of two- and three-dimentional models that
there are self-organizing processes in the system. When ecological niche reaches certain
size (it is smaller than the limit of occurrence of resources excess), new association is
included in the system. Thus, under the influence of the flow of matter and energy the
ecosystem evolves. A control parameter is the size of the ecological niche.

Note that similar process is described in the papers on theoretical ecology [18]: first,
poor soil is ocuppied by lichens, further by mosses, grass and etc. Moreover, climatic
conditions determine the maximum number of primary succession stages and flora forms
soil, and thus it determines the time of transition to a new stage.

Note that the described dynamics is typical for natural ecological systems: volcano in
Kamchatka [13], sulfur deposits in Lviv region, Ukraine [6], coal mining dumps of Donetsk
and Chervonograd industrial areas, Ukraine [4], wetland [24], Glacier Bay, Alaska [9].

Also we can observe a discrete change of state of the ecological system, although the
process is described by the continuous model. Discreteness of the process is explained
by the presence of bifurcation phenomena in nonlinear models.
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