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Abstract: This paper establishes a set of Benjamin-Bona-Mahony-like equations
(BBM-like) equations. By means of an advection dispersion equation, we can develop
several BBM-like equations. We show that these established equations share some of
the solitary wave solutions of the BBM equation. We also show that these developed
equations give paekon solutions, for specific values of the parameter included in these
equations, although these equations are not of the Camassa-Holm type of equations.
We also derive a variety of solitonic solutions.
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1 Introduction

Nonlinear equations have been a subject of intensive study for decades in several areas
of mathematics, physics, engineering and other sciences. The study of these nonlinear
equations has been the topic of major research projects in nonlinear sciences. Another
interesting class of excitations consists of establishing nonlinear equations with significant
physical features [1–10].

The KdV equation reads
ut + uux + uxxx = 0. (1)

This equation models a variety of nonlinear wave phenomena such as shallow water waves,
acoustic waves in a harmonic crystal, internal gravity waves in oceans, blood pressure
pulses, and ion-acoustic waves in plasmas [1–7]. The KdV equation is completely inte-
grable and admits multiple-soliton solutions and exhibits an infinite number of conserved
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quantities. The Korteweg-de Vries (KdV) equation was derived to describe shallow wa-
ter waves of long wavelength and small amplitude. The KdV equation admits soliton
solutions which have been the subject of intense study for the last few decades. Re-
searchers remain intrigued by the physical properties of the KdV equation, in particular
the complete integrability and the possess of an infinite number of conserved quantities.

While the KdV equation has remarkable properties [3], some other aspects of this
equation are less favorable. This includes, e.g., an unbounded dispersion relation, that
is obviously non-physical [3]. Several noticeable attempts to improve the KdV model
were taken over the years. Benjamin-Bona-Mahony introduced the regularized long-wave
equation, or the BBM equation that reads

ut + ux + uux − uxxt = 0, (2)

replaces the third-order derivative in the KdV equation (1) by a mixed derivative −uxxt,
which, in turn, results in a bounded dispersion relation [3]. The BBM equation (2)
can be used to describe the behavior of an undular bore, in water, which comprises a
smooth wavefront followed by a train of solitary waves [6,7]. An undular bore can be
interpreted as the dispersive analog of a shock wave in classical non-dispersive, dissipative
hydrodynamics [7, 11-20].

Studies on nonlinear evolution equations are growing rapidly because these equations
describe real features in science, technology, and engineering fields. In the past decades,
a vast variety of powerful methods has been established to determine the exact solu-
tions for these equations and to study the scientific features of these solutions from many
points of view. Examples of these methods are the Hirota bilinear method [4], the simpli-
fied Hirota’s method [6], the Bäcklund transformation method, Darboux transformation,
Pfaffian technique, the inverse scattering method [4], the Painlevé analysis, the general-
ized symmetry method, the subsidiary ordinary differential equation method, and many
other methods that can be found in [13–20].

The BBM equation is not integrable and admits one soliton solution given by

u(x, t) = −
12k2

4k2 − 1
sech2

(

kx+
k

4k2 − 1
t

)

, (3)

where k 6= ± 1
2 .

Moreover, the BBM equation has the singular solution

u(x, t) =
12k2

4k2 − 1
csch2

(

kx+
k

4k2 − 1
t

)

. (4)

The present paper is aimed at the derivation of entirely new Benjamin-Bona-Mahony-
like (BBM-like) equations that will give peakon solutions, i.e peak-shaped soliton solu-
tions, in addition to other travelling wave solutions, although these equations are not
of the Camassa-Holm type of equations. The derivation process, as will be seen later,
leads to an infinite number of such equations. We will also show that these new forms
share the solutions (3)–(4) with the BBM equation (2). To achieve our goals we will use
several tools that will be applied in order to extract exact solutions.

2 Formulations of the BBM-Like Equations

In this section, we will establish a class of BBM-like equations with distinct structures.
In a manner parallel to that used in [5], we introduce a generalized form of an advection
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dispersion equation as
ut + V ux + δuxxt = 0, (5)

where δ is an arbitrary dimensionless parameter and V (u, ux, uxx, · · · ) is an arbitrary
function. We assume that the travelling wave

u(x, t) = f(x− ct) = f(ξ), (6)

solves the BBM equation (2) and also solves the advection dispersion equation (5) for
the same speed c. Using ξ = x− ct transforms (2) and (5) to

− cf ′ + (1 + f)f ′ − uxxt = 0, (7)

and
− cf ′ + V f ′ + δuxxt = 0, (8)

respectively. Eliminating uxxt from these two equations, and by noting that f ′ 6= 0, we
obtain

V = (δ + 1)c− δ(1 + f) = (δ + 1)c− δ(1 + u). (9)

The advection dispersion equations, or the BBM-like equations can be obtained by using
a variety of values of the speed c, that can be obtained by integrating or differentiating
(7) as many times as we want and if possible.

We first solve (7) for c where we find

c = 1 + u−
uxxt

ux

. (10)

Substituting (10) into (9) gives

V = (δ + 1)(1 + u−
uxxt

ux

)− δ(1 + u). (11)

Substituting (11) into the generalized advection dispersion equation (5) gives

ut +

{

(δ + 1)(1 + u−
uxxt

ux

)− δ(1 + u)

}

ux + δuxxt = 0, (12)

which gives the standard BBM equation (2) for any value of δ.
We now turn for the derivation of the BBM-like equations. Integrating (7) and solving

for c we find

c = 1 +
1

2
u−

uxt

u
. (13)

Substituting for c from (13) into (9) gives

V1 = (δ + 1)

(

1 +
1

2
u−

uxt

u

)

− δ(1 + u). (14)

Inserting this result into the advection dispersion equation (5) gives

ut +

{

(δ + 1)

(

1 +
1

2
u−

uxt

u

)

− δ(1 + u)

}

ux + δuxxt = 0, (15)

that will be termed the first BBM-like equation.
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To determine more values for the speed c, we can differentiate (7) as many times as
we want. For example, differentiating (7) once and solving for c we find

c = 1 + u+
u2
x
− uxxxt

uxx

, (16)

and by differentiating (7) again and solving for c we obtain

c = 1 + u+
3uxuxx − uxxxxt

uxxx

. (17)

Other values for c can be determined by differentiating (7) as many times as we want.
Substituting (16) and (17) into (9) and simplifying one finds

V2 = (δ + 1)

(

1 + u+
u2
x − uxxxt

uxx

)

− δ(1 + u), (18)

and

V3 = (δ + 1)

(

1 + u+
3uxuxx − uxxxxt

uxxx

)

− δ(1 + u). (19)

Notice that V2 and V3 involve higher order derivatives than the dispersive term uxxt of the
BBM equation. Substituting V2 and V3 into (5) gives the following BBM-like equations

ut +

{

1 + u+ (δ + 1)

(

u2
x − uxxxt

uxx

)}

ux + δuxxt = 0, (20)

and

ut +

{

1 + u+ (δ + 1)

(

3uxuxx − uxxxxt

uxxx

)}

ux + δuxxt = 0, (21)

that will be termed the second and the third BBM-like equations respectively.
The first conclusion that we can make here is that the three derived BBM-like equa-

tions (15), (20) and (21) share the same soliton and singular solutions (3) and (4) that
we derived earlier for the standard BBM equation (2).

Because our main concern of this work is to establish peakon solutions for the derived
BBM-like equations, which are not of the CH or DP type, in addition to other solutions,
we found that peakon solutions exist only for specific value of δ for each equation. Using
selected values of δ for the equations (15), (20) and (21), we obtain the following specific
BBM-like equations

ut +
{

1− 2
uxt

u

}

ux + uxxt = 0, δ = 1, (22)

ut +

{

1 + u−

(

u2
x − uxxxt

uxx

)}

ux − 2uxxt = 0, δ = −2, (23)

and

ut +

{

1 + u−
1

3

(

3uxuxx − uxxxxt

uxxx

)}

ux −
4

3
uxxt = 0, δ = −

4

3
. (24)

In what follows we will employ distinct tools to derive exact solutions for each of the
aforementioned forms (15), (20), and (21), that will be referred to as Form I, Form II,
and Form III respectively. Recall that peakon solutions exist only for specific values of
the parameter δ, whereas other solutions will be obtained for any selective value of δ.
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3 The Nonlinear BBM-Like Equation: Form I

In this section we will study form I of the nonlinear BBM-like equation

ut +

{

(δ + 1)

(

1 +
1

2
u−

uxt

u

)

− δ(1 + u)

}

ux + δuxxt = 0, (25)

where we will derive peakon solutions and other travelling wave solutions.

3.1 Peakon solution

As stated before, we found that peakon solution exists for (25) only for δ = 1, where (25)
becomes

ut +
{

1− 2
uxt

u

}

ux + uxxt = 0. (26)

To determine a peakon solution to (26), we assume the peakon solution is of the form

u(x, t) = Re−|kx−ct|. (27)

Substituting this assumption into (26) we solve the resulting equation to find that

c = −
k

k2 − 1
, k 6= ±1, (28)

and R can be any selective real number such as c. Consequently, the peakon solution is
given by

u(x, t) = Re
−|kx+ k

k2
−1

t|
. (29)

Recall that the standard BBM equation gives soliton solutions but not peakon solutions.
Figure 1 below shows the peakon solution (29).
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214 ABDUL-MAJID WAZWAZ

3.2 Soliton solutions

In this section, we will derive soliton solutions that satisfy the generalized BBM-like
equation (25) for specific values of the parameter δ. For this reason, we assume that the
solution for (25) has the form

u(x, t) = R+ sech2 (kx− ct). (30)

Substituting this assumption into the nonlinear BBM-like equation (25), and solving the
resulting equation for R and c, we find two sets of solutions given by

c = k

4k2+1 ,

R = − 2
3 ,

(31)

valid for δ = 1, and

c = 1
12k ,

R = 1−16k2

12k2 ,
(32)

valid for δ = −1.

This in turn gives the soliton solutions

u(x, t) = −
2

3
+ sech2(kx−

k

4k2 + 1
t), δ = 1, (33)

and

u(x, t) =
1− 16k2

12k2
+ sech2(kx−

1

12k
t), δ = −1. (34)

We point out that the first solution justifies also the BBM equation, whereas the second
solution satisfies only the BBM-like equation (25).

In a similar manner, we can derive the singular soliton solutions

u(x, t) =
2

3
+ csch2(kx−

k

4k2 + 1
t), δ = 1. (35)

and

u(x, t) = −
1 + 8k2

12k2
+ csch2(kx+

1

12k
t), δ = −1. (36)

Unlike the previous results of the soliton solutions, the first singular soliton solution (35)
satisfies the BBM-like equation (25), whereas the second solution (36) satisfies the BBM
and the BBM-like equations.

3.3 Travelling waves solutions

In this section, we will derive more exact solutions that satisfy the generalized BBM-like
equation (25), for specific values of the parameter δ. In what follows, we will present the
approaches that will be used to derive these new solutions.
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3.3.1 Solutions in the sec2 or csc2 form

We assume that the solution for (25) has the form

u(x, t) = R+ sec2 (kx− ct). (37)

Substituting this assumption into the nonlinear BBM-like equation (25), and solving the
resulting equation for R and c, we find two sets of solutions given by

c = − k

4k2−1 ,

R = − 2
3 .

(38)

valid for δ = 1, and
c = − 1

12k ,

R = − 1+16k2

12k2 .
(39)

valid for δ = −1. This gives the exact solutions

u(x, t) = −
2

3
+ sec2(kx+

k

4k2 − 1
t), δ = 1, (40)

and

u(x, t) = −
1 + 16k2

12k2
+ sec2(kx+

1

12k
t), δ = −1, (41)

3.3.2 Solutions in the sin2 or cos2 form

We assume that the solution for (25) has the form

u(x, t) = R+ sin2 (kx− ct). (42)

Substituting this assumption into the nonlinear BBM-like equation (25), and solving the
resulting equation for R and c, we find only one set of solutions given by

c = − k

4k2+1 ,

R = − 1
2 .

(43)

valid for δ = 1 This gives the exact solution

u(x, t) = −
1

2
+ sec2(kx+

k

4k2 + 1
t), δ = 1. (44)

In a similar manner, we can derive the solution

u(x, t) = −
1

2
+ cos2(kx+

k

4k2 + 1
t), δ = 1. (45)

4 The Nonlinear BBM-Like Equation: Form II

In this section we will study form II of the nonlinear BBM-like equation

ut +

{

1 + u+ (δ + 1)
u2
x
− uxxxt

uxx

}

ux + δuxxt = 0, (46)

where we will derive peakon solutions and other travelling wave solutions.
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4.1 Peakon solution

As stated before, we found that peakon solution exists for (46) only for δ = −2, where
(46) becomes

ut +

{

1 + u−
u2
x − uxxxt

uxx

}

ux − 2uxxt = 0, δ = −2, (47)

To determine a peakon solution to (47), we assume the peakon solution is of the form

u(x, t) = Re−|kx−ct|. (48)

Substituting this assumption into (47) we solve the resulting equation to find that

c = −
k

k2 − 1
, k 6= ±1, (49)

and R can be any selective real number such as c. Consequently, the peakon solution is
given by

u(x, t) = Re
−|kx+ k

k2
−1

t|
. (50)

Recall that the standard BBM equation gives soliton solutions but not peakon solutions.
Moreover, the obtained peakon solution (50) is identical to the peakon solution obtained
earlier for the first form.

4.2 Soliton solutions

In this section, we will derive soliton solutions that satisfy the generalized BBM-like
equation (46). For this reason, we assume that the solution for (46) has the form

u(x, t) = R+ sech2 (kx− ct). (51)

Substituting this assumption into the nonlinear BBM-like equation (46), and solving the
resulting equation for R and c, we find one set of solutions given by

c = 1
12k ,

R = 1−16k2

12k2 ,
(52)

valid for any real value of δ.

This in turn gives the soliton solutions

u(x, t) =
1− 16k2

12k2
+ sech2(kx−

1

12k
t), (53)

which also satisfies the BBM equation.

In a similar manner, we can derive the singular soliton solutions

u(x, t) = −
1 + 8k2

12k2
+ csch2(kx+

1

12k
t), (54)

which also satisfies the BBM equation.
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4.3 Travelling waves solutions

In this section, we will derive more exact solutions that satisfy the generalized BBM-like
equation (46). In what follows, we will present the approaches that will be used to derive
these new solutions.

4.3.1 Solutions in the sec2 or csc2 form

We assume that the solution for (46) has the form

u(x, t) = R+ sec2 (kx− ct). (55)

Substituting this assumption into the nonlinear BBM-like equation (46), and solving the
resulting equation for R and c, we find one set of solutions given by

c = − 1
12k ,

R = − 1+16k2

12k2 .
(56)

valid for any real value of δ. This gives the exact solutions

u(x, t) = −
1 + 16k2

12k2
+ sec2(kx+

1

12k
t). (57)

In a like manner, we can derive another exact solution of the form

u(x, t) = −
1 + 16k2

12k2
+ csc2(kx+

1

12k
t). (58)

5 The Nonlinear BBM-Like Equation: Form III

In this section we will study form III of the nonlinear BBM-like equation

ut +

{

1 + u+ (δ + 1)
3uxuxx − uxxxxt

uxxx

}

ux + δuxxt = 0, (59)

where we will derive peakon solutions and other travelling wave solutions.

5.1 Peakon solution

As stated before, we found that peakon solution exists for (59) only for δ = − 4
3 , where

(59) becomes

ut +

{

1 + u−
1

3
(
3uxuxx − uxxxxt

uxxx

)

}

ux −
4

3
uxxt = 0. (60)

To determine a peakon solution to (60), we assume the peakon solution is of the form

u(x, t) = Re−|kx−ct|. (61)

Substituting this assumption into (60) we solve the resulting equation to find that

c = −
k

k2 − 1
, k 6= ±1, (62)
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and R can be any selective real number such as c. Consequently, the peakon solution is
given by

u(x, t) = Re
−|kx+ k

k2
−1

t|
. (63)

It is obvious that although the three forms of the BBM-like equations differ in its
structures, but all three models gave the same peakon solution.

5.2 Soliton solutions

In this section, we will derive soliton solutions that satisfy the generalized BBM-like
equation (59) for specific values of the parameter δ. For this reason, we assume that the
solution for (59) has the form

u(x, t) = R+ sech2 (kx− ct). (64)

Substituting this assumption into the nonlinear BBM-like equation (59), and solving the
resulting equation for R and c, we find two sets of solutions given by

c = 1
12k ,

R = 1−16k2

12k2 ,
(65)

valid for any real value of δ.
This in turn gives the soliton solutions

u(x, t) =
1− 16k2

12k2
+ sech2(kx−

1

12k
t), δ = −1. (66)

In a similar manner, we can derive the singular soliton solutions

u(x, t) = −
1 + 8k2

12k2
+ csch2(kx+

1

12k
t), δ = −1. (67)

5.3 Travelling waves solutions

In this section, we will derive more exact solutions that satisfy the generalized BBM-like
equation (59), for specific values of the parameter δ. In what follows, we will present the
approaches that will be used to derive these new solutions.

5.3.1 Solutions in the sec2 or csc2 form

We assume that the solution for (59) has the form

u(x, t) = R+ sec2 (kx− ct). (68)

Substituting this assumption into the nonlinear BBM-like equation (59), gives the same
solution obtained before for form II, namely

u(x, t) = −
1 + 16k2

12k2
+ sec2(kx+

1

12k
t), (69)

and

u(x, t) = −
1 + 16k2

12k2
+ csc2(kx+

1

12k
t). (70)
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5.3.2 Solutions in the sin2 or cos2 form

We assume that the solution for (59) has the form

u(x, t) = R+ sin2 (kx− ct). (71)

Substituting this assumption into the nonlinear BBM-like equation (59), and solving the
resulting equation for R and c, we find only one set of solutions given by

δ = − 4
3 ,

c = k(3+2R
2(4k2+1) ,

(72)

where R is left as a free parameter. This gives the exact solution

u(x, t) = R+ sin2(kx+
k

4k2 + 1
t), (73)

In a similar manner, we can derive the solution

u(x, t) = R+ cos2(kx+
k

4k2 + 1
t). (74)

6 Conclusion

In this work we established three (BBM-like) equations that share some of the solitary
wave solutions with the standard BBM equation. We showed that these forms, although
are not of the same type as the CH or DP list of equations, but give peakon solutions
provided that each form has specific value of the parameter δ included in the equation.
This shows that the developed BBM-like equations can model solitary wave solutions
and peaked solitary waves solutions. In addition, the developed equations contain terms
with higher derivatives than the third-order term uxxt.
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