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Abstract: Based on the general Struble’s technique, a simple analytical technique
has been presented to investigate nonlinear oscillations of an elastic pendulum. The
method is illustrated by swinging spring pendulum in the resonance cases (frequencies
ratio is equal to 1 : 2). Solutions not only show a good coincidence with the corre-
sponding numerical solution but also give better result than multiple scales (MS)
method.
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1 Introduction

Struble’s technique [1], Krylov-Bogoliubov-Mitropolskii (KBM) method [2, 3], multiple
time-scales method [4] are usually applied to determine the approximation solutions
of weakly nonlinear differential equations. Popov [5] extended the KBM method to
a damped system. Bojadziev [6] studied second order nonlinear system with strong
damping effect by the two time scales method and justified that the solution is similar
to that obtained by Popov [5]. Sometimes, all classical perturbation techniques [1–3]
are useless to solve some nonlinear differential equations. In this regard, Shamsul [7]
presented a general Struble’s techniques to determine approximate solution of n-th order
weakly non-linear differential systems. It is easy to apply the general Struble’s technique
to solve nonlinear differential equations with various damping effect.
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In this paper, we have partially used this method [7] to solve nonlinear oscillations
of elastic pendulum, in which the internal resonance occurs. In particular, a swinging
spring pendulum without or with damping force has been investigated. Earlier Gorelik
and Witt [8] studied this nonlinear oscillator in the case without damping. Then Kane
and Kahn [9] studied the character of resonant case. Some authors studied similar type
of swinging spring by the method of averaging [4, 10–12]. Latter, Nayfeh and Mook
[13] studied two-degree-of freedom system by multiple scales (MS) method. Zaripov and
Petrov [14]; Awrejcewicz and Petrov [15] investigated a spring type swinging pendulum
in the resonance case by using Poincare–Birkhoff normal form method. Recently, some
authors [16–19] have studied nonlinear differential equations. The solution obtained by
the presented method is not only a better result than that by MS method [13] but also
shows a nice coincidence with the corresponding numerical solution.

2 The Method

Consider a nonlinear oscillator of two degree-of-freedoms with strong damping effect

ẍ+ 2k1ẋ+ ω2
1x = εf(x, θ, ẋ, θ̇), (1)

θ̈ + 2k2θ̇ + ω2
2θ = εΦ(x, θ, ẋ, θ̇), (2)

where over dot denotes the derivatives with respect to t, ω1, ω2 ≥ 0, k1, k2, ν are
constants, ε denotes small parameter, ω1 and ω2 are natural frequency, f(x, θ, ẋ, θ̇) and
Φ(x, θ, ẋ, θ̇) are nonlinear functions.

When ε = 0, equations (1)–(2) become a linear equation and there are two eigenvalues
of that two equations, say λ1 = −k1 + iω∗

1 , λ2 = −k1 − iω∗

1 , where ω
∗

1 =
√

ω2
1 − k21 and

µ1 = −k2 + iω∗

2 , µ2 = −k2 − iω∗

2 , where ω
∗

2 =
√

ω2
2 − k22 , respectively.

On the other hand when ε 6= 0, the first approximation solution of equations (1)–(2)
is chosen in the form [7]

x = a1e
λ1t + a2e

λ2t + εu1 (3)

and
θ = b1e

µ1t + b2e
µ2t + εv1. (4)

Equations (1)–(2) can be rewritten in the following form:

(D − λ1)(D − λ2)x = εf, (5)

(D − µ1)(D − µ2)θ = εΦ. (6)

Substituting equations (3)–(4) into equations (5)–(6), we obtain the following results,
respectively as

(D − λ1)(D − λ2)(a1e
λ1t + a2e

λ2t + ε u1) = εf

or
(D − λ2)(ȧ1 e

λ1t) + (D − λ1)(ȧ2 e
λ2t) + (D − λ1)(D − λ2)(εu1) = εf ; (7)

(D − µ1)(D − µ2)(b1e
µ1t + b2e

µ2t + εv1) = εΦ

or
(D − µ2)(ḃ1 e

µ1t) + (D − µ1)(ḃ2 e
µ2t) + (D − µ1)(D − µ2)(εv1) = εΦ, (8)

since (D − λ1)(a1 e
λ1t) = ȧ1 e

λ1t, (D − λ2)(a2 e
λ2t) = ȧ2 e

λ2t, (D − µ1)(b1 e
µ1t) = ḃ1 e

µ1t

and (D − µ2)(b2 e
µ2t) = ḃ2 e

µ2t.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (4) (2015) 409–417 411

Herein the nonlinear functions f and Φ can be expanded in a Taylor series as

f =

∞, ∞
∑

m1=0, m2=0

Fm1,m2
e(m1λ1+m2λ2)t, Φ =

∞, ∞
∑

r1=0, r2=0

Φr1,r2e
(r1µ1+r2µ2)t

and the unknown functions u1 and v1 can be obtained in terms of the variables a1, a2 and
t; b1, b2 and t under the condition that u1 and v1 exclude the terms Fm1,m2

e(m1λ1+m2λ2)t

of f and Φr1,r2e
(r1µ1+r2µ2)t of Φ where, m1 − m2 = ±1 and r1 − r2 = ±1. On the

other hand, both ȧ1 and ȧ2 respectively, contain the terms Fm1,m2
e(m1λ1+m2λ2)t where

m1−m2 = 1 and m1−m2 = −1. This assumption takes u1 free from secular terms, i.e.,
t cos t, t sin t. Similarly, both ḃ1 and ḃ2 respectively contain the terms Φr1,r2e

(r1µ1+r2µ2)t

where r1 − r2 = 1 and r1 − r2 = −1. This assumption makes v1 free from secular terms.
Now, separating equation (7) into three parts for ȧ1, ȧ2 and u1 we get

(D − λ2)(ȧ1 e
λ1t) =

∞, ∞
∑

m1=0, m2=0

Fm1,m2
e(m1λ1+m2λ2)t, m1 −m2 = 1, (9)

(D − λ1)(ȧ2 e
λ2t) =

∞, ∞
∑

m1=0, m2=0

Fm1,m2
e(m1λ1+m2λ2)t, m1 −m2 = −1, (10)

(D − λ1)(D − λ2)u1 =

∞, ∞
∑

m1=0, m2=0

Fm1,m2
e(m1λ1+m2λ2)t, m1 −m2 6= ±1. (11)

Similarly, separating equation (8) into three parts for ḃ1, ḃ2 and p1 we get

(D − µ2)(ḃ1 e
µ1t) =

∞, ∞
∑

r1=0, r2=0

Φr1,r2e
(r1µ1+r2µ2)t, r1 − r2 = 1, (12)

(D − µ1)(ḃ2 e
µ2t) =

∞, ∞
∑

r1=0, r2=0

Φr1,r2e
(r1µ1+r2µ2)t, r1 − r2 = −1, (13)

(D − µ1)(D − µ2)v1 =

∞, ∞
∑

r1=0, r2=0

Φr1,r2e
(r1µ1+r2µ2)t, r1 − r2 6= ±1. (14)

Under transformation a1 = a
2 e

iϕ1 , a2 = a
2 e

−iϕ1 , b1 = b
2 e

iϕ2 , b2 = b
2 e

−iϕ2 , equations
(9)–(14) are transformed to amplitude and phase equations. On the other hand, this
transformation keeps u1 and v1 in an amplitude and phase form. Therefore, the first
approximate solution is clearly found.

3 Example

Consider a swinging spring pendulum with damping force whose governing equation [4]
is given by

ẍ+ δ1ẋ+
k

m
x+ g(1− cos θ) − (l + x)θ̇2 = 0, (15)

θ̈ + δ2θ̇ +
g

l + x
sin θ +

2

l+ x
ẋθ̇ = 0, (16)
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where l is a length of swinging spring, ω2
1 = k

m
≈ 4ω2

2 = 4g
l
and k is constant.

If x≪ l, then equations (15) and (16) become

ẍ+ 2k1ẋ+ ω2
1x+ ω2

2 θ
2 l/2− l θ̇2 = 0, (17)

θ̈ + 2k2θ̇ + ω2
2θ − ω2

2 x θ/l + 2 ẋ θ̇/l = 0. (18)

Substituting x = εx and θ = εθ in equations (17)–(4) , we obtain

ẍ+ 2k1ẋ+ ω2
1 x = −εω2

2 θ
2l/2 + εl θ̇2, (19)

θ̈ + 2k2θ̇ + ω2
2θ = εω2

2xθ/l − 2εẋθ̇/l, (20)

where δ1 = 2k1, δ2 = 2k2.
Equations (19)–(20) can be written as

(D − λ1)(D − λ2)x = −ε(ω2
2 θ

2l/2− l θ̇2), (21)

(D − µ1)(D − µ2)θ = εω2
2xθ/l − 2εẋθ̇/l. (22)

When ε = 0, equation (21) becomes a linear equation and there are two eigenvalues, say
λ1 = −k1 + iω∗

1 , λ2 = −k1 − iω∗

1 , where ω
∗

1 =
√

ω2
1 − k21 and x = a1e

λ1t + a2e
λ2t + εu1;

θ = b1e
µ1t + b2e

µ2t + εp1; and

f = −(ω2
2θ

2l/2− lθ̇2) = −lω2
2b

2
1e

2µ1t/2− lω2
2b

2
2e

2µ2t/2− 2lb1b2ω
2
2e

(µ1+µ2)t/2

+ lb21µ
2
1e

2µ1t + 2lb1b2µ1µ2e
(µ1+µ2)t + lb22µ

2
2e

2µ2t + · · ·

Therefore, equation (21) becomes

(D − λ2)(ȧ1e
λ1t) + (D − λ1)(ȧ2e

λ2t) + ε(D − λ1)(D − λ2)u1

= −εlω2
2b

2
1e

2µ1t/2− εlω2
2b

2
2e

2µ2t/2− 2εlb1b2ω
2
2e

(µ1+µ2)t/2

+ εlb21µ
2
1e

2µ1t + 2εlb1b2µ1µ2e
(µ1+µ2)t + εlb22µ

2
2e

2µ2t + · · · ,

(23)

It is mentioned that λ1 = −k1 + iω∗

1 , λ2 = −k1 − iω∗

1 , µ1 = −k2 + iω∗

2 , µ2 = −k2 − iω∗

2

in the case of under-damped systems. For the resonance case, we have used ω∗

1 ≈ 2ω∗

2 .
Since eλ1t and e2µ1t contain eiω

∗

1
t, we equate the terms with eλ1t and e2µ1t of equation

(23). In a similar way, we equate the terms with eλ2t and e2µ2t of equation (23). On the
other hand, u1 contains the term e(µ1+µ2)t.

Now, separating equation (23) into three parts for ȧ1, ȧ2 and u1 we get (see paper
[7])

(D − λ2)(ȧ1e
λ1t) = −εlω2

2b
2
1e

2µ1t/2 + εlb21µ
2
1e

2µ1t, (24)

(D − λ1)(ȧ2e
λ2t) = −εlω2

2b
2
2e

2µ2t/2 + εlb22µ
2
2e

2µ2t, (25)

and

(D − λ1)(D − λ2)u1 = −lω2
2b1b2e

(µ1+µ2)t + 2lb1b2µ1µ2e
(µ1+µ2)t. (26)

From equation (24), we obtain

ȧ1e
λ1t = −

εlω2
2b

2
1e

2µ1t

2(D − λ2)
+
εlb21µ

2
1e

2µ1t

(D − λ2)
= εlb21

(

µ2
1 −

ω2
2

2

)

e2µ1t/(2µ1 − λ2). (27)
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Equation (27) can be written as

ȧ1 = εlb21

(

µ2
1 −

ω2
2

2

)

e(2µ1−λ1)t/(2µ1 − λ2). (28)

Substituting a1 = a
2 e

iϕ1 , a2 = a
2 e

−iϕ1 , b1 = b
2e

iϕ2 , b2 = b
2e

−iϕ2 , λ1 = −k1 + iω∗

1 ,
λ2 = −k1 − iω∗

1 , and µ1 = −k2 + iω∗

2 , µ2 = −k2 − iω∗

2 into equation (28), we obtain

(ȧ+ iaϕ̇1)/2 =
εlb2(2(−k2 + iω∗

2)
2 − ω2

2)e
(2(−k2+iω∗

2
)−(−k1+iω∗

1
))t+2iϕ2−iϕ1

8(2(−k2 + iω∗

2)− (−k1 − iω∗

1))

=
εlb2e(k1−2k2)t

4((k1 − 2k2)2 + (2ω∗

2 + ω∗

1)
2)

[(4k22 − 3ω2
2)(k1 − 2k2)− 4k2ω

∗

2(2ω
∗

2 + ω∗

1)

− i(4k2ω
∗

2(k1 − 2k2) + (4k22 − 3ω2
2)(2ω

∗

2 + ω∗

1))]e
iγ ,

(29)
where γ = (2ω∗

2 − ω∗

1)t+ 2ϕ2 − ϕ1.
Separating the real and imaginary parts from both sides of equation (29), we obtain

ȧ =
εlb2e(k1−2k2)t

4((k1 − 2k2)2 + (2ω∗

2 + ω∗

1)
2)
[(4k22 − 3ω2

2)(k1 − 2k2)− 4k2ω
∗

2(2ω
∗

2 + ω∗

1) cos γ

+ (4k2ω
∗

2(k1 − 2k2) + (4k2
2
− 3ω2

2)(2ω
∗

2 + ω∗

1)) sin γ],

(30)

ϕ̇1 =
εlb2e(k1−2k2)t

4a((k1 − 2k2)2 + (2ω∗

2 + ω∗

1)
2)
[(4k2

2
− 3ω2

2)(k1 − 2k2)− 4k2ω
∗

2(2ω
∗

2 + ω∗

1) sin γ

− (4k2ω
∗

2(k1 − 2k2) + (4k22 − 3ω2
2)(2ω

∗

2 + ω∗

1)) cos γ].

(31)

Similarly, equation (22) becomes

(D − µ1)(ḃ2e
µ2t) + (D − µ2)(ḃ1e

µ1t) + ε(D − µ1)(D − µ2)v1

= εω2
2(a1b1e

(λ1+µ1)t + a1b2e
(λ1+µ2)t + a2b1e

(λ2+µ1)t

+ a2b2e
(λ2+µ2)t)/l− 2ε(a1b1λ1µ1e

(λ1+µ1)t + a1b2λ1µ2e
(λ1+µ2)t

+ a2b1λ2µ1e
(λ2+µ1)t + a2b2λ2µ2e

(λ2+µ2)t)/l.

(32)

Herein we have used ȧ1 = 0, ḃ1 = 0.
Applying the separation rule to equation (32), we obtain the following equations for

ḃ1, ḃ2 and v1

(D − µ2)(ḃ1e
µ1t) = εω2

2a1b2e
(λ1+µ2)t/l− 2ε a1b2λ1µ2e

(λ1+µ2)t/l, (33)

(D − µ1)(ḃ2e
µ2t) = εω2

2a2b1e
(λ2+µ1)t/l− 2ε a2b1λ2µ1e

(λ2+µ1)t/l (34)

and
(D − µ1)(D − µ2)v1 = (ω2

2a1b1e
(λ1+µ1)t + ω2

2a2b2e
(λ2+µ2)t)/l

− 2(a1b1λ1µ1e
(λ1+µ1)t + 2a2b2λ2µ2e

(λ2+µ2)t)/l
(35)

From equation (33), we obtain

ḃ1e
µ1t =

εω2
2a1b2e

(λ1+µ2)t

l(D − µ2)
−

2ε a1b2λ1µ2e
(λ1+µ2)t

l(D − µ2)

=
εω2

2a1b2e
(λ1+µ2)t

lλ1
−

2ε a1b2λ1µ2e
(λ1+µ2)t

lλ1
.

(36)
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From equation (36), we obtain

ḃ1 =
εω2

2a1b2e
(λ1+µ2−µ1)t

lλ1
−

2ε a1b2λ1µ2e
(λ1+µ2−µ1)t

lλ1
. (37)

Using a transformation a1 = a
2 e

iϕ1 , a2 = a
2 e

−iϕ1 , b1 = b
2e

iϕ2 , b2 = b
2e

−iϕ2 for equation
(37), we obtain

ḃ+ ibφ̇2 =
εabe−k1t

2lω2
1

[(2ω2
1k2 − ω2

2k1) + i(2ω2
1ω

∗

2 − ω2
2ω

∗

1)] e
−iγ , (38)

where γ = (2ω∗

2 − ω∗

1)t+ 2ϕ2 − ϕ1.
Separating the real and imaginary parts from both sides of equation (38), we obtain

ḃ =
ε a be−k1t

2lω2
1

[(2ω2
1k2 − ω2

2k1) cos γ + (2ω2
1ω

∗

2 − ω2
2ω

∗

1) sin γ], (39)

ϕ̇2 =
ε a e−k1t

2lω2
1

[(2ω2
1ω

∗

2 − ω2
2ω

∗

1) cos γ − (2ω2
1k2 − ω2

2k1) sin γ]. (40)

Therefore, the first approximate solution of equations (15)–(16) becomes

x = εae−k1t cos(ω1t+ ϕ1) +O(ε2), (41)

θ = εbe−k2t cos(ω2t+ ϕ2) +O(ε2). (42)

If the damping force is absent i.e. k = 0, then equations (30)–(31) and (39)–(40) become

ȧ = −3εlb2ω2
2 sinψ/(4(2ω2 + ω1)), (43)

ϕ̇1 = 3εlb2ω2
2 cosψ/(4a(2ω2 + ω1)), (44)

and

ḃ =
εabω2(2ω1 − ω2) sinψ

2lω1
, (45)

ϕ̇2 =
εaω2(2ω1 − ω2) cosψ

2lω1
, (46)

where ψ = (2ω2 − ω1)t+ 2ϕ2 − ϕ1.
In this case (undamped), the first approximate solution of equations (15)–(16) is

x = εa cos(ω1t+ ϕ1) +O(ε2), (47)

θ = εb cos(ω2t+ ϕ2) +O(ε2). (48)

4 Results and Discussion

Usually a nonlinear problem is solved by a perturbation method [5, 20–23]. In this paper,
a simple analytical technique has been developed based on the general Struble’s technique
[7] to investigate nonlinear oscillations of an elastic pendulum. The technique is very easy
and straightforward. Nonlinear oscillations of the swinging spring pendulum in the case
of resonance ω1 : ω2 = 1 : 2 have been considered. The solutions have been obtained
without and with damping effect and presented respectively in Figure 1 and Figure 3.
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On the other hand, the corresponding perturbation solutions have been obtained by MS
method and shown in Figure 2 and Figure 4. To compare our solution with existing
perturbation solutions, we have provided the numerical solutions in all the figures.

From Figure 2 and Figure 4, we see that the solutions by MS method deviate from
numerical solution after a certain time. On the other hand, our solutions (see Figures 1,
3) show a good coincidence with the numerical solutions.

Comparing all the results of swinging spring pendulum in the case of resonance ω1 :
ω2 = 1 : 2, we observe that the general Struble’s technique provides more correct solution
than other perturbation solutions especially those obtained by the multiple time scale
method [13].

5 Conclusion

Based on the general Struble’s technique [7], a simple analytical technique has been
presented to investigate nonlinear oscillations of an elastic pendulum in which damping
effect is present. Nonlinear oscillations of the swinging spring pendulum with or without
damping effect in the case of resonance are considered. Previously, some authors (see
[9, 14–15]) investigated swinging spring pendulum without damping effect. On the other
hand, some perturbation methods especially MS methods are not suitable to investigate
nonlinear oscillations of elastic pendulum. In this paper, a simple perturbation method
has been presented and has given better result than MS method. The method also
provides a good result compared to the numerical solution (considered to exact).

Fig 1: Solution of equations (15) and (16) obtained by the presented method has been
presented (denoted by dots) when k1 = k2 = 0, , ω2 = 0.5ω1, l = 1, ε = 0.1 with initial
conditions [x(0) = 1, ẋ(0) = 0, θ(0) = 0.1, θ̇(0) = 0]. Corresponding numerical solution
(obtained by fourth-order Runge-Kutta method) has been presented (represented by solid
line) to be compared with the present solution.

Fig 2: Solution of equations (15) and (16) obtained by MS method has been presented
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(denoted by dots) when k1 = k2 = 0, ω2 = 0.5ω1, l = 1, ε = 0.1 with initial conditions
[x(0) = 1, ẋ(0) = 0, θ(0) = 0.1, θ̇(0) = 0]. Corresponding numerical solution (obtained
by fourth-order Runge-Kutta method) has been presented (represented by solid line) to
be compared with MS method solution.

Fig 3: Solution of eqations (30) and (31) by the present method has been presented
(denoted by dots) when ω2 = 0.5ω1,l = 1, ε = 0.1,k1 = δ1/2 = 0.002, k2 = δ2/2 = 0.002
and the initial conditions [x(0) = 1, ẋ(0) = 0, θ(0) = 0.1, θ̇(0) = 0]. Corresponding
numerical solution (obtained by fourth-order Runge-Kutta method) has been presented
(represented by solid line) to be compared with the present solution.

Fig 4: Solution of eqations (30) and (31) by MS method has been presented (denoted
by dots) when ω2 = 0.5ω1,l = 1, ε = 0.1,k1 = δ1/2 = 0.002, k2 = δ2/2 = 0.002 and the
initial conditions [x(0) = 1, ẋ(0) = 0, θ(0) = 0.1, θ̇(0) = 0]. Corresponding numerical so-
lution (obtained by fourth-order Runge-Kutta method) has been presented (represented
by solid line) to be compared with MS method solution.
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