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Abstract: In the present paper, the general 4-D continuous-time system is consid-
ered and the estimate of the upper bound of such a system is investigated, using the
multivariable functions analysis. Especially, sufficient conditions for this system to
be contained in a four-dimensional ellipsoidal surface are obtained. The results ob-
tained in this investigation generalize all the existing results in the relevant literature
concerning the finding of an upper bound for the fourth order dynamical system.
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1 Introduction

Since Lorenz discovered chaos in a simple system of three autonomous ordinary differen-
tial equations in order to describe the simplified Rayleigh–Benard problem in 1963 [12],
the analysis of dynamics of 3-D chaotic and 4-D hyperchaotic systems has been a focal
point of renewed interest for many researchers [2, 3, 5, 6, 8, 13, 15, 17, 19, 21, 22, 26, 27].
Hyperchaos is characterized as a chaotic system with more than one positive exponent,
this implies that its dynamics are expended in several different directions simultane-
ously. Thus, hyperchaotic systems have more complex dynamical behaviors than ordi-
nary chaotic systems. As we know, there are many hyperchaotic systems discovered in
the four-dimensional social and economical systems. Typical examples are 4-D hyper-
chaotic Chua’s circuit [1], 4-D hyperchaotic Rôsslor system [18] and 4-D hyperchaotic
Lorenz-Haken system [14]. Since hyperchaotic system has the theoretical and practi-
cal applications in technological fields, such as secure communications, lasers, nonlinear
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circuits, neural networks, generation, control, synchronization, it has recently become a
central topic in nonlinear sciences research.

The estimate of the bound for a chaotic system is of great importance for chaos
control, chaos synchronization, and their applications [4], where the concepts of ultimate
bound and attractive set of system serve as excellent tools for analysis of the qualitative
behavior of a chaotic system. Such an estimation is quite difficult to achieve technically.
Notwithstanding the difficulty, during the past 40 years or so, many good and interesting
results on this topic have been obtained for some 3-D continuous-time systems [7, 9, 10,
16, 24].

In recent years, the study of the boundedeness of 4-D dynamical systems have at-
tracted the attention of many engineers, physicists and mathematicians. For example
in [11], the ultimate bound and positively invariant set for the 4-D hyperchaotic Lorenz-
Haken system were investigated. In [20] the estimation of the bounds for the 4-D hy-
perchaotic Lorenz-Stenflo system was also obtained. Recently, the boundedness of the
generalized 4-D hyperchaotic model containing Lorenz-Stenflo and Lorenz-Haken sys-
tems was done in [23] and the boundedness of a kind of hyperchaotic systems that have
wide applications in the secure communications was also investigated in [25]. In the
present paper, by using the multivariable functions analysis, we generalize all the exist-
ing results in the relevant literature concerning the finding of an upper bound for the
general 4-D continuous-time system. In particular, we find sufficient conditions for this
system to be contained in a four-dimensional ellipsoidal set.

Let us consider the general 4-D continuous-time autonomous system






x
′

= f (x, y, z, w, δ) ,
y′ = g (x, y, z, w, δ) ,
z′ = h (x, y, z, w, δ) ,
w′ = k (x, y, z, w, δ) ,

(1)

where f , g, h and k are real functions and δ ∈ R
m is the bifurcation parameter. As-

sume that system (1) has at least one equilibrium point, so bounded orbits are possible.
Without loss of generality we can assume that the origin is an equilibrium point, i.e.,
f (0, 0, 0, 0, δ) = g (0, 0, 0, 0, δ) = h (0, 0, , 0, δ) = k (0, 0, 0, 0, δ) = 0.

2 The Estimate of the Bound for the General 4-D Dynamical System

To study the estimate of the bound for the general system (1), we define the following
Lyapunov function

V (x, y, z, w) =

(x− α (x, y, z, w))
2
+ (y − β (x, y, z, w))

2
+ (z − γ (x, y, z, w))

2
+ (w − θ (x, y, z, w))

2

2
,

(2)
where (α (x, y, z, w) , β (x, y, z, w) , γ (x, y, z, w) , θ (x, y, z, w)) ∈ R

4 are real functions, in
which the derivative of (2) along the orbits of system (1) is given by

dV

dt
= (x− α) (x′ − α′) + (y − β) (y′ − β′) + (z − γ) (z′ − γ′) + (w − θ) (w′ − θ′) , (3)
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where




α
′

=
∂α

∂x
x′ +

∂α

∂y
y′ +

∂α

∂z
z′ +

∂α

∂w
w′ = ψ1f + ψ2g + ψ3h+ ψ4k,

β′ =
∂β

∂x
x′ +

∂β

∂y
y′ +

∂β

∂z
z′ +

∂β

∂w
w′ = µ1f + µ2g + µ3h+ µ4k,

γ′ =
∂γ

∂x
x′ +

∂γ

∂y
y′ +

∂γ

∂z
z′ +

∂γ

∂w
w′ = ξ1f + ξ2g + µξ3h+ ξ4k,

θ′ =
∂θ

∂x
x′ +

∂θ

∂y
y′ +

∂θ

∂z
z′ +

∂θ

∂w
w′ = ζ1f + ζ2g + ζ3h+ ζ4k.

(4)

Therefore, we have

dV

dt
= c1 (x, y, z, w)x− ωx2 + c2 (x, y, z, w) y − ϕy2 + c3 (x, y, z, w) z − φz2+

c4 (x, y, z, w)w − ηw2 + c5 (x, y, z, w) , (5)

where





c1 (x, y, z, w) = f − ψ1f − ψ2g − ψ3h− ψ4k + ωx,

c2 (x, y, z, w) = g − µ1f − µ2g − µ3h− µ4k + ϕy,

c3 (x, y, z, w) = h− ξ1f − ξ2g − µξ3h− ξ4k + φz,

c4 (x, y, z, w) = k − ζ1f − ζ2g − ζ3h− ζ4k + ηw,

c5 (x, y, z, w) = c6 (x, y, z, w) + c7 (x, y, z, w) ,
c6 (x, y, z, w) = −αf − βg − γh− θk + α (ψ1f + ψ2g + ψ3h+ ψ4k) ,

c7 (x, y, z, w) = β (µ1f + µ2g + µ3h+ µ4k)+
γ (ξ1f + ξ2g + ξ3h+ ξ4k) + θ (ζ1f + ζ2g + ζ3h+ ζ4k) .

(6)

Assume that the equation (5) has the form

dV

dt
= −ω (x− α1)

2 − ϕ (y − β1)
2 − φ (z − γ1)

2 − η (w − θ1)
2
+ r, (7)

where ω, ϕ, φ, η and r are strictly positive constants, α1, β1, γ1, θ1 are unknown constants

and it should be determined in which the equation
dV

dt
= 0 determines an ellipsoid in

R
4.
Equation (7) is equivalent to

dV

dt
=−ωx2+2ωα1x−ϕy2+2ϕβ1y−φz2+2φγ1z−ηw2+2ηθ1w−ωα2

1−ϕβ2
1−φγ21−ηθ21+r.

(8)
By identification with (5) we get





α1 =
c1 (x, y, z, w)

2ω
,

β1 =
c2 (x, y, z, w)

2ϕ
,

γ1 =
c3 (x, y, z, w)

2φ
,

θ1 =
c4 (x, y, z, w)

2η
,

r = ωα2
1 + ϕβ2

1 + φγ21 + ηθ21 + c5 (x, y, z, w) .

(9)
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Since α1, β1, γ1, θ1 and r are real constants, the functions {ci (x, y, z, w) , i = 1, 2, 3, 4, 5}
are also constants, i.e.,

∂ci (x, y, z, w)

∂x
=
∂ci (x, y, z, w)

∂y
=
∂ci (x, y, z, w)

∂z
=
∂ci (x, y, z, w)

∂w
= 0, i = 1, 5. (10)

Now, putting

H(x, y, z, w) =
(x− α1)

2

r
ω

+
(y − β1)

2

r
ϕ

+
(z − γ1)

2

r
φ

+
(w − θ1)

2

r
η

− 1. (11)

In order to prove the boundedness of the system (1), we assume that it is bounded and
then we will find its bound, i.e., assume that

{
c5 (x, y, z, w) + ωα2

1 + ϕβ2
1 + φγ21 + ηθ21 > 0,

ω > 0, ϕ > 0, φ > 0, η > 0,
(12)

therefore, the equation
dV

dt
= 0, that means, the surface

Γ =
{
(x, y, z, w) ∈ R

4 : H(x, y, z, w) = 0, ω, ϕ, φ, η, r > 0
}

(13)

is an ellipsoid in four-dimensional space. If the system (1) is bounded, then the function
(2) can reach its maximum value on Γ. Denote the maximum point as (x0, y0, z0, w0). In
order to find it, we define the function F by

F (x, y, z, w) = G (x, y, z, w) + λH (x, y, z, w) , (14)

where
G (x, y, z, w) = x2 + y2 + z2 + w2 (15)

and λ ∈ R is a finite parameter. It is clear that max
(x,y,z,w)∈Γ

G = max
(x,y,z,w)∈Γ

F and let






∂F (x, y, z, w)

∂x
= 2r−1 ((ωλ+ r) x− ωλα1) = 0,

∂F (x, y, z, w)

∂y
= 2r−1 ((ϕλ+ r) y − ϕλβ1) = 0,

∂F (x, y, z, w)

∂z
= 2r−1 ((φλ + r) z − φλγ1) = 0,

∂F (x, y, z, w)

∂w
= 2r−1 ((ηλ+ r)w − ηλθ1) = 0.

. (16)

In the sequel, we can separate some cases to discuss the upper bounds of the system
(1).

(i) If λ 6= −r
ω

, λ 6= −r
ϕ

, λ 6= −r
φ

and λ 6= −r
η

, we get

(x0, y0, z0, w0) =

(
ωλα1

r + ωλ
,
ϕλβ1

r + ϕλ
,
φλγ1

r + φλ
,
ηλθ1

r + ηλ

)
(17)

and

max
(x,y,z,w)∈Γ

G =
ω2λ2α2

1

(r + ωλ)
2 +

ϕ2λ2β2
1

(r + ϕλ)
2 +

φ2λ2γ21

(r + φλ)
2 +

η2λ2θ21

(r + ηλ)
2 . (18)
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In this case, there exists parametrized family (in λ) of bounds given by (18) of the system
(1).

(ii) If λ =
−r
ω

, (ω 6= ϕ, ω 6= φ, ω 6= η), λ 6= −r
ϕ

, λ 6= −r
φ

, λ 6= −r
η

, we obtain

(x0, y0, z0, w0) =

(
±
√
r

ω

(
1− ξ1

ξ2

)
+ α1,

−ϕβ1
ω − ϕ

,
−φγ1
ω − φ

,
−ηθ1
ω − η

)
, (19)

where




ξ1 = ω2
[
ϕβ2

1 (ω − φ)
2
(ω − η)

2
+ φγ21 (ω − ϕ)

2
(ω − η)

2
+ ηθ21 (ω − ϕ)

2
(ω − φ)

2
]

ξ2 = r (ω − ϕ)2 (ω − φ)2 (ω − η)2

ξ2 ≥ ξ1.
(20)

The last condition of (20) confirms that the value x0 in (19) is well defined. In this case,
we have

max
(x,y,z,w)∈Γ

G =

(√
r

ω

(
1− ξ1

ξ2

)
+ α1

)2

+
ϕ2β2

1

(ω − ϕ)2
+

φ2γ21

(ω − φ)2
+

η2θ21

(ω − η)2
. (21)

(iii) If λ =
−r
ϕ

, (ϕ 6= ω, ϕ 6= φ, ϕ 6= η), λ 6= −r
ω

, λ 6= −r
φ

, λ 6= −r
η

, we have

(x0, y0, z0, w0) =

(
−α1ω

ϕ− ω
,±
√
r

ϕ

(
1− ξ3

ξ4

)
+ β1,

−φγ1
ϕ− φ

,
−ηθ1
ϕ− η

)
, (22)

where




ξ3 = ϕ2
[
ωα2

1 (ϕ− φ)
2
(ϕ− η)

2
+ φγ21 (ϕ− ω)

2
(ϕ− η)

2
+ ηθ21 (ϕ− ω)

2
(ϕ− φ)

2
]
,

ξ4 = r (ϕ− ω)
2
(ϕ− φ)

2
(ϕ− η)

2
,

ξ4 ≥ ξ3.
(23)

By the last condition of (23), we can confirm that the value y0 in (22) is well defined. In
this case, we get

max
(x,y,z,w)∈Γ

G =
α2
1ω

2

(ϕ− ω)
2 +

(√
r

ϕ

(
1− ξ3

ξ4

)
+ β1

)2

+
φ2γ21

(ϕ− φ)
2 +

η2θ21

(ϕ− η)
2 . (24)

(iv) If λ =
−r
φ

, (φ 6= ω, φ 6= ϕ, φ 6= η), λ 6= −r
ω

, λ 6= −r
ϕ

, λ 6= −r
η

, we obtain

(x0, y0, z0, w0) =

(
−α1ω

φ− ω
,
−ϕβ1
φ− ϕ

,±
√
r

φ

(
1− ξ5

ξ6

)
+ γ1,

−ηθ1
φ− η

)
, (25)

where





ξ5 = φ2
[
ωα2

1 (φ− ϕ)
2
(φ− η)

2
+ ϕβ2

1 (φ− ω)
2
(φ− η)

2
+ ηθ21 (φ− ω)

2
(φ− ϕ)

2
]
,

ξ6 = r (φ− ω)
2
(φ− ϕ)

2
(φ− η)

2
,

ξ6 ≥ ξ5.
(26)
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Also, the last condition of (26) confirms that the value z0 in (25) is well defined. In this
case, we have

max
(x,y,z,w)∈Γ

G =
α2
1ω

2

(φ− ω)
2 +

ϕ2β2
1

(φ− ϕ)
2 +

(√
r

φ

(
1− ξ5

ξ6

)
+ γ1

)2

+
η2θ21

(φ− η)
2 . (27)

(v) If λ =
−r
η

, (η 6= ω, η 6= ϕ, η 6= φ), λ 6= −r
ω

, λ 6= −r
ϕ

, λ 6= −r
φ

, we get

(x0, y0, z0, w0) =

(
−α1ω

η − ω
,
−ϕβ1
η − ϕ

,
−φγ1
η − φ

,±
√
r

η

(
1− ξ7

ξ8

)
+ θ1

)
, (28)

where




ξ7 = η2
[
ωα2

1 (η − ϕ)
2
(η − φ)

2
+ ϕβ2

1 (η − ω)
2
(η − φ)

2
+ φγ21 (η − ω)

2
(η − ϕ)

2
]
,

ξ8 = r (η − ω)
2
(η − ϕ)

2
(η − φ)

2
,

ξ8 ≥ ξ7.
(29)

The last condition of (29) confirms that the value w0 in (28) is well defined. In this case,
we obtain

max
(x,y,z,w)∈Γ

G =
α2
1ω

2

(η − ω)
2 +

ϕ2β2
1

(η − ϕ)
2 +

φ2γ21

(η − φ)
2 +

(√
r

η

(
1− ξ7

ξ8

)
+ θ1

)2

. (30)

Finally, the other possible cases can be treated using the same technique.

Theorem 2.1 Assume that conditions (9), (10) and (12) hold, then the general 4-
D continuous-time autonomous system (1) is bounded, i.e., it is contained in the 4-D
ellipsoid (13).

Also, similar results can be found using the cases discussed above.

3 Example

We consider the Lorenz-Stenflo system studied in [20] and given by





x
′

= ay − ax+ dw,

y′ = cx− xz − y,

z′ = xy − bz,

w
′

= −x− aw.

(31)

We choose the Lyapunov function V (x, y, z, w) = λx2 + y2 + (z − λa− c)
2
+ λdw2 as

in [20]. Suppose that λ and d are strictly positive and denote
√
λx = x̃,

√
λdw = w̃ ,

thus we get V (x̃, y, z, w̃) = x̃2 + y2 + (z − λa− c)
2
+ w̃2 i.e., α = β = θ = 0, γ = λa+ c

and the system (31) becomes





x̃
′

= −ax̃+
√
λay +

√
dw̃,

y′ = c√
λ
x̃− y − 1√

λ
x̃z,

z′ = −bz + 1√
λ
x̃y,

w̃
′

= −
√
dx̃− aw̃,

(32)
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i.e., f (x̃, y, z, w̃) = −ax̃+
√
λay+

√
dw̃, g (x̃, y, z, w̃) = c√

λ
x̃− y− 1√

λ
x̃z, h (x̃, y, z, w̃) =

−bz + 1√
λ
x̃y, k (x̃, y, z, w̃) = −

√
dx̃ − aw̃. Thus, we have ω = a > 0, ϕ = 1 > 0,

φ = b > 0, η = a > 0, α1 = β1 = θ1 = 0, γ1 =
λa+ c

2
and r = b

(
λa+ c

2

)2

. Then, we

get
1

2

dV

dt
= −ax̃2 − y2 − b

(
z − λa+c

2

)2 − aw̃2 + b
(
λa+c

2

)2
, i.e.,

1

2

dV

dt
= −aλx2 − y2 −

bz2 − aλdw2 + (λa+ c) bz which is the same as in [20]. Also, it is easy to verify that all
conditions of Theorem 2.1 hold for this case. The 4-D ellipsoid Γ is given by

Γ =





(x, y, z, w) ∈ R
4 : x̃2

b

a

(
λa+c

2

)
2
+ y2

b

(
λa+c

2

)
2 +

(
z−λa+c

2

)
2

(
λa+c

2

)
2 + w̃2

b

a

(
λa+c

2

)
2
= 1,

a > 0, b > 0, c > 0, d > 0, λ > 0





(33)
i.e.,

Γ =





(x, y, z, w) ∈ R
4 : λax2 + y2 + b

(
z − λa+ c

2

)2

+ λadw2 =
b (λa+ c)

2

4
,

a > 0, b > 0, c > 0, d > 0, λ > 0





(34)
which is also the same as in [20]. Finally, we have the result shown in [20] that confirms
that if a > 0, b > 0, c > 0, d > 0, λ > 0, then the Lorenz-Stenflo system is contained in
the following set

Ωλ =
{
(x, y, z, w) ∈ R

4 : λx2 + y2 + (z − λa− c)2 + λdw2 ≤ R2
}
, (35)

where

R2 =





(λa+ c)2 b2

4 (b− 1)
, if a ≥ 1, b ≥ 2,

(λa+ c)2 , if a > b
2 , b < 2,

(λa+ c)2 b2

4a (b− a)
, if 0 < a < 1, b ≥ 2.

(36)

4 Conclusion

In this paper, based on the multivariable functions analysis, a generalization of all the ex-
isting results in the relevant literature for the upper bound of the general 4-D continuous-
time system is investigated. Especially, sufficient conditions for this system to be con-
tained in a four-dimensional ellipsoidal surface are determined.

The strategy presented in this work is sufficiently general, so it would be possible to
apply the present method to consider other systems with high order and more complicated
nonlinearity, which will be the topic for further papers.
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