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1 Introduction

Fractional differential equations are the corner stone for description of memory and
hereditary properties of many materials and processes. Its useful applications include
mathematical modeling in many engineering and science disciplines like physics, chem-
istry, biophysics, biology etc. Its non local behavior is the vital characteristic that
makes it vary from its rival in classical calculus. For more details one can see the pa-
pers [1, 6, 8, 10, 13, 15, 22, 24, 25] and the references therein.

Integro-differential equations occur in probability theory, nonlinear viscoelastic bod-
ies, acoustic scattering theory and bio-logical population models and systems with sub-
stantially distributed parameters. All these problems end up with boundary value prob-
lems of integro-differential equations. For details see the paper [21].
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In recent years, the theory of impulsive differential equations for integer order comes
in various applications of mathematical modeling of phenomena and practical situations.
For instance, the impulsive differential equations captured from real world problems
describe the dynamics of processes in which sudden, discontinuous jumps occur. For
more details one can see the papers [2, 3, 6, 7, 12, 19, 20, 23, 26] and references therein.

C. Bai [4] has investigated the existence of solutions of multi-point boundary value
problem of nonlinear impulsive fractional differential equations at resonance. Further in
his subsequent study in [5] the author has extended the results for the boundary value
problem of nonlinear impulsive differential equations at resonance. The author obtained
the result of existence by using the coincidence degree theory due to Mawhin.

In [20] L. Yang et al. have proved the existence and uniqueness of solution for the
following nonlocal boundary value problem of impulsive fractional differential equations:











cDqu(t) = F (t, u(t), u′(t)), q ∈ (1, 2], t ∈ [0, 1],

∆u(tk) = Ik(u(t
−
k )), ∆(u′(tk)) = Jk(u(t

−
k )), k = 1, 2...., p,

αu(0) + βu′(0) = g1(u), αu(1) + βu′(1) = g2(u), α > 0, β ≥ 0,

(1)

by means of a fixed point theorem due to ORegan, the authors established the sufficient
conditions for the existence of at least one solution of the problem. In [7] J. Cao et
al. have established the existence and uniqueness results for the impulsive fractional
differential inclusions with a fractional order multi-point boundary condition and with
fractional order impulses and proved the results by using the multi-valued analysis of
topological fixed point theory.

In [11] X. Fu et al. concerned with the fractional separated boundary value problem
of the following fractional differential equations with fractional impulsive conditions:











cDαx(t) = F (t, x(t), t ∈ J = [0, T ], t 6= tk, α ∈ (1, 2),

∆x(tk) = Ik(x(t
−
k )), ∆(cDγx(tk)) = Ik

∗(x(t−k )), k = 1, 2....,m,

a1x(0) + b1(
cDγx(0)) = c1, a2x(T ) + b2(

cDγx(T )) = c2, γ ∈ (0, 1),

(2)

where ai, bi, ci,∈ R, i = 1, 2, with ai 6= 0 and a2T
γΓ(2−γ) 6= −b2. By using the Schaefer

fixed point theorem, Banach fixed point theorem, and nonlinear alternative of Leray
Schauder type, the authors obtained the existence results.

In [14] N. Kosmatov considered the following two impulsive problems:











cDδx(t) = F (t, x(t)), t ∈ (0, 1]\{t1, t2, ...., tm},
cDγx(t+k ))−

c Dγx(t−k )) = Jk(x(tk)), k = 1, 2....,m,

x(0) = x0, x
′(0) = x1,

(3)

where cDδ is the Caputo fractional derivative of order δ ∈ (1, 2) with the lower limit
zero, 0 < γ < 1, and











LDδx(t) = F (t, x(t), t ∈ (0, 1]\{t1, t2, ...., tm},
LDγx(t+k ))−

L Dγx(t−k )) = Jk(x(tk)), k = 1, 2....,m,

I1−αx(0) = x0,

(4)

where LDδ is the Riemann-Liouville fractional derivative of order δ ∈ (0, 1) with lower
limit zero and 0 < γ < δ.
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Motivated by the works [4,5,7,11,14,20] we investigate the existence and uniqueness
solutions for the following impulsive fractional integro-differential equation with nonlocal
boundary conditions:



















cDαu(t) = f(t, u(t),
∫ t

0
K(t, s)u(s)ds), t ∈ [0, T ], t 6= tk, α ∈ (1, 2),

∆u(tk) = Ik(u(t
−
k )),

∆(cDqu(tk)) = Jk(u(t
−
k )), q ∈ (0, 1), k = 1, 2, . . . ,m,

u(0) = a1 − g(u), u(T ) = a2 − h(u), a1, a2 ∈ R,

(5)

where cDα is the Caputo’s derivative, functions f : [0, T ] × X × X → X for K :
[0, T ] × [0, T ] → [0,∞) and g, h ∈ X → X are continuous. The impulsive conditions
for 0 = t0 < t1 < · · · < tm < tm+1 = T, Ik, Jk ∈ C(X,X), are bounded functions.
We have ∆u(tk) = u(t+k )− u(t−k ) and ∆(cDqu(tk)) = (cDqu(t+k ))− (cDqu(t−k )), u(t

+
k ) =

limh→0 u(tk + h) and u(t−k ) = limh→0 u(tk − h) represent the right and left-hand limits
of u(t) at t = tk respectively with u(t−i ) = u(ti), where K ∈ C(D,R+), the set of all
positive functions which are continuous on D = {(t, s) ∈ R

2 : 0 ≤ s ≤ t < T } and

K∗ = supt∈[0,T ]

∫ t

0
K(t, s)ds < ∞.

In all the above cited papers except [4,5,7,11,14,20] the authors established the exis-
tence and uniqueness results of the fractional order boundary value problems by applying
the standard fixed point theorems with the integer order impulsive conditions. In this
paper, we show the existence and uniqueness solutions for the fractional integro differ-
ential equation with fractional impulsive conditions and nonlocal boundary conditions.
The boundary value problems like (5) arise in many applications such as electromagnetic
waves in dielectric media, the mathematical modeling of various phenomena of transport
theory, the transfer of neutrons through thin plates and membranes in nuclear reactors,
in the propagation of radiation through the atmosphere of planets and stars, and in
several other transport problems.

In Section 2, we present some notations and preliminary results about fractional
calculus and differential equations to be used in the following sections. In Section 3,
we discuss existence and uniqueness results for solutions of the system (5) by using the
Banach and Schauder fixed point theorems.

2 Preliminaries

Let (X, ‖ · ‖X) be a complex Banach space of functions with the norm ‖y‖X =
supt∈[0,T ]{|y(t)| : y ∈ X}. To treat the impulsive conditions, define the following space

PCt = PC([0, t] : X), 0 ≤ t ≤ T,

be a Banach space of all such functions y : [0, T ] → X, which are continuous everywhere
except for a finite number of points ti, i = 1, 2, . . . ,m, at which y(t+i ) and y(t−i ) exist
with y(t−i ) = y(ti) and are endowed with the norm

‖y‖PCt
= sup

t∈[0,T ]

{‖y(t)‖X , y ∈ PCt},

and
PC1

t = PC1([0, t] : X), 0 ≤ t ≤ T,

be a Banach space of all such functions y : [0, T ] → X, which are continuously
differentiable everywhere except for a finite number of points ti, i = 1, . . . ,m, at
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which y′(t+i ) and y′(t−i ) exist with y′(t−i ) = y′(ti) and are endowed with the norm
‖y‖PC1

t
= supt∈[0,T ]{‖y(t)‖PCt

, ‖y′(t)‖PCt
, y ∈ PCt}. All other notations in the paper

have their usual meanings.

Definition 2.1 [15] The Riemann-Liouville fractional integral operator for order
α > 0, of a function f : R+ → R and f ∈ L1(R+, X) is defined by

J0
t f(t) = f(t), Jα

t f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0, (6)

where Γ(·) is the Euler gamma function.

Definition 2.2 [15] The Riemann Liouville fractional derivative of order α with
lower limit zero for a function f : [0,∞) → R can be written as

LDα
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−n
ds, t > 0, n− 1 < α < n. (7)

Definition 2.3 [15] The Caputo’s derivative of order α for a function f : [0,∞) → R

can be written as

cDα
t f(t) =

L Dα
t

[

f(t)−

n−1
∑

k=0

tk

k!
f (k)(0)

]

, t > 0, n− 1 < α < n. (8)

Remark 2.1 [15] If f(t) ∈ Cn[0,∞), for order n− 1 < α < n then

cDα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds = In−α

t f (n)(t), t > 0. (9)

The Caputo’s derivative of constant is equal to zero.

The following results are needed to prove the existence results of the paper, relevant
references are cited.

Theorem 2.1 [18] If U is a closed, bounded, convex subset of a Banach space X
and the mapping A : U → U is completely continuous, then A has a fixed point in U.

Lemma 2.1 [1] Let α > 0, then the differential equation

cDαh(t) = 0 (10)

has solutions h(t) = c0+c1t+c2t
2+· · ·+cn−1t

n−1, ci ∈ R, i = 0, 1, . . . , n−1, n = [α]+1.

Lemma 2.2 [1] Let α > 0, then

IαDαh(t) = h(t)+c0+c1t+c2t
2+· · ·+cn−1t

n−1, ci ∈ R, i = 0, 1, . . . , n−1, n = [α]+1.

To investigate the nonlinear impulsive fractional integro differential equation (5), we
first consider the associated linear system and obtain its solution.
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Lemma 2.3 Let α < (1, 2), q < (0, 1) and σ ∈ [0, T ] → R be continuous. A function
u(t) ∈ PC1

t is a solution of the following fractional integral equation:

u(t) =











































































∫ t

0
(t−s)α−1

Γ(α) σ(s)ds+ a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) σ(s)ds+
∑m

i=1 Ii(u(t
−
i ))

+
∑m

i=1(T − ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

, t ∈ [0, t1),

.......
∫ t

0
(t−s)α−1

Γ(α) σ(s)ds+
∑k

i=1 Ii(u(t
−
i )) + a1 − g(u)− t

T

[

a1 − a2

+h(u)− g(u) +
∫ T

0
(T−s)α−1

Γ(α) σ(s)ds+
∑m

i=1 Ii(u(t
−
i ))

+
∑m

i=1(T − ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

+
∑k

i=1(t− ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
)

, t ∈ (tk, tk+1],

(11)

iff u(t) is a solution of the following BVP











cDαu(t) = σ(t), α ∈ (1, 2),

∆u(tk) = Ik(u(t
−
k )),∆(cDqu(tk)) = Jk(u(t

−
k )), q ∈ (0, 1),

u(0) = a1 − g(u), u(T ) = a2 − h(u).

(12)

Proof. Let for t ∈ [0, t1), u(t) be the solution of (12), we have

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds− c0 − c1t, (13)

using the condition u(0) = a1 − g(u) we compute c0 = −(a1 − g(u)), then we have

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+ a1 − g(u)− c1t. (14)

If t ∈ (t1, t2], we may write the solution as

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds− c2 − c3t, (15)

on applying first impulsive condition ∆u(t1) = I1(u(t
−
1 )), we get

−c2 = I1(u(t
−
1 )) + c3t1 + a1 − g(u)− c1t1. (16)

Using the value of c2 in (15), we obtain

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+ I1(u(t

−
1 )) + a1 − g(u)− c1t1 + c3(t1 − t).

From (17) and (14), we get

Dqu(t) =
1

Γ(α− q)

∫ t

0

(t− s)α−q−1σ(s)ds− c3
t1−q

Γ(2 − q)
, (17)

Dqu(t) =
1

Γ(α− q)

∫ t

0

(t− s)α−q−1σ(s)ds− c1
t1−q

Γ(2− q)
. (18)
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Using the second impulsive condition ∆(Dqu(t1)) = J1(u(t
−
1 )), we have

c3 = −
Γ(2− q)

t1
1−q J1(u(t

−
1 )) + c1. (19)

Put c3 in (17), we get

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+ I1(u(t

−
1 ))

+a1 − g(u) + (t− t1)
Γ(2 − q)

t1
1−q J1(u(t

−
1 )) − c1t. (20)

For t ∈ (t2, t3], we have

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds− c4 − c5t. (21)

Applying the similar pattern we obtain the following form of the solution

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+ I1(u(t

−
1 )) + I2(u(t

−
2 )) + a1 − g(u)

+
Γ(2− q)

t1
1−q J1(u(t

−
1 ))(t− t1) +

Γ(2− q)

t2
1−q J2(u(t

−
2 ))(t− t2)− c1t. (22)

For generality, when t ∈ (tk, tk+1], we may write the solution in the following form

u(t) =

∫ t

0

(t− s)α−1

Γ(α)
σ(s)ds+

k
∑

i=1

Ii(u(t
−
i )) + a1 − g(u)− c1t

+

k
∑

i=1

(t− ti)

(

Γ(2 − q)

ti
1−q Ji(u(t

−
i ))

)

. (23)

On using the second boundary condition, u(T ) = a2 − h(u), we compute the following
value of the constant c1:

c1 =
1

T

[

a1 − a2 + h(u)− g(u) +

∫ T

0

(T − s)α−1

Γ(α)
σ(s)ds

+

m
∑

i=1

Ii(u(t
−
i )) +

m
∑

i=1

(T − ti)

(

Γ(2 − q)

ti
1−q Ji(u(t

−
i ))

)

]

, (24)

by summarizing the above computation, we get the required result. Conversely, assume
that u satisfies the impulsive fractional integral equation (11), then by direct computa-
tion, it can be seen that the solution given by (11) satisfies (12). This completes the
proof of the lemma.

3 Existence and Uniqueness Results

The following result is based on Lemma 2.3.
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Definition 3.1 The function u : [0, T ] → X such that u ∈ PC1
t ([0, T ] : X) is said to

be the solution of the system (5) if it satisfies the following integral equation

u(t) =































































































∫ t

0
(t−s)α−1

Γ(α) f(s, u(s),
∫ s

0
K(s, τ)u(τ)dτ)ds

+a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds

+
∑m

i=1 Ii(u(t
−
i )) +

∑m
i=1(T − ti)

(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

, t ∈ [0, t1),

.......
∫ t

0
(t−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds+
∑k

i=1 Ii(u(t
−
i ))

+a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) f(s, u(s),
∫ s

0
K(s, τ)u(τ)dτ)ds

+
∑m

i=1 Ii(u(t
−
i )) +

∑m
i=1(T − ti)

(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

+
∑k

i=1(t− ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
)

, t ∈ (tk, tk+1].

(25)

Our first result is based on Banach fixed point theorem.

Theorem 3.1 Let the functions f, g, h, Ik and Jk satisfy the Lipchitz condition with
positive constants L1, L2, L3, L4, L5 and L6, such that

‖f(t, u, v)− f(t, x, y)‖X ≤ L1‖u− x‖X + L2‖v − y‖X ,

‖g(u)− g(x)‖X ≤ L4‖u− x‖X , ‖h(u)− h(x)‖X ≤ L6‖u− x‖X ,

‖Ik(x) − Ik(y)‖X ≤ L3‖x− y‖X , ‖Jk(x) − Jk(y)‖X ≤ L5‖x− y‖X ,

t ∈ [0, T ], ∀ x, y, u, v ∈ X. If the following inequality holds

∆ =
[ (L1 + L2K

∗)

Γ(α+ 1)
2Tα + 2mL3 + 2L4 + L6 + 2mT qΓ(2− q)L5

]

< 1,

then the system (5) has a unique solution.

Proof. We transform the system (5) into a fixed point problem. Consider an operator
N : PC1

t → PC1
t , defined by

(Nu)t =































































































∫ t

0
(t−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds

+a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds

+
∑m

i=1 Ii(u(t
−
i )) +

∑m
i=1(T − ti)

(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

, t ∈ [0, t1),

. . .
∫ t

0
(t−s)α−1

Γ(α) f(s, u(s),
∫ s

0 K(s, τ)u(τ)dτ)ds+
∑k

i=1 Ii(u(t
−
i ))

+a1 − g(u)− t
T

[

a1 − a2 + h(u)− g(u)

+
∫ T

0
(T−s)α−1

Γ(α) f(s, u(s),
∫ s

0
K(s, τ)u(τ)dτ)ds

+
∑m

i=1 Ii(u(t
−
i )) +

∑m
i=1(T − ti)

(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
) ]

+
∑k

i=1(t− ti)
(

Γ(2−q)
ti1−q Ji(u(t

−
i ))
)

, t ∈ (tk, tk+1].

(26)
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To show that N has fixed point consider u1, u2 ∈ PC1
t . For t ∈ [0, t1), we have the

following estimate

‖N(u1)−N(u2)‖X ≤
∫ t

0

(t− s)α−1

Γ(α)
‖f(s, u1(s),

∫ s

0

K(s, τ)u1(τ)dτ) − f(s, u2(s),

∫ s

0

K(s, τ)u2(τ)dτ)‖Xds

+‖g(u1)− g(u2)‖X +
|t|

T

[

‖h(u1)− h(u2)‖X + ‖g(u1)− g(u2)‖X

+

∫ T

0

(T − s)α−1

Γ(α)
‖f(s, u1(s),

∫ s

0

K(s, τ)u1(τ)dτ)

−f(s, u2(s),

∫ s

0

K(s, τ)u2(τ)dτ)‖Xds+

m
∑

i=1

‖Ii(u1(t
−
i ))− Ii(u2(t

−
i ))‖X

+

m
∑

i=1

|(T − ti)|
Γ(2− q)

|ti|1−q
‖Ji(u1(t

−
i ))− Ji(u2(t

−
i ))‖X

]

,

On simplifying, we obtain

‖N(u1)−N(u2)‖PC1
t

≤
[ (L1 + L2K

∗)

Γ(α+ 1)
2Tα + 2L4 + L6 +mL3 +mT qΓ(2− q)L5

]

‖u1 − u2‖PC1
t
.

For t ∈ (tk, tk+1], we have

‖N(u1)−N(u2)‖X

≤

∫ t

0

(t− s)α−1

Γ(α)
‖f(s, u1(s),

∫ s

0

K(s, τ)u1(τ)dτ)

−f(s, u2(s),

∫ s

0

K(s, τ)u2(τ)dτ)‖Xds

+

k
∑

i=1

‖Ii(u1(t
−
i ))− Ii(u2(t

−
i ))‖X + ‖g(u1)− g(u2)‖X +

|t|

T

[

‖h(u1)− h(u2)‖X

+‖g(u1)− g(u2)‖X +

∫ T

0

(T − s)α−1

Γ(α)
‖f(s, u1(s),

∫ s

0

K(s, τ)u1(τ)dτ)

−f(s, u2(s),

∫ s

0

K(s, τ)u2(τ)dτ)‖Xds+

m
∑

i=1

‖Ii(u1(t
−
i ))− Ii(u2(t

−
i ))‖X

+

m
∑

i=1

|(T − ti)|
Γ(2 − q)

|ti|1−q
‖Ji(u1(t

−
i ))− Ji(u2(t

−
i ))‖X

]

+

k
∑

i=1

|(t− ti)|
Γ(2 − q)

|ti|1−q
‖Ji(u1(t

−
i ))− Ji(u2(t

−
i ))‖X ,

Hence we estimate as

‖N(u1)−N(u2)‖PC1
t

≤
[ (L1 + L2K

∗)

Γ(α+ 1)
2Tα + 2mL3 + 2L4 + L6 + 2mT qΓ(2− q)L5

]

‖u1 − u2‖PC1
t

≤ ∆‖u1 − u2‖PC1
t
.
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Since ∆ < 1, it follows that the operator N is a contraction mapping and has a fixed
point u ∈ PC1

t , hence the system (5) has a unique solution on the interval [0, T ]. This
completes the proof of the theorem.

Our second result is based on Schauder fixed point theorem.

Theorem 3.2 Let the functions f, g, h, Ik, Jk be continuous and there exist pos-
itive constants M1,M2,M3,M4 and M5 such that ‖f(t, u, v)‖X ≤ M1, ‖g(u)‖X ≤
M2, ‖h(u)‖X ≤ M3, ‖Ik(y)‖X ≤ M4, ‖Jk(y)‖X ≤ M5, ∀u, v, y ∈ X. Then the sys-
tem (5) has at least one solution on [0, T ].

Proof. Consider an operator N : PC1
t → PC1

t defined as in (26) in Theorem 3.1.
First, we shall show that N is continuous, let us consider a sequence un → u in PC1

t in
the interval (tk, tk+1], (k = 1, . . . ,m) we have

‖N(un)−N(u)‖X

≤

∫ t

0

(t− s)α−1

Γ(α)

(

‖f(s, un(s),

∫ s

0

K(s, τ)un(τ)dτ)

−f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖X

)

ds

+

k
∑

i=1

‖Ii(un(t
−
i ))− Ii(u(t

−
i ))‖X + ‖g(un)− g(u)‖X −

|t|

T

[

‖h(un)− h(u)‖X

+‖g(un)− g(u)‖X +

∫ T

0

(T − s)α−1

Γ(α)

(

‖f(s, un(s),

∫ s

0

K(s, τ)un(τ)dτ)

−f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖X

)

ds+

m
∑

i=1

‖Ii(un(t
−
i ))− Ii(u(t

−
i ))‖X

+

m
∑

i=1

|(T − ti)|

(

Γ(2− q)

|ti|1−q
‖Ji(un(t

−
i ))− Ji(u(t

−
i ))‖X

)

]

+
k
∑

i=1

|(t− ti)|

(

Γ(2− q)

|ti|1−q
‖Ji(un(t

−
i ))− Ji(u(t

−
i ))‖X

)

.

Since the functions f, g, h, Ik, Jk are continuous, ‖N(un) − N(u)‖PC1
t
→ 0, as n → ∞

which implies that the mapping N is continuous on PC1
t .

Now, consider the space Br = {u ∈ PC1
t : ‖u‖PC1

t
≤ r}. It is obvious that Br is

closed, bounded and convex subset of PC1
t . Let u ∈ Br, then for t ∈ (tk, tk+1], we have

‖Nu(t)‖X

≤

∫ t

0

(t− s)α−1

Γ(α)
‖f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖Xds

+
k
∑

i=1

‖Ii(u(t
−
i ))‖X + a1 + ‖g(u)‖X +

|t|

T

[

a1 + a2 + ‖h(u)‖X + ‖g(u)‖X

+

m
∑

i=1

‖Ii(u(t
−
i ))‖X +

∫ T

0

(T − s)α−1

Γ(α)
‖f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖Xds (27)
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+

m
∑

i=1

|(T − ti)|

(

Γ(2− q)

|ti|
1−q ‖Ji(u(t

−
i ))‖X

)

]

+

k
∑

i=1

|(t− ti)|

(

Γ(2− q)

|ti|
1−q ‖Ji(u(t

−
i ))‖X

)

, (28)

it can be estimated as

‖Nu(t)‖PC1
t
≤ 2M1

Tα

Γ(α+ 1)
+ 2mM4 + 2a1 + 2M2 + a2 +M3 + 2mT qΓ(2 − q)M5.

Its proves that N maps bounded set into bounded set in Br for all subintervals
(tk, tk+1], (k = 1, . . . ,m).

Finally, we shall show that N maps bounded sets into equi-continuous sets in Br. Let
l1, l2 ∈ (tk, tk+1] with l1 < l2, 1 ≤ k ≤ m, we have

‖(Nu)(l2)− (Nu)(l1)‖X

≤ ‖

∫ l2

0

(l2 − s)α−1

Γ(α)
f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)ds

−

∫ l1

0

(l1 − s)α−1

Γ(α)
f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)ds‖X

+
|(l2 − l1)|

T

[

∫ T

0

(T − s)α−1

Γ(α)
‖f(s, u(s),

∫ s

0

K(s, τ)u(τ)dτ)‖Xds
]

+

k
∑

i=1

|(l2 − l1)|

(

Γ(2− q)

|ti|
1−q ‖Ji(u(t

−
i ))‖X

)

.

it can be estimated as

‖(Nu)(l2)− (Nu)(l1)‖PC1
t

≤
M1

Γ(α+ 1)

(

(l2 − l1)
α + ‖ − (l2 − l1)

α + (l2 − lk)
α − (l1 − lk)

α‖
)

+
(l2 − l1)

T

[

M1
Tα

Γ(α+ 1)

]

+m(l2 − l1)

(

Γ(2− q)

T 1−q
M5

)

,

which is independent of u. Thus, N is equicontinuous. Thus all the assumptions of
Sachuder’s fixed point theorem are satisfied. Hence, the system (5) has at least one
solution on [0, T ].

4 Example

Consider the following fractional order impulsive integro- differential equation with non-
local conditions:















cD3/2u(t) = et|u(t)|
(9+et)(1+|u(t)|) +

∫ t

0
e−(s−t)

10 |u(s)|ds, t ∈ [0, 1], t 6= (1/3),

∆u(1/3) = |u(1/3)|
17+|u(1/3)| , ∆(cD1/2u(1/3)) = |u(1/3)|

19+|u(1/3)| ,

u(0) = −
∫ 1

0
|u(s)|

23+|u(s)|ds, u(T ) = −
∫ 1

0
|u(s)|

25+|u(s)|ds.

(29)
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Here f(t, u,
∫ t

0
K(t, s)u(s)ds) = et|u(t)|

(9+et)(1+|u(t)|) +
∫ t

0
e−(s−t)

10 |u(s)|ds. Let x, y ∈ X and

t ∈ [0, 1] then we have

|f(t, x,

∫ t

0

K(t, s)x(s)ds) − f(t, y,

∫ t

0

K(t, s)y(s)ds)|

= |
e−t

(9 + et)

[ |x(t)|

1 + |x(t)|
−

|y(t)|

1 + |y(t)|

]

|+ |

∫ t

0

K(t, s)[x(s)− y(s)]ds|

= |
e−t

(9 + et)
[
|x(t)(1 + |y(t)|)− |y(t)|(1 + |x(t)|)|

(1 + |x(t)|)(1 + |y(t)|)
]|

+|

∫ t

0

e−(s−t)

10
(x(s) − y(s))ds| = |

e−t

(9 + et)
[

|x(t)| − |y(t)|

(1 + |x(t)|)(1 + |y(t)|)
]|

+|

∫ t

0

e−(s−t)

10
(x(s) − y(s))ds|.

By taking sup norm we estimate it as follows

||f(t, x,

∫ t

0

K(t, s)x(s)ds) − f(t, y,

∫ t

0

K(t, s)y(s)ds)||X ≤
1

10
‖x− y‖X .

In similar way we can verify the following estimates

‖g(x)− g(y)‖X ≤
1

23
‖x− y‖X , ‖h(x)− h(y)‖X ≤

1

25
‖x− y‖X , ∀ x, y ∈ X,

‖Ik(x)− Ik(y)‖X ≤
1

17
‖x− y‖X , ‖Jk(x) − Jk(y)‖X ≤

1

19
‖x− y‖X , ∀ x, y ∈ X.

The rest of the parameters used in Theorem 3.1 are computed as q = 1
2 , α = 3

2 , (L1 +
L2K

∗) = 1
10 , L3 =

1
17 , L4 = 1

23 , L5 =
1
19 , L6 = 1

25 , and the inequality
[

(L1+L2K
∗)

Γ(α+1) 2Tα + 2mL3 + 2L4 + L6 + 2mT qΓ(2− q)L5

]

= 0.48834 < 1.

Thus, all the conditions of Theorem 3.1 are satisfied. Hence, the impulsive fractional
boundary value problem (5) has a unique solution on [0, 1].

5 Conclusion

At the foundation of this paper, one can consider the fractional integro-differential equa-
tion of order α ∈ (1, 2) with nonlocal boundary conditions and fractional impulsive
conditions. For the solution of the system (5) we follow the concept from the recent con-
tributions on impulsive fractional differential equations by M. Feckan et al. [12, 16, 19].
The existence and uniqueness of solutions for the system (5) are treated with the help of
Banachs and Schauders fixed point theorems.
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