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Abstract: Mathematical models related to some Josephson junctions are pointed
out and attention is drawn to the solutions of certain initial boundary problems and
to some of their estimates. In addition, results of rigorous analysis of the behaviour
of these solutions when t → ∞ and when the small parameter ε tends to zero are
cited. These analyses lead us to mention some of the open problems.
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1 Introduction

Our purpose is to:
i) furnish a short review of the mathematical contributions to the dynamics of the

Josephson junctions,
ii) introduce some possible open problems.
From the mathematical point of view, many descriptions of superconductivity phe-

nomena have been developed and an important contribution has been given by Brian
David Josephson. He predicted in 1962 the tunnelling of superconducting Cooper pairs
through an insulating barrier to pass from one superconductor to another (Josephson
effect). He also predicted the exact form of the current and voltage relations for the
junction (Josephson junction) [1]. (Experimental work proved that his theory was right,
and Josephson was awarded the 1973 Nobel Prize in Physics.)
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The flux-dynamics of a Josephson junction, i.e., two layers of superconductors sep-
arated by a very thin layer of insulating material, can be described by means of Sine–
Gordon equation (SGE):

uxx − utt = sinu, (1)

where x denotes the direction of propagation, t is time and the variable u = u(x, t) repre-
sents the difference between the phases of the wave functions of the two superconductors.

However, in dealing with real junctions it seems necessary to take into account other
effects such as losses and bias. Therefore, many authors prefer to consider the so-called
perturbed Sine–Gordon equation (PSGE):

εuxxt + uxx − utt − aut = sinu− γ. (2)

In this case, terms εuxxt and aut represent respectively the dissipative normal electron
current flow along and across the junction, (longitudinal and shunt losses) while γ is the
normalized current bias [2]. The value’s range for a and ε depends on the real junction.
Indeed, there are cases with 0 < a, ε < 1 and, when the shunt resistance of the junction
is low, the case a large with respect to 1 arises [2–4].

In some cases, extra terms must be considered. For example in a semiannular or in a
S-shaped Josephson junction, when an applied magnetic field b parallel to the plane of
the dielectric barrier is considered, the dynamic equation is:

εuxxt + uxx − utt − aut = sinu− γ − b cos(kx), (3)

where the last term evaluates a transient force on the trapped fluxons and locates these
ones at the center of the junction [2,5,6]. Moreover, if an annular junction, also provided
with a microshort, is considered, the vortex dynamics in a static magnetic field is modelled
with the general perturbed sine–Gordon equation (see, f.i. [7]):

εuxxt + uxx − utt − aut = [1− δ(x)µ] sin u− γ − b cos(kx), (4)

where µ is the current density associated with the microshort.
Nowadays, in addition to rectangular or annular junctions, many other geometries

for Josephson junctions have been proposed. For instance, window Josephson junctions
(WJJ) ( [8] and reference therein) or exponentially shaped Josephson junctions (ESJJ)
[9–12]. This type of junction is only a particular case of a structure covering a region

0 ≤ x ≤ L, g2(x) ≤ y ≤ g1(x). (5)

Denoting by

0 < w(x) = g1(x) − g2(x) ≪ 1, (6)

the evolution of the phase inside the junction is given by:

εuxxt + uxx − utt − aut = sinu− Γ(x) − ẇ(x)

w(x)
(ux + εuxt) + ηy

ẇ(x)

w(x)
, (7)

where Γ(x) =
ηx|g2−ηx|g1

w(x) and ηx ηy is the normalized magnetic field respectively in the

x and y directions [10]. When one assumes g1(x) = −g2(x) = wo e
−λx, where λ is a

constant that, generally, is less than one, an ESJJ is obtained. Moreover, assuming
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that there is no bias current so that Γ(x) = 0 and ηy = 0, the equation achieved is the
following:

εuxxt + uxx − utt − ελuxt − λux − aut = sinu. (8)

The current due to the tapering is represented by terms λux and λ ε uxt . In par-
ticular λux characterizes the geometrical force driving the fluxons from the wide edge
to the narrow edge. These junctions assure many advantages compared to rectangular
ones, such as a voltage which is not chaotic anymore, but rather periodic excluding, in
this way, some among the possible causes of large spectral width. It is also proved that
the problem of trapped flux can be avoided (see f.i. [10]).

There exist numerous applications of Josephson junctions especially as superconduct-
ing quantum interference device (SQUID), which consists of a loop of superconductor
with one or more Josephson junctions. These devices are one of the most important
applications of superconductivity. They are basically extremely sensitive sensors of mag-
netic flux. This peculiarity allows to diagnose heart and/or blood circuit problems using
magnetocardiograms and even to evaluate magnetic fields generated by electric currents
in the brain using magnetoencephalography -MEG- [2]. SQUIDs are also used in non-
destructive testing as a convenient alternative to ultra sound or x-ray methods (see [2]
and reference therein). In geophysics, instead, they are used as gradiometers [3] or as
gravitational wave detectors (see [4] and reference therein). SQUIDs play an important
role in the study of the potential virtues of superconducting digital electronics, too [13].

2 Mathematical Models and Equivalences

All equations previously considered have something in common. More precisely, if one
denotes by L the following linear third order parabolic operator:

L = ε∂xxt − ∂tt + ∂xx − α∂t, (9)

(1)-(4) and (8) can be expressed by means of the unique equations:

Lu = f(x, t, u). (10)

According to the meaning of f, numerous other examples of dissipative phenomena can be
considered. For example, equation (10) arises in the motion of viscoelastic fluids or solids
(see [14–17] and references therein) and in the study of viscoelastic plates with memory,
when the relaxation function is given by an exponential function [18]. It can also be
employed in the analysis of phase-change problems for an extended heat conduction model
[19,20]. In addition, equation (10) arises also in heat conduction at low temperature [15,
21] and in the propagation of localized magnetohydrodinamic models in plasma physics
[22]. Still, it is possible to find others in [23–26].

Then, an equivalence between the third order equation (10), typical of Josephson
junctions, and biological phenomena has been pointed out in [27]. Indeed, let us consider
the FitzHugh-Nagumo system (FHN) [28, 29]:











∂ u

∂ t
= ε

∂2 u

∂ x2
− v − a u + u2 ( a+ 1 − u ) (0 < a < 1),

∂ v

∂ t
= b u − β v,

(11)

where u(x, t) represents a membrane potential of a nerve axon at distance x and time
t, and v(x, t) is a recovery variable that models the transmembrane current.
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This reaction-diffusion model characterizes the theory of the propagation of nerve
impulses, and the connection between a third order equation like (10) and the (FHN)
system can be realized changing the first one into the second one under continuous
parameter variations [27].

An equation that is able to model all these physical problems has been introduced
in [30] and it is represented by the following parabolic integro-differential equation:

LR u ≡ ut − εuxx + au+ b

∫ t

0

e−β(t−τ) u(x, τ) dτ = F (x, t, u). (12)

Indeed, it has been proved that (12) characterizes both reaction diffusion models like
the FitzHugh-Nagumo system and superconductive models [30–34].

In particular, perturbed Sine-Gordon equation (2) can be obtained by (12) as soon
as one assumes

a = α − 1

ε
, b = − a

ε
, β =

1

ε
(13)

and F is such that

F (x, t, u) = −
∫ t

0

e− 1

ε
(t−τ ) [ sen u(x, τ) − γ ] dτ. (14)

Furthermore, the integro-differential equation (12) is able to describe the evolution
inside an exponentially shaped Josephson junction, too. Indeed, as it has already been
underlined in [12], assuming

β =
1

ε
, b = β2 (1 − α ε), a β =

λ2

4
− b, (15)

F = −
∫ t

0

e−
1

ε
(t−τ)f1(x, τ, u) dτ,

with

f1 = e−
λ
2
x [ sin (e xλ/2 u) − γ], (16)

from the integro-differential equation (12) it follows:

εuxxt − utt + uxx − (α + ε
λ2

4
)ut − λ2

4
u = f1. (17)

Therefore, assuming e
λ
2
x u = ū, (17) turns into equation (8).

Remark: In (12) the kernel e−β(t−τ) u(x, τ) can be modified as physical situations
demand and in this way many other physical phenomena could be described (see, f.i.
[35–38] and references therein). The particular choice made here is due to describe the
superconductive and biological models considered.

3 Mathematical Results

There exist many significant analytic results concerning the qualitative analysis of equa-
tions related to Josephson junctions and many initial-boundary problems have been dis-
cussed in a lot of papers (see [15, 39–43] and references therein).
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A first analysis, where the fundamental solution is determined, concerns operator L in
case α = 0 [14,44]. Later, in [45,46], the fundamental solution of the whole operator L of
(9) is explicitly determined and various properties are analyzed. Estimates and properties
of continuous dependence for the solution of initial value problem are determined, too.

Moreover, in [47], in order to deduce an exhaustive asymptotic analysis, the Green
function of the linear operator L of (9) has been determined by Fourier series and by
means of its properties, an exponential decrease of solution related to the Dirichlet prob-
lem is deduced. And still by means of Fourier series, existence and uniqueness for Dirich-
let, Neumann and pseudoperiodic initial-boundary conditions are achieved, too [42, 43].

The Dirichlet problem is still considered with respect to equation (8) and in [11] the
problem is reduced to an integral equation with kernel G endowed with rapid convergence
and exponentially vanishing as t tends to infinity. Indeed, let

γn =
nπ

l
, bn = (γ2

n + λ2/4 ), gn =
1

2
(α + ε bn ), ωn =

√

g2n − bn (18)

and

Gn(t) =
1

ωn
e−gn t sinh(ωnt), (19)

the Green function is given by

G(x, t, ξ) =
2

l
e

λ
2

x
∞
∑

n=1

Gn(t) sinγnξ sinγnx. (20)

The initial boundary problem with Dirichlet conditions is analyzed and an appropriate
analysis implies results on the existence and uniqueness of the solution.

That is, indicating by

ΩT ≡ { (x, t) : 0 ≤ x ≤ L ; 0 < t ≤ T },

the following initial boundary problem














(∂xx − λ∂x ) (εut + u)− ∂t(ut + αu) = F (x, t, u), (x, t) ∈ ΩT ,

u(x, 0) = h0(x), ut(x, 0) = h1(x), x ∈ [0, L],

u(0, t) = g1(t), u(l, t) = g2(t), 0 < t ≤ T.

(21)

for g1 = g2 = 0 admits the following integral equation:

u(x, t) = (∂t + α+ ε λ∂x − ε∂xx)

∫ L

0

h0(ξ)e
−λξ

2 G(x, ξ, t)dξ (22)

+

∫ L

0

h1(ξ)e
−λξ

2 G(x, ξ, t)dξ +

∫ t

0

dτ

∫ L

0

G(x, ξ, t− τ)e−
λξ
2 F (ξ, τ, u(ξ, τ))dξ.

So, a priori estimates, continuous dependence and asymptotic behaviour of the solu-
tion, are deduced, too.

When boundary data are non null, in order to achieve explicit estimates of boundary
contributions related to the Dirichlet problem, equivalence between the equation describ-
ing the evolution inside an (ESJJ) and the integro-differential equation (12) has been
considered. Indeed, operator LR of (12) has already been extensively examined in [30]
and the fundamental solution K with many of its properties have been determined.
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More in detail, if a, b, ε, β are positive constants, r = |x| /√ε and Jn(z) denotes
the Bessel function of first kind and order n, let us consider the function

K(r, t) =
e−

r2

4t

2
√
πεt

e−at − 1

2

√

b

πε

∫ t

0

e−
r2

4y
−ay

√
t− y

e−β(t−y)J1(2,
√

by(t− y) )dy. (23)

The following theorem has been proved:

Theorem 3.1 The function K has the same basic properties of the fundamental

solution of the heat equation, that is: K(x, t) ∈ C∞ for t > 0, x ∈ ℜ.
For fixed t > 0, K and its derivatives are exponentially vanishing as fast as |x|

tends to infinity.

For any fixed δ > 0, uniformly for all |x| ≥ δ, it results:

lim
t ↓0

K(x, t) = 0. (24)

For t > 0, it is LR K = 0.
Moreover, it results

|K(x, t)| ≤ e−
x2

4ε t

2
√
πεt

[ e− at + bt
e− at − e−β t

β − a
]. (25)

Previous estimates show, as well, that K exponentially decays to zero as t increases.
These and other properties also allowed to prove in [12] numerous properties of the
following function which is similar to theta functions:

θ(x, t) = K(x, t) +

∞
∑

n=1

[K(x+ 2nL, t) +K(x− 2nL, t)] =

∞
∑

n=−∞

K(x+ 2nL, t). (26)

So that, as for problem (21), denoting by

G(x, ξ, t) = θ ( |x− ξ|, t ) − θ (x+ ξ, t )

and

F (x, t, u) = e−
λ
2
x

[
∫ t

0

e−
1

ε
(t−τ)[ sin (e xλ/2 u) − γ] dτ − h1(x) e

− t
ε

]

,

it has been proved that the problem admits the following integral equation:

u(x, t) =

∫ L

0

G(x, ξ, t)e−
λ
2
xh0(ξ)dξ +

∫ t

0

dτ

∫ L

0

G(x, ξ, t)F (ξ, τ, u(x, τ))dξ (27)

−2ε

∫ t

0

θx(x, t− τ)g1(τ)dτ + 2ε

∫ t

0

θx(x− L, t− τ)e−
λL
2 g2(τ)dτ.

Besides, a priori estimates and asymptotic properties have proved that when t tends
to infinity, the effect due to the initial disturbances (h0, h1 ) is vanishing, while the effect
of the non linear source is bounded for all t. Furthermore, for large t, the effects due to
boundary disturbances g1, g2 are null or at least everywhere bounded.

Indeed, if h0 = h1 = 0 and F = 0, the following theorem holds:
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Theorem 3.2 When t tends to infinity and data gi (i = 1, 2) are two continuous

functions convergent for large t, one has:

u = g1,∞
sinhσ0 (L− x)

sinh σ0 L
+ g2,∞

sinhσ0 x

sinh σ0 L
, (28)

where σ0 = λ
2 and gi,∞ = limt→∞ gi, (i = 1, 2). Otherwise, when ġi ∈ L1[0,∞] (i = 1, 2)

too, the effects determined by boundary disturbance vanish.

Another aspect frequently highlighted in many papers is that the linear third order
operator L is an example of wave operator perturbed by higher order viscous terms. The
behaviour of solution of (10) when α = 0, has been analyzed in various applications of
artificial viscosity method [48,49]. Moreover, in [50], when ε is vanishing, the interaction
between diffusion effects and pure waves has been evaluated by means of slow time εt
and fast times t/ε. These aspects are also analyzed in [16] referring to the strip problem
for equation (10) with a linear source term f , while in the non-linear case, the Neumann
boundary problem has been discussed in [51].

Also equation (8) can be considered as a semilinear hyperbolic equation perturbed
by viscous terms described by higher-order derivatives with small diffusion coefficients ε.
In [52], the influence of the dissipative terms has been estimated proving that they are
both bounded when ε tends to zero and when time tends to infinity, giving a mathematical
proof of what has been observed in [9].

As for explicit solutions, an extensive literature exists, and more recently, various
classes of solutions for (SGE) have been determined (see, f.i., [53, 54]). Furthermore,
when ε = 0, some travelling-wave solutions for (2) have been obtained both for |γ| not
larger than 1 and for |γ| > 1 [55, 56]. Still when ε = 0, some classes of explicit solutions
have been determined for equation (8), too [52].

4 Open Problems

In light of what has been stated until now, many open problems can be highlighted.
It would be interesting, for example, to study equation (2) when interface conditions

for the phase (and its normal gradient) are added, connecting, in this way, with the
problems of window Josephson junctions (WJJ) when the influence of an external mag-
netic field must be considered [57]. Indeed, letting ε = 0, (2) exactly recalls one of the
equations usually considered for (WJJ).

When, on the other hand, ε is not vanishing, a viscous term, represented by the third
order term, appears. So that, it would be interesting to give an estimate of the diffusive
effects due to the ε-term, too.

Moreover, according to the analogy between superconductor equations and reaction-
diffusion models, the Robin boundary problem would be considered in order to achieve
results for many biological phenomena, too [58, 59].

Besides, as for analysis on asymptotic effects due to the boundary perturbations
related to equation (8), as it has been pointed out, the Dirichlet boundary problem has
already been considered in [12]. So, the evaluation could be extended to other boundary
problems, such as, for instance, Neumann and mixed ones.

Of course, in order to achieve estimates for other more significant physical problems,
this analysis and many other estimates could be carried out for solution of equation
(3) and for equations like (4) where the presence of a gap in the vacuum chamber is
considered, too [41].
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The analysis conducted so far required that in (12) constants a, b, ε, β were all
positive. This can be valid if we look for an analogy with an (ESJJ), but excludes
application of (12) to some other junctions. Therefore it would be interesting to extend
the analysis of operator LR for any value of a, b, ε, β.

Finally a qualitative analysis of operators should be made in case ε, α, λ were not
constant.

5 Conclusion

The state of the art proves that many significant analytic results concerning the qualita-
tive analysis of equations related to Josephson junctions have been obtained and many
initial-boundary problems have been discussed. However other many important open
problems may be considered and solved.
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