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Abstract: This is a study of the scalar fractional differential equation of Riemann-
Liouville type

D
q
x(t) = f(t, x(t)), lim

t→0+
t
1−q

x(t) = x
0
,

where q ∈ (0, 1) and x0 6= 0. This is first written as a Volterra integral equation

x(t) = x
0
t
q−1 +

1

Γ(q)

∫ t

0

(t− s)q−1
f(s, x(s)) ds.

After two existence results for a solution on a short interval (0, T ] are presented, it is
then transformed in two steps into an integral equation

y(t) = F (t) +

∫ t

0

R(t− s)

[

y(s) +
f(s+ T, y(s))

J

]

ds,

where y(t) = x(t + T ). The function R is completely monotone on (0,∞) and
∫

∞

0
R(t) dt = 1. When f is bounded and continuous for y bounded and continu-

ous on [0,∞), then the integral maps sets of bounded continuous functions into sets
of bounded equicontinuous functions. Moreover, F is uniformly continuous on [0,∞),
F (t) → 0, and F ∈ L1[0,∞), while J is an arbitrary positive constant. A growth
condition on f is used to show that all of these equations share solutions.

The point of the work is that an integral equation with two singularities and a
kernel having infinite integral is transformed into an equation with a mildly singular
kernel and finite integral. That final form is very suitable for a variety of fixed point
theorems yielding qualitative properties of solutions of each of the stated equations.
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