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Abstract: In this paper, we study the existence of even homoclinic solutions for a
dynamical system

ẍ(t) +Aẋ(t) + V
′(t, x(t)) = 0,

where A is a skew-symmetric constant matrix, t ∈ R, x ∈ R
N and V ∈ C1(R×R

N ,R),
V (t, x) = −K(t, x) + W (t, x). We assume that W (t, x) does not satisfy the global
Ambrosetti-Rabinowitz condition and that the norm of A is sufficiently small. For
the proof we use the mountain pass theorem.
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1 Introduction

The purpose of this work is to study the existence of even homoclinic solutions for the
following system

ẍ(t) +Aẋ(t) + V ′(t, x(t)) = 0, (DS)

where A is a skew-symmetric constant matrix, V ∈ C1(R × R
N ,R), V ′(t, x) = ∂V

∂x (t, x)
and x = (x1, ..., xN ). We say that a solution x(t) of dynamical system (DS) is homoclinic
if x(t) → 0 as t → ±∞. In addition, x is called nontrivial if x 6≡ 0. The theory of
dynamical systems is a vast subject that can be studied from many different viewpoints.
Particularly the existence of homoclinic solutions for DS is among the very important

∗ Corresponding author: mailto:k_khachnaoui@yahoo.com

c© 2015 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua298

mailto: k_khachnaoui@yahoo.com
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (3) (2015) 298–312 299

problems which have been intensively studied. When A = 0, (DS) is just the following
second order non-autonomous Hamiltonian system:

ẍ(t) + V ′(t, x(t)) = 0. (HS)

If the potential V (t, x) is of type

V (t, x) = −1

2
L(t)x.x+W (t, x), (1)

where L ∈ C(R,RN2

) is a symmetric matrix depending continuously on t and W ∈
C1(R × R

N ,R), then the existence of homoclinic solutions of (HS) has been intensively
studied by many mathematicians, see ( [1], [6], [7], [11], [12], [14], [15], [22]) and the
references therein. Assuming that L(t) andW (t, x) are T -periodic in t, T > 0, Rabinowitz
[17] showed the existence of homoclinic solutions as a limit of 2kT -periodic solutions
of (HS). By the same method many authors have studied the existence of homoclinic
solutions for the system (HS) via critical point theory and variational methods, see
( [6], [9], [10], [11], [19]) and the references therein. In 2005, Izydorek and Janczewska [10]
introduced a new type of potential V (t, x) with which they studied the existence of
homoclinic solutions for the system (HS), the potential V (t, x) is T -periodic in t and of
the form:

V (t, x) = −K(t, x) +W (t, x), (2)

where K, W ∈ C1(R× R
N ,R), which has been extended in the recent paper [19]. They

have proved the existence of homoclinic solutions as a limit of 2kT -periodic solutions of
(HS). If K(t, x) and W (t, x) are neither autonomous nor periodic in t, the problem of the
existence of homoclinic solutions of (HS) is quite different from the ones just described,
because of the lack of compactness of Sobolev embedding. In 2013, Benhassine and
Timoumi [5] studied the existence of even homoclinic orbits of the system (HS) when the
potential V (t, x) is of the form (2) and satisfies a kind of new superquadratic conditions,
in particular

(i) W ′(t, x).x > 2W (t, x) ≥ 0 for all (t, x) ∈ R× (RN \ {0}),
W (t, x) := 1

2W
′(t, x).x −W (t, x) → +∞ as |x| → +∞ uniformly in t ∈ R.

(ii) there exist constants b1 > 0 such that

K(t, x) ≥ b1|x|2.

When the potential V (t, x) is of type (2), the existence of even homoclinic solutions of
(DS) has not been studied. Motivated by the papers ( [1], [3]- [11], [14]- [19], [21]), we
prove the existence of even homoclinic solutions for (DS), as the limit of solutions of
a sequence of boundary-value problems which are obtained by the minimax methods.
Here and in the following x.y denotes the inner product of x, y ∈ R

N and |.| denotes the
associated norm.

Our basic hypotheses on K and W are the following:
(H1) For all (t, x) ∈ R× R

N , V ′(t, x) → 0 as |x| → 0 uniformly in t ∈ R,
(H2) There exists a constant b1 > 0 such that

K(t, x) ≥ b1|x|2, K(t, x) ≤ K ′(t, x).x ≤ 2K(t, x)

for all (t, x) ∈ R× R
N ,

(H3) W
′(t, x) = o(|x|) as |x| → 0 uniformly in t ∈ R and there exists some constant C0
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such that |W ′(t,x)|
|x| ≤ C0 for all (t, x) ∈ R× R

N ,

(H4) W
′(t, x).x > 2W (t, x) ≥ 0 for all (t, x) ∈ R× (RN \ {0}),

W (t, x) := 1
2W

′(t, x).x −W (t, x) → +∞ as |x| → +∞ uniformly in t ∈ R and for any

fixed 0 < r1 < r2, inf
t∈R,r1≤|x|≤r2

W (t, x)

|x|2 6= 0,

(H5) There exists constant ξ0 > 0 such that

lim inf
|x|→+∞

W (t, x)

|x|2 >
2π2 + π

2 b̄1ξ0

ξ20
+M1

uniformly in t ∈ [−ξ0, ξ0], where M1 = sup
t∈[−ξ0,ξ0],|x|=1

K(t, x), b1 = min{1, 2b1} and b1 is

defined in (H2).
(H6) ‖A‖ ≤ 1

4b1.

Now we state our main results.

Theorem 1.1 Assume that (H1)–(H6) hold, then the system (DS) has at least one
even homoclinic solution x ∈ H1(R,RN ) such that ẋ(t) → 0 as |t| → +∞.

Remark 1.1 From (H5), we see that there exist a1 > 0 and R > 0 such that

W (t, x)

|x|2 ≥ 2π2 + π
2 b̄1ξ0 + a1

ξ20
+M1,

for all |x| > R and t ∈ [−ξ0, ξ0]. Let M3 = max
t∈[−ξ0,ξ0],|x|≤R

W (t, x); we have

W (t, x) ≥ (
2π2 + π

2 b̄1ξ0 + a1

ξ20
+M1)(|x|2 −R2)−M3 (3)

for all x ∈ R
N and t ∈ [−ξ0, ξ0].

Moreover, W ′(t, x) = o(|x|) as |x| → 0 uniformly in t ∈ R, which implies that for any
ǫ > 0 there exists ρ0 > 0 such that

|W ′(t, x)| ≤ ǫ|x|, for (t, x) ∈ R× R
N , |x| ≤ ρ0. (4)

Now let us consider the following assumption:
(H7) There exist x0 ∈ R

N and ξ0 > 0 such that
∫ ξ0

−ξ0

(K(t, x0)−W (t, x0))dt < 0.

Our second result deals with the case of periodicity.

Theorem 1.2 Assume that V is T-periodic in t, T > 0 and (H1)-(H4), (H6) and
(H7) hold, then the system (DS) has at least one even homoclinic solution x ∈ H1(R,RN )
such that ẋ(t) → 0 as |t| → +∞.

Example 1.1 Consider the functions

K(t, x) = |x|2 + |x| 32 , W (t, x) = (e−t2 + 2π)|x|2
(

1− 1

ln(e + |x|)

)

.

A straightforward computation shows that W and K satisfy the assumptions of Theorem
1.1, but W does not satisfy the global Ambrosetti-Rabinowitz condition, and K cannot
be written in the form 1

2 (L(t)x, x) and does not satisfy the corresponding results in
( [1], [3], [6]- [10], [12], [14], [17], [19], [21], [22]).
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2 Proof of the Main Results.

By the idea of [11], we approximate an even homoclinic solution of (DS) by a solution of
the following problem:

{

ẍ(t) +Aẋ(t)−K ′(t, x(t)) +W ′(t, x(t)) = 0 for t ∈]− ξ, ξ[,
x(−t) = x(t) for t ∈]− ξ, ξ[, x(−ξ) = x(ξ) = 0,

(5)

where ξ is a positive constant. The set

H1
0 ([−ξ, ξ]) =

{

x : [−ξ, ξ] → R
N/x is absolutely continuous,

x(−ξ) = x(ξ) = 0, ẋ ∈ L2([−ξ, ξ],RN )

}

is a Hilbert space with the norm

‖x‖ =

(

∫ ξ

−ξ

(|x(t)|2 + |ẋ(t)|2)dt
)

1

2

and the associated inner product

〈x, y〉 =
∫ ξ

−ξ

(x(t).y(t) + ẋ(t).ẏ(t))dt.

Consider the functional Iξ : H1
0 ([−ξ, ξ]) → R defined by

Iξ(x) =

∫ ξ

−ξ

[

1

2
|ẋ(t)|2 + 1

2
(Ax(t).ẋ(t)) +K(t, x(t))−W (t, x(t))

]

dt.

It is easy to check that Iξ ∈ C1(H1
0 ([−ξ, ξ]),R) and by using the skew-symmetry of A,

we have

I ′ξ(x)y =

∫ ξ

−ξ

[(ẋ(t).ẏ(t)− (Aẋ(t).y(t)) +K ′(t, x(t)).y(t) −W ′(t, x(t)).y(t)] dt. (6)

Moreover, the critical points of Iξ in H1
0 ([−ξ, ξ]) are the classical solutions of (DS) in

[−ξ, ξ] satisfying x(ξ) = x(−ξ) = 0. We will obtain a critical point of Iξ by using the
Mountain Pass Theorem:

Lemma 2.1 ( [16]) Let H be a real Banach space and I ∈ C1(H,R) satisfying the
Palais-Smale condition. If I satisfies the following conditions:

(i) I(0) = 0,

(ii) there exist constants ρ, α > 0 such that I|∂Bρ(0) ≥ α,

(iii) there exists e ∈ H\Bρ(0) such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where Bρ(0) is the open ball in H centered in 0, with radius ρ, ∂Bρ(0) as its boundary
and

Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = e}.
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For a fixed ξ > 0, consider the subspace Eξ of H1
0 ([−ξ, ξ]) defined by

Eξ =
{

x ∈ H1
0 ([−ξ, ξ])|x(−t) = x(t), a.e. t ∈]− ξ, ξ[

}

.

We will proceed by successive lemmas.

Lemma 2.2 The critical points of Φξ on Eξ are exactly the solutions of problem (5),
where Φξ is the restriction of Iξ on Eξ.

Proof. Let

Fξ =
{

x ∈ H1
0 ([−ξ, ξ])/x(−t) = −x(t), a.e. t ∈]− ξ, ξ[

}

.

For every x ∈ H1
0 ([−ξ, ξ]), set

y(t) =
1

2
(x(t) + x(−t)) , z(t) =

1

2
(x(t)− x(−t)) ,

then y ∈ Eξ, z ∈ Fξ and x = y + z. So H1
0 ([−ξ, ξ]) = Eξ + Fξ. Furthermore, for all

y ∈ Eξ, z ∈ Fξ we have

〈y, z〉 =
∫ ξ

−ξ

(y(t).z(t) + ẏ(t).ż(t))dt =

∫ −ξ

ξ

(y(−t).z(−t) + ẏ(−t).ż(−t))d(−t)

=

∫ ξ

−ξ

(y(t).(−z(t)) + (−ẏ(t)).ż(t))dt = −〈y, z〉,

which implies that 〈y, z〉 = 0 and then Eξ⊥Fξ. Hence H1
0 ([−ξ, ξ]) = Eξ ⊕ Fξ. If x is

a critical point of Φξ, for every z ∈ Eξ ⊂ C0([−ξ, ξ],RN ) (The space of continuous
functions z on [−ξ, ξ] such that z(t) → 0 as |t| → +∞), then by (6) we have

∫ ξ

−ξ

[ẋ(t).ż(t)−Aẋ(t).z(t)]dt =

∫ ξ

−ξ

(ẋ(t) +Ax(t)).ż(t)dt

= −
∫ ξ

ξ

(K ′(t, x(t)) −W ′(t, x(t))).z(t))dt

which implies that K ′(t, x(t)) −W ′(t, x(t)) is the weak derivative of ẋ(t) + Ax(t). Since
K,W ∈ C1(R×R

N ,R) and Eξ ⊂ C0([−ξ, ξ],RN ), we see that ẋ(t)+Ax(t) is continuous,
which yields that ẋ(t) is continuous and x(t) ∈ C2(R,RN ); i.e x ∈ Eξ is a classical
solutions of (5) if and only if it is a critical point of Φξ on H1

0 ([−ξ, ξ]). The proof of
Lemma 2.2 is complete.

Lemma 2.3 Assume that (H2) holds. Then, for every t ∈ [−ξ0, ξ0] and x ∈ R
N , the

following inequality holds:

K(t, x) ≤ M1|x|2 +M2, (7)

where M1 is defined in (H5) and M2 = sup
t∈[−ξ0,ξ0],|x|≤1

K(t, x).
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Proof. To prove this lemma it suffices to show that for every x ∈ R
N and

t ∈ [−ξ0, ξ0] the function (0,+∞) → R, s 7→ K(t, s−1x)s2 is nondecreasing; which is an
immediate consequence of (H2). The proof of Lemma 2.3 is complete.
By Sobolev’s embedding theorem, H1(R,RN ) is continuously embedded into Lp(R,RN )
for p ∈ [2,+∞]. Thus there exists γp > 0 such that

‖x‖Lp(R,RN) ≤ γp‖x‖H1(R,RN ), ∀ p ∈ [2,+∞], ∀ x ∈ H1(R,RN ).

Since x ∈ H1([−ξ, ξ]) can be regarded as belonging to H1(R,RN ) if one extends it by
zero in R\[−ξ, ξ], then we have

‖x‖Lp([−ξ,ξ],RN) ≤ γp‖x‖, ∀ p ∈ [2,+∞], ∀ x ∈ H1
0 ([−ξ, ξ]), (8)

where γp is independent of ξ > 0.

Proposition 2.1 Suppose that the conditions (H1) - (H6) or (H1) - (H4), (H6) and
(H7) are satisfied, then for all ξ ≥ ξ0, the problem (5) possesses a nontrivial solution.

Proof. Step 1. It is clear that Φξ(0) = 0. As shown in [2], a deformation lemma
can be proved with condition (C) replacing the usual (PS) condition, and it turns out
that the Mountain Pass Theorem in [16] holds true under condition (C), i.e., for every
sequence (yj) ⊂ Eξ, (yj) has a convergent subsequence if Φξ(yj) is bounded and (1 +

‖yj‖)
∥

∥

∥
Φ′

ξ(yj)
∥

∥

∥

E∗

ξ

→ 0 as j → +∞, where E∗ is the dual space of E. Let (yj) ⊂ Eξ be

such that Φξ(yj) is bounded and (1 + ‖yj‖)
∥

∥

∥
Φ′

ξ(yj)
∥

∥

∥

E∗

ξ

→ 0 as j → +∞. Observe that

for j large, it follows from (H2) and (H4) that there exists a constant M such that

M ≥ Φξ(yj)−
1

2
Φ′

ξ(yj)yj =

∫ ξ

−ξ

(
1

2
W ′(t, yj).yj −W (t, yj))dt+

∫ ξ

−ξ

(K(t, yj)−
1

2
K ′(t, yj).yj)dt

≥
∫ ξ

−ξ

W (t, yj(t))dt. (9)

By negation, if (yj) is not bounded, passing to a subsequence if necessary we may assume
that ‖yj‖ → +∞ as j → +∞. Set zj =

yj

‖yj‖
, then ‖zj‖ = 1 and by (8) one has

‖zj‖Lp([−ξ,ξ],RN) ≤ γp‖zj‖ = γp, ∀p ∈ [2,+∞]. (10)

By (H2), (H4) and (H6) we have

2M ≥ 2Φξ(yj) =

∫ ξ

−ξ

|ẏj(t)|2dt−
∫ ξ

−ξ

(Aẏj(t).yj(t))dt + 2

∫ ξ

−ξ

K(t, yj(t))dt

− 2

∫ ξ

−ξ

W (t, yj(t))dt ≥ b1‖yj‖2 − ‖A‖‖yj‖2 −
∫ ξ

−ξ

W ′(t, yj(t)).yj(t)dt

≥ ‖yj‖2
(

b1 −
b1
4

−
∫ ξ

−ξ

W ′(t, yj(t)).yj(t)

‖yj‖2
dt

)

,
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where b1 = min{1, 2b1} > 0. Thus implies that

lim
j→+∞

∫ ξ

−ξ

W ′(t, yj(t)).yj(t)

‖yj‖2
dt ≥ 3

4
b1. (11)

Set

f(r) := inf
{

W (t, x)| t ∈ [−ξ, ξ] and x ∈ R
N with |x| ≥ r

}

for r ≥ 0. By (H4) one has

f(r) → +∞ as r → +∞.

For 0 ≤ a ≤ b let

Ωj(a, b) = {t ∈ [−ξ, ξ] | a < yj(t) ≤ b}

and

Ca
b = inf

{

W (t, x)

|x|2 , t ∈ [−ξ, ξ] and a < |x| ≤ b

}

.

Obviously, we have

W (t, yj(t)) ≥ Ca
b |yj(t)|2, for all t ∈ Ωj(a, b). (12)

By (9) and (12) it follows

M ≥
∫ ξ

−ξ

W (t, yj)dt =

∫

Ωj(0,a)

W (t, yj)dt+

∫

Ωj(a,b)

W (t, yj)dt+

∫

Ωj(b,∞)

W (t, yj(t))dt

≥
∫

Ωj(0,a)

W (t, yj)dt+ Ca
b

∫

Ωj(a,b)

|yj |2dt+ f(b)meas(Ωj(b,∞)), (13)

which implies that

meas(Ωj(b,∞)) ≤ M

f(b)
→ 0 as b → +∞ uniformly in j. (14)

For any fixed 0 < a < b and by (8), (10) and (14) we have

∫

Ωj(b,∞)

|zj|2dt ≤ ‖zj‖2L∞([−ξ,ξ])meas(Ωj(b,∞)) (15)

≤ γ2
∞meas(Ωj(b,∞)) → 0

as b → +∞ uniformly in j. Moreover, by (13) we obtain

∫

Ωj(a,b)

|zj|2dt =
1

‖yj‖2
∫

Ωj(a,b)

|yj|2dt ≤
M

Ca
b ‖yj‖2

→ 0 (16)

as j → +∞. Let 0 < ε < b1
4 , by (H3) there exist aε > 0 such that

|W ′(t, x)| ≤ ε

γ2
2

|x| for all |x| ≤ aε.
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Consequently,

∫

Ωj(0,aε)

|W ′(t, yj)||zj |2
|yj |

dt ≤ ε

γ2
2

∫

Ωj(0,aε)

|zj|2dt ≤ ε. (17)

By (15) we can take bε large such that
∫

Ωj(bε,∞)

|zj |2dt ≤
ε

C0
.

Hence, by (H3) we obtain

∫

Ωj(bε,∞)

|W ′(t, yj)||zj |2
|yj |

dt ≤ C0

∫

Ωj(bε,∞)

|zj|2dt ≤ ε. (18)

By (16) there is j0 such that

∫

Ωj(aε,bε)

|W ′(t, yj)||zj |2
|yj |

dt ≤ C0

∫

Ωj(aε,bε)

|zj|2dt ≤ ε, (19)

for all j ≥ j0. Therefore, combining (17)-(19) we have

∫ ξ

−ξ

W ′(t, yj).yj
‖yj‖2

dt ≤
∫

[−ξ,ξ]\{t∈[−ξ,ξ]/|yj(t)|=0}

|W ′(t, yj)||zj |2
|yj |

dt ≤ 3ε <
3

4
b1,

which contradicts (11). Hence, (yj) is bounded in Eξ.Going if necessary to a subsequence,
we can assume that there exists y ∈ Eξ such that yj ⇀ y as j → +∞ in Eξ, which implies
that yj → y as j → +∞ uniformly on [−ξ, ξ]. Hence (Φ′

ξ(yj) − Φ′
ξ(y))(yj − y) → 0,

‖yj − y‖L2([−ξ,ξ],RN) → 0 and

∫ ξ

−ξ

(V ′(t, yj(t)) − V ′(t, y(t)) .(yj(t) − y(t))dt → 0 and by

the Hölder inequality, we have
∣

∣

∣

∣

∣

∫ ξ

−ξ

(Aẏj(t)−Aẏ(t)).(yj(t)− y(t))dt

∣

∣

∣

∣

∣

≤ ‖A‖‖ẏj − ẏ‖L2‖yj − y‖L2 → 0

as j → +∞. On the other hand, an easy computation shows that

(Φ′
ξ(yj)− Φ′

ξ(y))(yj − y)

= ‖ẏj − ẏ‖2L2([−ξ,ξ],RN ) −
∫ ξ

−ξ

(Aẏj(t)−Aẏ(t).yj(t)− y(t))dt

−
∫ ξ

−ξ

(V ′(t, yj(t))) − V ′(t, y(t))).(yj(t)− y(t))dt.

and so ‖ẏj − ẏ‖L2([−ξ,ξ],RN) → 0. Consequently, ‖yj − y‖ → 0 as j → +∞. Hence, Φξ

satisfies condition (C).
Step 2. Now, let us show that Φξ satisfies assumption (ii) of Lemma 2.1. By (H3)

there exists a constant ρ0 > 0 such that

|W ′(t, x)| ≤ b1
2γ2

2

|x|, ∀ t ∈ R, ∀ |x| ≤ ρ0.
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It follows that

|W (t, x)| =
∣

∣

∣

∣

∫ 1

0

W ′(t, sx).xds

∣

∣

∣

∣

≤
∫ 1

0

|W ′(t, sx).x|ds

≤ b1
2γ2

2

∫ 1

0

|x|2sds =
b1
4γ2

2

|x|2, ∀ t ∈ R, ∀ |x| ≤ ρ0. (20)

Let ρ = ρ0

γ∞

and S = {x ∈ Eξ/‖x‖ = ρ}. By (8), we have ‖x‖L∞([−ξ,ξ],RN ) ≤ ρ0, for all

x ∈ S, which together with (20), (H2) and (H6) implies that

Φξ(x) =
1

2

∫ ξ

−ξ

|ẋ(t)|2dt− 1

2

∫ ξ

−ξ

(Aẋ(t).x(t))dt +

∫ ξ

−ξ

K(t, x(t))dt −
∫ ξ

−ξ

W (t, x(t))dt

≥
(

b1
2

− b1
8

− b1
4

)

‖x‖2 =
b1
8
ρ2 := α, ∀ x ∈ S.

Step 3. It remains to prove that Φξ satisfies assumption(iii) of Lemma 2.1. If (H5)
holds, let

e(t) =

{

m| sin(ωt)|e1, if t ∈ [−ξ0, ξ0],
0, if t ∈ [−ξ, ξ]\[−ξ0, ξ0],

where ω = 2π
ξ0
, e1 = (1, 0, ..., 0) and m ∈ R\ {0}. By the Hölder inequality, (H6), Remark

1.1 and Lemma 2.3 we have

Φξ(e) =
1

2

∫ ξ

−ξ

|ė(t)|2dt+ 1

2

∫ ξ

−ξ

(Ae(t).ė(t))dt+

∫ ξ

−ξ

K(t, e(t))dt−
∫ ξ

−ξ

W (t, e(t))dt

=
1

2
m2ω2

∫ ξ0

−ξ0

| cos(ωt)|2dt+ 1

2
m2ω

∫ ξ0

−ξ0

(A| sin(ωt)|e1.| cos(ωt)|e1)dt

+

∫ ξ0

−ξ0

K(t,m| sin(ωt)|e1)dt−
∫ ξ0

−ξ0

W (t,m| sin(ωt)|e1)dt

≤ 1

2
m2ω2

∫ ξ0

−ξ0

| cos(ωt)|2dt+m2ω ‖A‖ξ0 +M1m
2

∫ ξ0

−ξ0

| sin(ωt)|2dt+ 2ξ0M2

− (
2π2 + π

2 b̄1ξ0 + a1

ξ20
+M1)m

2

∫ ξ0

−ξ0

| sin(ωt)|2dt

+ 2ξ0

(

R2(
2π2 + π

2 b̄1ξ0 + a1

ξ20
+M1) +M3

)

≤ m2(−πb̄1
2

− 2a1
ξ0

) + 2ξ0

(

M2 +R2(
2π2 + π

2 b̄1ξ0 + a1

ξ20
+M1) +M3

)

→ −∞

as m → ∞. If (H7) holds, set g(s) = s−2W (t, sx0) for s > 0. Then it follows from (H4)
that

g′(s) = s−3[−2W (t, sx0) +W ′(t, sx0).sx0] > 0, for t ∈ R, s > 0.

Integrating the above from 1 to λ > 1, we obtain

W (t, λx0) ≥ λ2W (t, x0), for t ∈ R, λ > 1. (21)
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By (H2), it is easy to show that

K(t, λx0) ≤ λ2K(t, x0), for t ∈ R, λ > 1. (22)

From (21) and (22) we have

Φξ(λx0) =

∫ ξ

−ξ

[K(t, λx0)−W (t, λx0)]dt

≤ λ2

(

∫ ξ

−ξ

K(t, x0)dt−
∫ ξ

−ξ

W (t, x0)dt

)

. (23)

Choose σ > 1 such that |σx0|
√
2ξ0 > ρ and let

e(t) =

{

σx0, if t ∈ [−ξ0, ξ0],

0, if t ∈ [−ξ, ξ]\[−ξ0, ξ0].

By (23) and (H7) we have

Φξ(e) =

∫ ξ

−ξ

(K(t, e(t))−W (t, e(t)))dt

=

∫ ξ0

−ξ0

(K(t, σx0)−W (t, σx0))dt

≤ σ2

∫ ξ0

−ξ0

(K(t, x0)−W (t, x0))dt < 0.

All the assumptions of Lemma 2.1 are satisfied, so for all ξ ≥ ξ0, Φξ possesses a critical
value cξ ≥ α > 0 defined by

cξ ≡ inf
g∈Γξ

max
s∈[0,1]

Φξ(g(s)),

where
Γξ = {g(t) ∈ C([0, 1], Eξ)/g(0) = 0, g(1) = e} .

Hence, for every ξ > 0, there exists xξ ∈ Eξ such that

Φξ(xξ) = cξ, Φ′
ξ(xξ) = 0.

Since cξ > 0, xξ is nontrivial. The proof of Proposition 2.1 is complete.
Take a sequence (ξn)n∈N with ξ0 ≤ ξ1 ≤ ξ2 ≤ ... → ∞ and consider problem (5) on

Eξn , i.e.

{

ẍ(t) +Aẋ(t)−K ′(t, x(t)) +W ′(t, x(t)) = 0, for t ∈]− ξn, ξn[,
x(−t) = x(t), for t ∈]− ξn, ξn[, x(−ξn) = x(ξn) = 0.

(24)

Then by Proposition 2.1, for each n ∈ N, (24) possesses a nontrivial solution xn. Let
Cp

loc(R,R
N ) (p ∈ N) denote the space of Cp functions under the topology of almost uni-

formly convergence of functions and all derivatives up to order p. We have the following
result.
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Lemma 2.4 The sequence (xn) possesses a subsequence also denoted by (xn) which
converges to a C2 function x in C2

loc(R,R
N ).

Proof. Let q > k, as any function in Eξk can be regarded as belonging to Eξq if one
extends it by zero in [−ξq, ξq]\[−ξk, ξk], we have Γξk ⊂ Γξq which implies cξq ≤ cξk . Thus
cξn ≤ cξ0 for any n ∈ N.

As Φξn(xn) ≤ cξ0 and (1+ ‖xn‖)
∥

∥

∥
Φ′

ξn
(xn)

∥

∥

∥
= 0, just as in the proof of condition (C)

in Proposition 2.1, it is easy to prove that (xn) is bounded uniformly in n. Therefore,
there is a constant C1 > 0 such that:

‖xn‖ ≤ C1, ∀n ∈ N. (25)

Arguing as in Theorem 2.1 in [11], we conclude from the fact

|xn(t2)− xn(t1)| ≤
∫ t2

t1

|ẋ(t)|dt ≤ (t2 − t1)
1/2

(
∫ t2

t1

|ẋ(t)|2dt
)1/2

that the sequence (xn) is equicontinuous on every interval [−ξn, ξn]. By (25) and Arzela-
Ascoli theorem, the sequence (xn) has a uniformly convergent subsequence on each
[−ξn, ξn].

Let (x1
nk
) be a subsequence of (xn) that converges on [−ξ1, ξ1]. Then (x1

nk
) is equicon-

tinuous and uniformly bounded on [−ξ2, ξ2]. So we can choose a subsequence (x2
nk
) of

(x1
nk
) that converges uniformly on [−ξ2, ξ2]. Repeat this procedure for all n and take

the diagonal sequence (xk
nk
). It is obvious that (xk

nk
)k is a subsequence of (xi

nk
) for any

1 ≤ i ≤ k. Hence, it converges uniformly to a function x(t) on any bounded interval.
In the following, for simplicity, we denote the subsequence (xk

nk
) also by (xn). As (xn)

satisfies

ẍn(t) +Aẋn(t) + V ′(t, xn(t)) = 0, (26)

we conclude that the sequence (ẍn) and then also (ẋn) converge uniformly on any
bounded intervals. It is easy to see that

xn(t) =

∫ t

−ξn

(t− s)ẍn(s)ds,

then x ∈ C2(R,RN ) and ẍn → ẍ uniformly on any bounded intervals. Hence, by passing
to the limit in (26) we conclude that x solves (DS). As xn is even, the same is true for
their limit x. The proof of Lemma 2.4 is complete.

Proof of Theorem 1.1. We have shown that x satisfies (DS). It remains to prove
that x is nontrivial and homoclinic to 0.

Step 1. Let us show that x is nontrivial. Consider the function Ψ defined by Ψ(0) = 0
and for s > 0

Ψ(s) = max
t∈R,0<|x|≤s

W ′(t, x).x

|x|2 .

Then Ψ is a continuous, nondecreasing function and Ψ(s) ≥ 0 for s ≥ 0. The definition
of Ψ implies that

∫ ξn

−ξn

W ′(t, xn(t)).xn(t)dt ≤ Ψ(‖xn‖L∞([−ξn,ξn],RN ))‖xn‖2, (27)
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for every n ∈ N. Since Φ′
ξn
(xn).xn = 0, we have

∫ ξn

−ξn

W ′(t, xn(t)).xn(t)dt =

∫ ξn

−ξn

|ẋn(t)|2dt−
∫ ξn

−ξn

(Aẋn(t).xn(t))dt +

∫ ξn

−ξn

K ′(t, xn(t)).xn(t)dt. (28)

From (27), (28), (H2) and (H6), we obtain

Ψ(‖xn‖L∞([−ξn,ξn],RN))‖xn‖2 ≥
∫ ξn

−ξn

|ẋn(t)|2dt−
∫ ξn

−ξn

(Aẋn(t).xn(t))dt

+

∫ ξn

−ξn

K ′(t, xn(t)).xn(t)dt

≥
∫ ξn

−ξn

|ẋn(t)|2dt+ b1

∫ ξn

−ξn

|xn(t)|2dt− ‖A‖‖xn‖2

≥ (min{1, b1} − ‖A‖)‖xn‖2.

Since ‖xn‖ > 0, it follows that

Ψ(‖xn‖L∞([−ξn,ξn],RN )) ≥ (min{1, b1} − ‖A‖) > 0.

If ‖xn‖L∞([−ξn,ξn],RN ) → 0 as n → ∞, we would have Ψ(0) ≥ (min{1, b1} − ‖A‖) > 0, a
contradiction. Passing to a subsequence of (xn) if necessary, there is a constant C3 > 0
such that

‖xn‖L∞([−ξn,ξn],RN ) ≥ C3 (29)

for every n ∈ N. Now, suppose x ≡ 0 and let xn be the function defined in Lemma 2.4,
extended by 0 in R \ [−ξn, ξn]. For A > 0 we have

‖xn‖2 =

∫ ξn

−ξn

(|ẋn(t)|2 + |xn(t)|2)dt

=

∫

R

(|ẋn(t)|2 + |xn(t)|2)dt

=

∫ A

−A

(|ẋn(t)|2 + |xn(t)|2)dt+
∫

R\[−A,A]

(|ẋn(t)|2 + |xn(t)|2)dt → 0 as A, n → ∞.

which is in contradiction with (29). Hence x is nontrivial.
Step 2. We prove that x(t) → 0 as |t| → +∞. By the argument of Lemma 2.4, for

each i ∈ N there is ni ∈ N such that for all n ≥ ni we have

∫ ξi

−ξi

(|xn(t)|2 + |ẋn(t)|2)dt ≤ ‖xn‖2 ≤ C2
1 .

Letting n → +∞, we obtain

∫ ξi

−ξi

(|x(t)|2 + |ẋ(t)|2)dt ≤ C2
1 .
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As i → +∞, we have
∫ +∞

−∞

(|x(t)|2 + |ẋ(t)|2)dt ≤ C2
1 .

Hence, we get
∫

|t|≥r

(|x(t)|2 + |ẋ(t)|2)dt → 0 as r → +∞. (30)

By Corollary 2.2 in [19], we have

|x(t)|2 ≤
∫ t+1

t−1

(|x(s)|2 + |ẋ(s)|2)ds (31)

for every t ∈ R. By (30) and (31) we conclude that

x(t) → 0 as |t| → ∞.

Step 3. We have to show that ẋ(t) → 0 as |t| → ∞. By Corollary 2.2 in [19] we
have

|ẋ(t)|2 ≤
∫ t+1

t−1

(|x(s)|2 + |ẋ(s)|2)ds+
∫ t+1

t−1

|ẍ(s)|2ds,

for every t ∈ R. Since x ∈ H1(R,RN ), we get

∫ t+1

t−1

(|x(s)|2 + |ẋ(s)|2)ds → 0 as |t| → ∞.

Hence, it suffices to prove that

∫ t+1

t−1

|ẍ(s)|2ds → 0 as |t| → ∞. (32)

By (DS), we have

∫ t+1

t−1

|ẍ(s)|2ds =

∫ t+1

t−1

|Aẋ(s) + V ′(t, x(s))|2ds

≤ ‖A‖2
∫ t+1

t−1

|ẋ(s)|2ds+
∫ t+1

t−1

|V ′(t, x(s))|2ds

+ 2‖A‖
(
∫ t+1

t−1

|ẋ(s)|2ds
)

1

2
(
∫ t+1

t−1

|V ′(t, x(s))|2ds
)

1

2

.

Since

∫ t+1

t−1

|ẋ(s)|2ds → 0 as |t| → ∞, x(t) → 0 as |t| → ∞ and V ′(t, x) → 0 as |x| → 0

uniformly in t ∈ R, then (32) follows. The proof of Theorem 1.1 is complete.
Proof of Theorem 1.2. Let

H1
nT (R,R

N ) =
{

x : R → R
N , 2nT − periodic, x, ẋ ∈ L2([−nT, nT ],RN) and

x(−nT ) = x(nT ) = 0
}

. Consider the family of functionals (Φn)n≥1 defined on EnT by

Φn(x) =

∫ nT

−nT

[

1

2
|ẋ(t)|2 + 1

2
(Ax(t).ẋ(t)) +K(t, x(t)) −W (t, x(t))

]

dt, (33)
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where
EnT =

{

x ∈ H1
nT (R,R

N )/x(−t) = x(t), a.e.t ∈ R
}

.

Arguing as in the proof of Theorem 1.1, we prove that assumptions (H1)-(H4), (H6) and
(H7) imply that for every positive integer n, the problem

{

ẍ(t) +Aẋ(t)−K ′(t, x(t)) +W ′(t, x(t)) = 0, for t ∈]− nT, nT [,
x(−t) = x(t), for t ∈]− nT, nT [, x(−nT ) = x(nT ) = 0,

(34)

possesses a solution xn. Moreover, the sequence (xn) converges uniformly on any bounded
interval to a homoclinic solution x ∈ H1(R,RN ) satisfying ẋ(t) → 0 as |t| → +∞. It
remains to prove that x(t) 6≡ 0. In the same way as in the proof of Theorem 1.1 it is easy
to prove that there is a constant C4 > 0 such that

‖xn‖L∞([−nT,nT ],RN ) ≥ C4 (35)

for every n ∈ N. Moreover, for all j ∈ N, t 7→ xj
n(t) = xn(t+ jT ) is also a 2nT-periodic

solution of problem (34). Hence, if the maximum of |xn| occurs in θn ∈ [−nT, nT ] then
the maximum of |xj

n| occurs in τ jn = θn − jT. Then there exists a jn ∈ Z such that
τ jnn ∈ [−T, T ]. Consequently,

‖xjn
n ‖L∞([−nT,nT ],RN ) = max

t∈[−T,T ]
|xjn

n (t)|.

Suppose contrary to our claim, that x ≡ 0. Then

‖xjn
n ‖L∞([−nT,nT ],RN ) = max

t∈[−T,T ]
|xjn

n (t)| → 0,

which contradicts (35). Then the proof of Theorem 1.2 is complete.
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