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Abstract: In this paper we study the approximate controllability of semilinear
stochastic control system with nonlocal conditions in a Hilbert space. Nonlocal ini-
tial condition is a generalization of the classical initial condition and is motivated
by physical phenomena. The results are obtained by using Sadovskii’s fixed point
theorem. At the end, an example is given to show the effectiveness of the result.
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1 Introduction

Controllability concepts play a vital role in deterministic control theory. It is well known
that controllability of deterministic equation is widely used in many fields of science and
technology. Kalman [23] introduced the concept of controllability for finite dimensional
deterministic linear control systems. The basic concepts of control theory in finite and
infinite dimensional spaces have been introduced in [31] and [24] respectively. However,
in many cases, some kind of randomness can appear in the problem, so that the system
should be modelled by a stochastic form. Only few authors have studied the extensions
of deterministic controllability concepts to stochastic control systems. Klamka et al. [11]-
[12] studied the controllability of linear stochastic systems in finite dimensional spaces
with delay and without delay in control as well as in state using Rank theorem. In [17]-
[22], Mahmudov et al. established results for controllability of linear and semilinear
stochastic systems in Hilbert space. Instead of this, Sakthivel, Balachandran, Dauer and
Bashirov et al. studied the approximate controllability of nonlinear stochastic systems
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in [25], [14], [13] and [1]. Shen and Sun [16] studied the controllability of stochastic first
order nonlinear systems with delay in control in finite dimensional as well as in infinite
dimensional spaces. In [26], Sakthivel et al. studied the approximate controllability of
second order stochastic system with impulsive effects using Banach fixed point theorem.
In [2]- [5] Anurag et al. obtained some sufficient conditions for controllability of integer
and fractional order stochastic systems with delay in control and state term using different
fixed point theorems.

On the other hand, Byszewski et al. [15] introduced nonlocal conditions into the
initial value problems and argued that the corresponding models more accurately describe
the phenomena since more information was taken into account at the oneset of the
experiment, thereby reducing the ill effects incurred by a single initial measurement.
Also, it has a better effect on the solution and is more precise for physical measurements
than classical condition x(0) = x0 alone. In [32], Y.K.Chang et al. obtained sufficient
conditions for controllability of semilinear differential systems with nonlocal conditions
in Banach spaces using Sadovskii fixed-point theorem.

Kumar [28]- [29] studied on the controllability of second order and fractional or-
der systems with delays in Banach spaces using Sadovskii’s Fixed point theorem. Also
Farahi et al. [30] studied on the approximate controllability of fractional neutral stochas-
tic evolution equations with nonlocal conditions using Sadovskii’s fixed point theorem.
Sanjukta [27] studied approximate controllability of a functional differential equation
with deviated argument using fixed point theory.

Up to now, to the best of our knowledge , there are no results on the approximate
controllability of semilinear stochastic control systems with nonlocal conditions using
Sadovskii’s fixed point theorem in the literature. So, the present paper is devoted to the
study of approximate controllability of the semilinear stochastic control systems with
nonlocal conditions using Sadovskii’s fixed point theorem.

2 Problem Formulation and Preliminaries

Let (Ω,ℑ, P ) be a complete space equipped with a normal filtration ℑt, t ∈ J = [0, b]. Let
H,U and E be the separable Hilbert spaces and ω be a Q-Weiner process on (Ω,ℑb, P )
with the covariance operator Q such that trQ < ∞. We assume that there exists a
complete orthonormal system en in E, a bounded sequence of nonnegative real numbers
λn such that Qen = λnen, n = 1, 2, · · · and a sequence βn of independent Brownian
motions such that

w(t) =

∞
∑

n=1

√

λnβn(t)en, t ∈ J,

and ℑt = ℑt
ω, where ℑt

ω is the σ-algebra generated by ω. Let L2
0 = L2(Q

1/2E;H)
be the space of all Hilbert-Schmidt operators from Q1/2E to H with the norm ||ψ||2Q =

tr[ψQψ∗]. Let Lℑ
2 (J,H) be the space of all ℑt-adapted, H-valued measurable square

integrable processes on J × Ω.Let C([0, b];L2(ℑ, H)) be the Banach space of continuous
maps from [0, b] into L2(ℑ, H) satisfying the condition sup

t∈J
E||x(t)||2 <∞.

LetH2 = C2([0, b];H). NowH2 is the closed subspace of C([0, b];L2(ℑ, H)) consisting
of measurable and ℑt - adapted H valued processes φ ∈ C([0, b];L2(ℑ, H)) endowed with
the norm

||φ||H2
=

(

sup
t∈[0,b]

E||φ(t)||2H

)1/2

.
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In this paper, we consider a mathematical model given by the following nonlinear
second order stochastic differential equations with variable delay in control and with
nonlocal conditions of the form

dx(t) = [Ax(t) +Bu(t) + f(t, x(t))]dt + σ(t, x(t))dω(t), t ∈ J
x(0) = x0 + g(x),

}

(1)

where A : D(A) ⊂ H → H is a closed, linear and densely defined operator on H which
generates a compact semigroup {S(t) : t ∈ J} on H . B is a bounded linear operator
from the Hilbert space U into H . The control u ∈ L2

ℑ
([0, b], U); f : J × H → H ;

σ : J ×H → L0
2 are nonlinear suitable functions; x0 is ℑ0 measurable H valued random

variable independent of ω; g is continuous function from C(J,H) → H .
For simplicity of considerations, we generally assume that the set of admissible con-

trols is Uad = L2
ℑ
(J, U).

Definition 2.1 A stochastic process x ∈ H2 is a mild solution of (1) if for each
u ∈ L2

ℑ
([0, b], U), it satisfies the following integral equation:

x(t) = S(t)(x0 + g(x)) +

∫ t

0

S(t− s)[Bu(s) + f(s, x(s))]ds

+

∫ t

0

S(t− s)σ(s, x(s))dω(s).

Let us introduce the following operators and sets (see [15])
Lb ∈ L(Lℑ

2 (J × Ω, U), L2(Ω,ℑb, H)) is defined by

Lbu =

∫ b

0

S(b− s)Bu(s)ds,

where L(X,Y ) denotes the set of bounded linear operators from X to Y .
Then its adjoint operator L∗

b : L2(Ω,ℑb, H) → Lℑ
2 (J × Ω, U) is given by

L∗
bz = B∗S∗(b − t)E{z|ℑt}.

The set of all states reachable in time b from initial state x(0) = x0 ∈ L2(Ω,ℑ0, X), using
admissible controls is defined as

Rb(Uad) = {x(b;x0, u) ∈ L2(Ω,ℑb, H) : u ∈ Uad},

x(b;x0, u) = S(b)(x0 + g(x)) +

∫ b

0

S(b− s)Bu(s)ds+

∫ b

0

S(b− s)f(s, x(s))ds,

+

∫ T

0

S(T − s)σ(s, x(s)dω(s).

Let us introduce the linear controllability operator Πb
0 ∈

L(L2(Ω,ℑb, H), L2(Ω,ℑb, H)) as follows:

Πb
0{.} = Lb(Lb)

∗{.}

=

∫ b

0

S(b− t)BB∗S∗(b− t)E{.|ℑt}dt.
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The corresponding controllability operator for deterministic model is:

Γb
s = Lb(s)L

∗
b(s)

=

∫ b

s

S(b− t)BB∗S∗(b− t)dt.

Definition 2.2 The stochastic system (1) is approximately controllable on [0, b] if
ℜ(b) = L2(Ω,ℑb, H), where ℜ(b) = {x(b;u) : u ∈ L2(Ω,ℑb, H) : u ∈ Uad} and
L2
ℑ
([0, b], U) is the closed subspace of L2

ℑ
([0, b] × Ω, U), consisting of all ℑt adapted,

U valued stochastic processes.

Lemma 2.1 [6] Let G : J × Ω → L0
2 be a strongly measurable mapping such that

∫ b

0

E||G(t)||p
L0

2

<∞. Then

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

G(s)dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ LG

∫ t

0

E||G(s)||p
L0

2

ds

for all t ∈ J and p ≥ 2, where LG is the constant involving p and b.

Lemma 2.2 (Sadovskii’s fixed point theorem [7]). Suppose that M is a nonempty,
closed, bounded and convex subset of a Banach space X and Γ : M ⊆ X → X is a
condensing operator. Then the operator Γ has a fixed point in M .

To prove our main results, we list the following basic assumptions of this paper:

(i) A is the infinitesimal generator of a compact semigroup {S(t) : t ≥ 0} on H .

(ii) The function f : J × H → H and σ : J × H → L0
2 satisfy linear growth and

Lipschitz conditions, i.e, there exist positive constants N1, N2,K1 and K2 such that

||f(t, x)− f(t, y)||2 ≤ N1||x− y||2, ||f(t, x)||2 ≤ N2(1 + ||x||2),

||σ(t, x) − σ(t, y)||2L0

2

≤ K1||x− y||2, ||σ(t, x)||2L0

2

≤ K2(1 + ||x||2).

(iii) The function g is continuous function and there exists some positive constants
Mg such that

||g(x)− g(y)||2 ≤Mg||x− y||2, ||g(x)||2 ≤Mg(1 + ||x||2)

for all x, y ∈ C(J,H).
(iv) For each 0 ≤ t < b, the operator α(αI + Γb

t)
−1 → 0 in the strong operator

topology as α → 0+, where

Γb
t =

∫ b

t

S(b− s)BB∗S∗(b− s)ds

is the controllability Grammian. Observe that the linear deterministic system corre-
sponding to (1)

dx′(t) = [Ax(t) +Bu(t)]dt, t ∈ J
x(0) = x0

}

(2)

is approximately controllable on [t, b] iff the operator α(αI + Γb
t)

−1 → 0 strongly as
α → 0+.

For simplicity, let us take MB = max{||B||}.
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3 Main Result

Let us recall two lemmas concerning approximate controllability, which will be used in
the proof.

The following lemma is required to define the control function.

Lemma 3.1 [19] For any xb ∈ L2(Ω,ℑb, H), there exists φ ∈ Lℑ
2 (J, L

0
2) such that

xb = Exb +

∫ b

0

φ(s)dω(s).

Now for any α > 0 and xb ∈ L2(Ω,ℑb, H), we define the control function in the
following form

uα(t, x) = B∗S∗(b− t)
[

(αI +Ψb
0)

−1
(

Exb − S(b)(x0 + g(x))
)

+

∫ t

0

(αI +Ψb
s)

−1φ(s)dw(s)
]

,

−B∗S∗(b − t)

∫ t

0

(αI +Ψb
s)

−1S(b− s)f(s, x(s))ds,

−B∗S∗(b − t)

∫ t

0

(αI +Ψb
s)

−1S(b− s)σ(s, x(s))dw(s).

Lemma 3.2 There exists a positive constant Mu such that for all x, y ∈ H2, we have

E||uα(t, x)− uα(t, y)||2 ≤
Mu

α2
||x− y||2, (3)

E||uα(t, x)||2 ≤
Mu

α2

(

1 + ||x||2
)

. (4)

Proof. Let x, y ∈ H2. From Holder’s inequality, Lemma 2.1 and the assumptions on
the data, we obtain

E||uα(t, x)− uα(t, y)||2 ≤ 3E

∣

∣

∣

∣

∣

∣

∣

∣

B∗S∗(b− t)(αI + ψ0
b)

−1
S(b)[g(x)− g(y)]

∣

∣

∣

∣

∣

∣

∣

∣

2

+3E

∣

∣

∣

∣

∣

∣

∣

∣

B∗S∗(b− t)

∫ t

0

(αI +Ψb
s)

−1S(b− s)[f(s, x(s)) − f(s, y(s))]ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+3E

∣

∣

∣

∣

∣

∣

∣

∣

B∗S∗(b− t)

∫ t

0

(αI +Ψb
s)

−1S(b− s)[σ(s, x(s)) − σ(s, y(s))]dw(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

≤
3

α2
M2

BM
4

[

Mg||x−y||
2
H2

+b

∫ t

0

N1E||x(s)−y(s)||
2
Hds+LG

∫ t

0

K1E||x(s)−y(s)||
2
Hds

]

≤
3

α2
M2

BM
4

[

Mg + bN1b sup
s∈[0,b]

E||x(s) − y(s)||2H + LGK1b sup
s∈[0,b]

E||x(s) − y(s)||2H

]

≤
3

α2
M2

BM
4[Mg + b2N1 + LGK1b]||x− y||2H2

=
Mu

α2
||x− y||2H2

,

where Mu = 3M2
BM

4[Mg + b2N1 + LGK1b] and p, q are conjugate indices.
The proof of the second inequality can be verified in a similar manner by putting

uα(t, y) = 0. So, the proof of the lemma is completed.
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For any α > 0, define the operator Pα : H2 → H2 by

(Pαx)(t) = S(t)(x0 + g(x)) +

∫ t

0

S(t− s)[Buα(s, x) + f(s, x(s))]ds

+

∫ t

0

S(t− s)σ(s, x(s))dω(s).

To prove the approximate controllability, we first prove in Theorem 3.1, the existence
of a fixed point of the operator Pα defined above, using the Sadovskii’s fixed point
theorem. Second, in Theorem 3.2, we show that under certain assumptions the approx-
imate controllability of system (2) is implied by the approximate controllability of the
corresponding deterministic linear system.

Theorem 3.1 Assume hypothesis (i)− (iv) are satisfied. Then the system (1) has a
mild solution on [0, b] provided that

8M2Mg + 4M2

(

M2
Bb

2Mu

α2
+ b2N2 + LσK2b

)

< 1, (5)

3M2M2
BbMu

α2
+ 3M2bN1 + 3M2LG < 1.

Proof. The proof of this theorem is divided into several steps.
Step 1. For any x ∈ H2, Pα(x)(t) is continuous on J in the Lp sense.

Proof of Step 1: Let 0 ≤ t1 ≤ t2 ≤ b. Then for any fixed x ∈ H2, it follows from
Holder’s inequality, Lemma 2.1 and assumptions of the theorem that

E||(Pαx)(t2)− (Pαx)(t1)||
2

≤ 7

[

E||(S(t2)− S(t1))(x0 + g(x))||2 + E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t1

0

[S(t2 − s)− S(t1 − s)]f(s, x(s))ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

t1

S(t2 − s)f(s, x(s))ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t1

0

[S(t2 − s)− S(t1 − s)]σ(s, x(s))dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

+E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

t1

S(t2 − s)σ(s, x(s))dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t1

0

[S(t2 − s)− S(t1 − s)]Buα(s, x)ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

t1

S(t2 − s)Buα(s, x)ds

∣

∣

∣

∣

∣

∣

∣

∣

2]

≤ 7

[

2

(

E||(S(t2)− S(t1))x0||
2 + E||(S(t2)− S(t1))g(x)||

2

)

+t1

∫ t1

0

E||[S(t2 − s)− S(t1 − s])f(s, x(s))||2ds+M2(t2 − t1)

∫ t2

t1

E||f(s, x(s))||2ds

+LG

∫ t1

0

E||(S(t2 − s)− S(t1 − s))σ(s, x(s))||2ds+M2LG

∫ t2

t1

E||σ(s, x(s))||2ds

+t1

∫ t1

0

E||[S(t2 − s)− S(t1 − s])Buα(s, x)||2ds+ ||B||2M2(t2 − t1)

∫ t2

t1

E||uα(s, x)||2ds

]
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Hence using Lebesgue’s dominated convergence theorem, we conclude that the right hand
side of the above inequality tends to zero as t2 − t1 → 0. Thus we conclude Pα(x)(t) is
continuous from the right in [0, b). A similar argument shows that it is also continuous
from the left in (0, b]. Thus Pα(x)(t) is continuous on J in the Lp sense.

Step 2: For each positive integer q, let Bq = {x ∈ H2 : E||x(t)||2H ≤ q}, then the
set Bq is clearly a bounded, closed and convex set in H2. From Lemma 2.1, Holder’s
inequality and assumption (i), we derive that

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)f(s, x(s))ds

∣

∣

∣

∣

∣

∣

∣

∣

2

H

≤ E

(
∫ t

0

||S(t− s)f(s, x(s))||Hds

)2

≤ M2
E

(
∫ t

0

||f(s, x(s))||Hds

)2

≤ M2b

∫ t

0

E||f(s, x(s))||2Hds

= M2b

∫ t

0

N2(1 + E||x(s)||2H )ds

≤ M2bN2

∫ t

0

(1 + sup
s∈[0,b]

E||x(s)||2H)ds

≤ M2bN2b(1 + ||x||2H2
)

≤ M2b2N2(1 + ||x||2H2
),

which deduces that S(t − s)f(s, x(s)) is integrable on J , by Bochner’s theorem, Pα is
well defined on Bq.

Similarly from (ii), we derive that

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)σ(s, x(s))dw(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ Lσ

∫ t

0

E||S(t− s)σ(s, x(s))||2L0

2

ds

≤ LσM
2

∫ t

0

E||σ(s, x(s))||2L0

2

ds

≤ LσM
2

∫ t

0

K2(1 + E||x(s)||2H)ds

≤ LσM
2K2

∫ t

0

(1 + sup
s∈[0,b]

E||x(s)||2H )ds

≤ LσM
2K2b(1 + ||x||2H2

)

≤ LσM
2K2b(1 + ||x||2H2

).

Now, we claim that there exists a positive number q such that Pα(Bq) ⊆ Bq.

If it is not true, then for each positive number q, there is a function xq(.) ∈ Bq but
Pαxq does not belong to Bq, that is E||Pαxq(t)||

2
H > q for some t ∈ J .
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On the other hand, from assumptions (ii), (iii) and Lemma 3.2, we have

q ≤ E||Pαxq(t)||
2
H = E

∣

∣

∣

∣

∣

∣

∣

∣

S(t)(x0 + g(x)) +

∫ t

0

S(t− s)[Buα(s, x) + f(s, x(s))]ds

+

∫ t

0

S(t− s)σ(s, x(s))dw(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

H

≤ 4M2
E||x0 + g(x)||2 + 4M2M2

Bb
2Mu

α2
(1 + ||x||2H2

)

+4M2b2N2(1 + ||x||2H2
) + 4M2LσK2b(1 + ||x||2H2

)

≤ 4M2[2E||x0||
2 + 2E||g(x)||2] + 4M2M2

Bb
2Mu

α2
(1 + ||x||2H2

)

+ 4M2b2N2(1 + ||x||2H2
) + 4M2LσK2b(1 + ||x||2H2

)

≤ 4M2[2E||x0||
2 + 2Mg(1 + ||x||2H2

)] + 4M2M2
Bb

2Mu

α2
(1 + ||x||2H2

)

+4M2b2N2(1 + ||x||2H2
) + 4M2LσK2b(1 + ||x||2H2

)

≤ 4M2[2E||x0||
2 + 2Mg(1 + q)] + 4M2M2

Bb
2Mu

α2
(1 + q)

+4M2b2N2(1 + q) + 4M2LσK2b(1 + q)

≤

(

8M2
E||x0||

2 + 8M2Mg +
4M2M2

Bb
2Mu

α2

+ 4M2b2N2 + 4M2LσK2b

)

+

(

8M2Mg +
4M2M2

Bb
2Mu

α2
+ 4M2b2N2 + 4M2LσK2b

)

q.

Dividing both sides by q and taking the limit as q → ∞, we get

8M2Mg + 4M2

(

M2
Bb

2Mu

α2
+ b2N2 + LσK2b

)

> 1.

This contradicts condition (5). Hence for some positive number q, PαBq ⊆ Bq.

Step 3. Now, we define operators Pα1
and Pα2

as

(Pα1
x)(t) = S(t)[x0 + g(x)],

(Pα2
x)(t) =

∫ t

0

S(t− s)[Buα(s, x) + f(s, x(s))]ds+

∫ t

0

S(t− s)σ(s, x(s))dω(s)

for t ∈ J . Here, we will prove that Pα1
is completely continuous, while Pα2

is a contraction
operator.

By assumption (iii), it is clear that Pα1
is a completely continuous operator. Next we

show that Pα2
is the contraction operator. For this, let x, y ∈ Bq, then for each t ∈ J ,
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we have from assumptions (ii),(iii)

E||(Pα2
x)(t) − (Pα2

y)(t)||2H ≤ 3E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)B[uα(s, x) − uα(s, y)]ds

∣

∣

∣

∣

∣

∣

∣

∣

2

H

+3E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)[f(s, x(s))− f(s, y(s))]ds

∣

∣

∣

∣

∣

∣

∣

∣

2

H

+3E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)[σ(s, x(s)) − σ(s, y(s))]dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

H

≤ 3M2M2
B

∫ t

0

E||uα(s, x)− uα(s, y)||2Hds

+ 3M2

∫ t

0

E||f(s, x(s)) − f(s, y(s))||2ds

+3M2

∫ t

0

E||σ(s, x(s)) − σ(s, y(s))||2dw(s)

≤ 3M2M2
Bb
Mu

α2
||x− y||2H2

+ 3M2bN1||x− y||2H2

+ 3M2LG||x− y||2H2

≤

(

3M2M2
BbMu

α2
+ 3M2bN1 + 3M2Lσ

)

||x− y||2H2

therefore ||(Pα2
x)− (Pα2

y)||2H2
≤ L0||x− y||2H2

, where

L0 =

(

3M2M2
BbMu

α2
+ 3M2bN1 + 3M2LG

)

< 1.

Thus Pα2
is a contraction mapping.

Now we have Pα = Pα1
+ Pα2

is a condensing map on Bq, so Sadovskii’s fixed point
theorem is satisfied. Hence we conclude that there exists a fixed point x(.) for Pα on Bq,
which is the mild solution of (1).

Theorem 3.2 Assume assumptions (i) − (iv) are satisfied and if f and σ are uni-
formly bounded, then the system (1) is approximately controllable on [0, b].

Proof. Let xα be a fixed point of Pα in H2. By using the stochastic Fubini theorem,
it is easy to see that

xα(b) = xb − α(αI + Γb
0)

−1

(

Exb − S(b)(x0 + g(x))

)

+α

∫ b

0

(αI + Γb
s)

−1S(b− s)f(s, xα(s))ds

+α

∫ b

0

(αI + Γb
s)

−1[S(b− s)σ(s, xα(s)) − φ(s)]dω(s).

By the assumption that f and σ are uniformly bounded, there exists D > 0 such that

||f(s, xα(s))||
2 + ||σ(s, xα(s))||

2 ≤ D
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in [0, b] × Ω. Then there is a subsequence denoted by {f(s, xα(s)), σ(s, xα(s))} weakly
converging to say {f(s, ω), σ(s, ω)} in H × L0

2. Now, the compactness of S(t) implies
that S(b− s)f(s, xα(s)) → S(b− s)f(s) and S(b− s)σ(s, xα(s)) → S(b− s)σ(s) in J ×Ω.

Now, from the above equation, we get

E||xα(b)− xb||
2 ≤ 6

∣

∣

∣

∣

∣

∣

∣

∣

α(αI + Γb
0)

−1

[

Exb − S(b)[x0 + g(x))]

]
∣

∣

∣

∣

∣

∣

∣

∣

2

+6E

(
∫ b

0

||α(αI + Γb
s)

−1φ(s)||2L0

2

ds

)

+6E

(
∫ b

0

||α(αI + Γb
s)

−1|| ||S(b− s)[f(s, xα(s))− f(s)]||ds

)2

+6E

(
∫ b

0

||α(αI + Γb
s)

−1S(b− s)f(s)||ds

)2

+6E

(
∫ b

0

||α(αI + Γb
s)

−1|| ||S(b− s)[σ(s, xα(s))− σ(s)]||2L0

2

ds

)

+6E

(
∫ b

0

||α(αI + Γb
s)

−1S(b− s)σ(s)||2L0

2

ds

)]

.

Since by assumption (iv), for all 0 ≤ s < b the operator α(αI + Γb
s)

−1 → 0 strongly as
α → 0+ and moreover ||α(αI+Γb

s)
−1|| ≤ 1. Thus by the Lebesgue dominated convergence

theorem, we obtain E||xα(b)− xb||
2 → 0+. This gives the approximate controllability.

4 Example

Consider the stochastic control system:

dtz(t, θ) = [zθθ +Bu(t, θ) + p(t, z(t))]dt+ k(t, z(t))dω(t),
z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ T, 0 < θ < π,

z(0, θ) +

n
∑

i=1

αiz(ti, θ) = z0(θ) t ∈ J,



















(6)

where B is a bounded linear operator from a Hilbert space U into X ; p : J ×X → X ,
k : J ×X → L0

2 are all continuous and uniformly bounded, u(t) is a feedback control and
w is a Q-Wiener process.

Let X = L2[0, π], and let A : D(A) ⊂ X → X be an operator defined by

Az = zθθ

with domain

D(A) = {z(.) ∈ X |z, zθ are absolutely continuous , zθθ ∈ X, z(0) = z(π) = 0}.

Furthermore, A has discrete spectrum, the eigenvalues are −n2, n = 1, 2, · · · with the
corresponding normalized characteristic vectors en(s) = (2/π)1/2 sinns, then

Az =

∞
∑

n=1

−n2 < z, en > en, z ∈ X.
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It is known that A generates a compact semigroup S(t), t > 0 in X and is given by

S(t)z =
∞
∑

n=1

e−n2t < z, en > en(θ), z ∈ X.

Let f : J ×X → X be defined by

f(t, x(t))(θ) = p(t, x(t))(θ)), (t, xt) ∈ J ×X, θ ∈ [0, π].

Let σ : J ×X → L0
2 be defined by

σ(t, x(t))(θ) = k(t, x(t))(θ)), (t, xt) ∈ J ×X, θ ∈ [0, π].

The function g : C(J,X) → X is defined as

g(z)(θ) =

n
∑

i=1

αiz(ti, θ)

for 0 < ti < T and θ ∈ [0, π].

With this choice of A,B, f, σ and g, (1) is the abstract formulation of (6) such that
the conditions in (i) and (ii) are satisfied.

Now define an infinite-dimensional space

U =

{

u : u =

∞
∑

n=2

unen(θ) |

∞
∑

n=2

u2n <∞

}

with the norm defined by

||u||U =

( ∞
∑

n=2

u2n

)1/2

and a linear continuous mapping B from U → X as follows:

Bu = 2u2e1(θ) +

∞
∑

n=2

un(t)en(θ).

It is obvious that for u(t, θ, ω) =

∞
∑

n=2

un(t, ω)en(θ) ∈ Lℑ
2 (J, U)

Bu(t) = 2u2(t)e1(θ) +

∞
∑

n=2

un(t)en(θ) ∈ Lℑ
2 (J,X).

Moreover,

B∗v = (2v1 + v2)e2(θ) +

∞
∑

n=3

vnen(θ),

B∗S∗(t)z = (2z1e
−t + z2e

−4t)e2(θ) +

∞
∑

n=3

zne
−n2ten(θ),
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for v =
∞
∑

n=1

vnen(θ) and z =
∞
∑

n=1

znen(θ).

Let ||B∗S∗(t)z|| = 0, t ∈ [0, T ], it follows that

||2z1e
−t + z2e

−4t||2 +

∞
∑

n=3

||zne
−n2t||2 = 0, t ∈ [0, T ]

⇒ zn = 0, n = 1, 2, · · · ⇒ z = 0.
Thus by Theorem 4.1.7 of [23], the deterministic linear system corresponding to (6) is

approximate controllable on [0, T ]. Therefore the system (6) is approximate controllable
provided that f, σ and g satisfy the assumptions (i) and (ii).
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