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Abstract: In this paper, a new type of synchronization, called Θ−Φ synchronization,
is introduced for different chaotic discrete-time systems using two scaling matrices.
The proposed synchronization approach allows us to study synchronization between
two different dimensional discrete-time chaotic systems in different dimensions. By
using Lyapunov stability theory and stability property of linear discrete-time systems,
some control schemes are proposed and new synchronization results are derived. To
verify the effectiveness of our approach, numerical example and simulations are given.
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1 Introduction

Over the last two decades, many scholars have proposed various control schemes in chaos
synchronization [1–6], but the most of works have concentrated on continuous-time rather
than discrete-time chaotic systems. Recently, synchronization of chaotic and hyperchaotic
maps has attracted a great deal of interest of applied scientists and engineers due to it’s
potential applications in cryptology and secure communication [7–10]. Different methods
have been developed to study the synchronization in discrete-time chaotic dynamical
systems [11–13].
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Until now, a variety of approaches have been proposed for the synchronization of
discrete chaotic such as synchronization and anti-synchronization [14,15], adaptive func-
tion projective synchronization [16,17], full-state hybrid projective synchronization [18],
Lag synchronization [19], impulsive synchronization [20], function cascade synchroniza-
tion [21], generalized synchronization [22, 23] and Q-S synchronization [24]. Among
all types of synchronization, matrix projective synchronization (MPS) is effective ap-
proach for achieving the synchronization of chaotic and hyperchaotic discrete-time sys-
tems [25, 26]. In (MPS), the drive chaotic system and the response chaotic system are
synchronized up to scaling constant matrix.

In this paper, we generalize the (MPS) type to a new type of synchronization using
two scaling constants matrices (Θ−Φ synchronization). The aim of this work is to present
constructive schemes to synchronize n-dimensional drive system and m-dimensional re-
sponse system in m-D and n-D, respectively. The derived results are based on Lyapunov
stability theory, stability property of linear discrete-time systems and nonlinear control
laws. To verify the validity and the feasibility of the new synchronization results, the
proposed control schemes are applied to 2D Lorenz discrete time system and 3D discrete-
time Rössler system in different dimensions.

This paper is organized as follows. In Section 2, the problem of Θ − Φ synchro-
nization is formulated. In section 3, the Θ − Φ synchronization is studied in m-D. The
n-dimensional Θ − Φ synchronization is investigated in Section 4. In Section 5, nu-
merical simulations are given to illustrate the effectiveness of the main results. Finally,
conclusions are drawn in Section 6.

2 Θ− Φ Synchronization in Discrete-Time Systems

The drive and the response chaotic systems are in the following forms

X(k + 1) = AX(k) + f(X(k)), (1)

Y (k + 1) = BY (k) + g(Y (k)) + U, (2)

where X(k) ∈ Rn, Y (k) ∈ Rm are state vectors of the drive system and the response
system, respectively, A ∈ Rn×n, B ∈ Rm×im are linear parts of the drive system and the
response system, respectively, f : R n → Rn, g : Rm → Rm are nonlinear parts of the
drive system and the response system, respectively, and U ∈ Rm is a vector controller.

Definition 2.1 The drive system (1) and the response system (2) are said to be
synchronized in dimension d, with respect to scaling matrices Θ and Φ, respectively, if
there exists a controller U = (ui)1≤i≤m ∈ Rm and given matrices Θ = (Θ)d×m and
Φ = (Φ)d×n such that the synchronization error

e(k) = ΘY (k)− ΦX(k) (3)

satisfies the condition lim k−→+∞ ‖e (k)‖ = 0.

3 Θ− Φ Synchronization in m-D

In this case, we assume that the synchronization dimension d = m. The error system
between the drive system (1) and the response system (2) can be derived as

e (k + 1) = ΘY (k + 1)− ΦX(k + 1)

= ΘBY (k) + Θg(Y (k)) + ΘU − ΦAX(k)− Φf(X(k)), (4)
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where Θ = (Θij) ∈ Rm×m and Φ = (Φij) ∈ Rn×m are the scaling matrices.

Theorem 3.1 The drive system (1) and the response system (2) are globally synchro-
nized, with respect to scaling matrices Θ and Φ, if the following conditions are satisfied:

(i) U = −Θ−1 × [(L1 −B) e (k) + ΘBY (k) + Θg(Y (k))− ΦAX(k)− Φf(X(k))],
where Θ−1 is the inverse of the matrix Θ.

(ii) (B − L1)
T (B − L1) − I is a negative definite matrix, where L1 ∈ Rm×m is a

control matrix.

Proof. Then, the error system (4) can be described as

e (k + 1) = (B − L1) e (k) + ΘU + (L1 −B) e (k) + ΘBY (k)

+Θg(Y (k))− ΦAX(k)− Φf(X(k)), (5)

where L1 ∈ R m×m is a control matrix. By substituting (i) into equation (5), the error
system can be written as

e (k + 1) = (B − L1) e (k) . (6)

Construct the candidate Lyapunov function in the form V (e(k)) = eT (k)e(k), we
obtain

∆V (e(k)) = eT (k + 1)e(k + 1)− eT (k)e(k)
= eT (k)(B − L1)

T (B − L1)e(k)− eT (k)e(k)
= eT (k)

[

(B − L1)
T (B − L1)− I

]

,

and by using (ii) we get ∆V (e(k)) < 0. Thus, from the Lyapunov stability theory, it is
immediate that limk→∞ ei (k) = 0, i = 1, 2, ..., n. That is the zero solution of the error
system (6) is globally asymptotically stable and therefore, the systems (1) and (6) are
globally Θ− Φ synchronized in m-D.

4 Θ− Φ Synchronization in n-D

Now, the synchronization dimension d = n. The error system between the drive system
(1) and the response system (2) can be derived as

e (k + 1) = (A− L2) e (k) + ΘU + (L2 −A) e (k)

+ΘBY (k) + Θg(Y (k))− ΦAX (k)− Φf(X(k)), (7)

where Θ = (Θij) ∈ Rn×m and Φ = (Φij) ∈ Rn×n are the scaling matrices. In this case,
we assume that m > n and we take the controller components vi, where i > n, as

ui = 0, i = n+ 1, n+ 2, ...,m. (8)

Then, the error system (7) can be written as

e (k + 1) = (A− L2) e (k) + Θ̂Û + R, (9)

where Θ̂ = (Θij)m×m
, Û = (ui)1≤i≤n,

R = (L2 −A) e (k) + ΘBY (k) + Θg(Y (k))− ΦAX (k)− Φf(X(k)), (10)

and L2 ∈ Rn×n is a control matrix.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (4) (2015) 400–408 403

Theorem 4.1 The drive system (1) and the response system (2) are globally syn-
chronized, with respect to the scaling matrices Θ and Φ, if the following conditions are
satisfied:

(i) Û = −Θ̂−1 ×R, where Θ̂−1 is the inverse of the matrix Θ̂.
(ii) All the eigenvalues of A− L2 lie inside the unit disk.

Proof. By substituting (i) into equation (9), the error system can be written as

e (k + 1) = (A− L2) e (k) . (11)

With respect to the asymptotic stability property of linear discrete-time systems, if
all eigenvalues of A−L2 are strictly inside the unit disk, it is immediate that all solutions
of error system (11) go to zero as k → ∞. Therefore, the systems (1) and (2) are globally
Θ− Φ synchronized in n-D.

5 Numerical Application and Simulations

In this section, a numerical example is given to illustrate the effectiveness of the theoret-
ical results derived in the previous sections. Thus, we consider the 2D Lorenz discrete
time system as the drive system and the controlled 3D discrete-time Rössler system as
the response system. The Lorenz discrete time system is described by

x1 (k + 1) = (1 + ab)x1 (k)− bx1 (k)x2 (k) , (12)

x2 (k + 1) = (1− b)x2 (k) + bx2
1 (k) ,

which has a chaotic attractor, for example, when (a, b) = (1.25, 0.75) [27].
The controlled discrete-time Rössler system can be described as:

y1 (k + 1) = αy1 (k) (1− y1 (k))− β (y3 (k) + γ) (1− 2y2 (k)) + u1, (13)

y2 (k + 1) = δy2 (k) (1− y2 (k)) + ςy3 (k) + u2,

y3 (k + 1) = η ((y3 (k) + γ) (1− 2y2 (k))− 1) (1− θy1 (k)) + u3,

where U = (u1, u2, u3)
T

is the vector controller. When α = 3.8, β = 0.05, γ = 0.35,
δ = 3.78, ς = 0.2, η = 0.1 and θ = 1.9, the discrete-time Rössler system (i.e., the system
map (18) with u1 = 0, u2 = 0 and u3 = 0) has a hyperchaotic attractor [28].

The linear part A and the nonlinear part f of the Lorenz discrete time system are
given by

A =

(

1 + ab 0
0 1− b

)

, f =

(

−bx1 (k)x2 (k)
bx2

1 (k)

)

.

The linear part B and the nonlinear part g of the discrete-time Rössler system are
given by

B =





α 2βγ −β

0 δ ς

ηθ (1− γ) −2γη η



 ,

g =





2βy3 (k) y2 (k)− αy21 (k)− βγ

−δy22 (k)
η (γ − 1)− ηy3 (k) (θy1 (k) + 2y2 (k)) + 2θy1 (k) y2 (k) (γ + ηy3 (k))



 .
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5.1 Synchronization of the Lorenz discrete time system and the discrete-

time Rössler system in 3D

In this case, the scaling matrices are chosen as

Θ =





2 0 0
0 1 0
0 0 3



 , Φ =





1 2
2 3
1 1



 ,

so,

Θ−1 =





1

2
0 0

0 1 0
0 0 1

3



 .

The control matrix L1 is selected as

L1 =





3α
4

2βγ −β

0 4δ
5

ς

ηθ (1− γ) −2γη 0



 . (14)

Using simple calculations, we can show that (B − L1)
T (B − L1) − I is a negative

definite matrix. According to our approach presented in Section 3, the vector controller
U = (u1, u2, u3)

T
can be obtained as

u1 = −
α

8
e1 (k)− αy1 (k)− 2βγy2 (k) + βγ (15)

+βy3 (k)− 2βy3 (k) y2 (k) + αy21 (k)

+
1

2
(1 + ab)x1 (k)−

1

2
bx1 (k)x2 (k) ,

u2 = −
δ

5
e2 (k)− δy2 (k)− ςy3 (k) + δy22 (k)

+3 (1− b)x2 (k) + bx2
1 (k) ,

u3 = −
η

3
e3 (k)− ηθ (1− γ) y1 (k) + 2γηy2 (k)− ηy3 (k)

+ηy3 (k) (θy1 (k) + 2y2 (k))− 2θy1 (k) y2 (k) (γ + ηy3 (k))

+
1

3
(1 + ab)x1 (k)−

b

3
x1 (k)x2 (k) +

1

3
(1− b)x2 (k) +

b

3
x2
1 (k)

−η (γ − 1) ,

where e1 (k) = 2y1 (k)− x1 (k)− 2x2 (k) , e2 (k) = y2 (k)− 2x1 (k)− 3x2 (k) and e3 (k) =
3y3 (k)− x1 (k)− x2 (k) . Therefore, the systems (12) and (13) are globally synchronized
in 3D, with respect to the scaling matrices Θ and Φ. In this case, the error system can
be described as: e1 (k + 1) = α

4
e1 (k) , e2 (k + 1) = δ

5
e2 (k) and e3 (k + 1) = ηe3 (k) . The

time evolution of errors e1(k), e2(k) and e3(k) between the maps (12) and (13) in 3D is
shown in Figure 1.

5.2 Synchronization of the Lorenz discrete time system and the discrete-

time Rössler system in 2D

In this case, the scaling matrices are chosen as

Θ =

(

2 0 1
0 4 1

)

, Φ =

(

2 0
1 3

)

,
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Figure 1: Time evolution of errors e1(k), e2(k) and e3(k) between the maps (12) and (13) in
3D.

so,

Θ̂ =

(

2 0
0 4

)

, Θ̂−1 =

(

1

2
0

0 1

5

)

.

The control matrix L2 is selected as

L1 =

(

1 0
0 1

)

. (16)

Simply, we can see that all eigenvalues of A − L2 are strictly inside the unit
disk. According to the control scheme proposed in Section 4, the vector controller
U = (u1, u2, u3)

T
can be designed as follows

u1 =
1

2
abe1 (k)−

1

2
η ((y3 (k) + γ) (1− 2y2 (k))− 1) (1− θy1 (k)) (17)

−αy1 (k) (1− y1 (k)) + β (y3 (k) + γ) (1− 2y2 (k))

+ (1 + ab)x1 (k)−
1

2
bx1 (k)x2 (k) ,
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u2 = −
1

5
be2 (k)−

1

5
η ((y3 (k) + γ) (1− 2y2 (k))− 1) (1− θy1 (k))

−4
1

5
δy2 (k) (1− y2 (k))−

1

5
ςy3 (k) +

1

5
(1 + ab)x1 (k)

−
1

5
bx1 (k)x2 (k) +

1

5
3 (1− b)x2 (k) +

1

5
3bx2

1 (k) ,

u3 = 0,

where e1 (k) = 2y1 (k) + y3 (k)− 2x1 (k) and e2 (k) = 4y2 (k) + y3 (k)− x1 (k)− 3x2 (k) .
Therefore, the systems (12) and (13) are globally synchronized in 2D, with respect to the
scaling matrices Θ and Φ. In this case, the error system can be written as: e1 (k + 1) =
abe1 (k) and e2 (k + 1) = −be2 (k) . The time evolution of errors e1(k) and e2(k) between
the maps (12) and (13) in 2D is shown in Figure 2.

Figure 2: Time evolution of errors e1(k) and e2(k) between the maps (12) and (13) in 2D.

6 Conclusion

In this paper, the Θ − Φ synchronization was proposed to synchronize n-dimensional
drive system and m-dimensional response system. To derive new results, two control
schemes were proposed using two constants scaling matrices Θ and Φ. The first scheme
was presented when the synchronization dimension d = m, (Θ − Φ synchronization in
m-D) and the second one was constructed when the synchronization dimension d = n,

(Θ−Φ synchronization in n-D). Numerical example and simulation results were used to
verify the effectiveness of the proposed schemes.
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