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Abstract: Existence of coupled lower and upper solutions for nonlinear differential
equations guarantees the existence as well as interval of existence of the solution. In
this work, a methodology has been developed to compute coupled lower and upper
solutions using natural lower and upper solutions by iterative methods. Further, using
the computed lower and upper solutions, sequences are developed which converge
uniformly and monotonically to the unique solution. In addition, it has been shown
that the convergence of these sequences is superlinear. Further the convergence of the
sequences is accelerated by Gauss-Seidel method. Finally, some numerical examples
are presented.
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1 Introduction

It is well-known that qualitative and quantitative properties of fractional differential
equations are very useful in applications. In addition, fractional differential equations
in several situations have proved to be better and more economical models than their
counterpart with integer derivatives. For details see [5, 9, 11] and the references therein.
In the past thirty years there has been a rapid development in the qualitative study
of fractional differential equation such as existence, uniqueness and stability results due
to its applications. In particular, it has been very useful in biological sciences such
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as population models. However, most of the existence and uniqueness results for frac-
tional differential equations are obtained by some type of fixed point theorem approach.
See [1,2,17]. Unfortunately, these methods do not provide the interval of existence of the
solution as well as a methodology to compute solutions. The method of lower and upper
solutions and the method of coupled lower and upper solutions which guarantees the
interval of existence, and is well-known for ordinary differential equations have now been
extended to Riemann-Liouville and Caputo fractional differential equations in [4, 13].
Monotone method combined with lower and upper solutions provides both theoretical
and constructive method of existence of the minimal and maximal solution or the unique
solution if the uniqueness conditions are satisfied. See [6] for details. Monotone method
works only when the nonlinear function is either increasing or could be made increasing
by adding a linear term. Monotone method yields alternating sequences when the non-
linear function is decreasing with an additional assumption. In [18] and the references
therein they have developed generalized monotone method for scalar first order ordinary
differential equations. Generalized monotone method uses coupled lower and upper so-
lutions and the method is very convenient to use when the nonlinear function is the sum
of an increasing and decreasing functions. Furthermore, we do not need an additional
assumption which we need when the nonlinear function is decreasing when we use an
appropriate type of coupled lower and upper solutions, namely of type I. Generalized
monotone method has been extended to scalar and system of Caputo fractional differen-
tial equations in [10, 16]. Generalized monotone method with coupled lower and upper
solutions has an added advantage for fractional differential equations, since it avoids the
computation of Mittag-Leffler function. The disadvantage of the generalized monotone
method is the computation of coupled lower and upper solutions of type I on the inter-
val of existence. The computation of coupled lower and upper solution is not a trivial
matter. Using the generalized monotone method as a tool, both the theoretical and
the numerical results for computing coupled lower and upper solutions for scalar and
system of ordinary differential equations can be found in [15]. Computation of coupled
lower and upper solution to any desired interval using generalized monotone method as a
tool and the corresponding numerical results for scalar and system of Caputo fractional
differential equations are developed in [11] and [14] respectively. However, the rate of
convergence of the sequences is linear. In [13] generalized quasilinearization method was
developed using coupled lower and upper solutions when the nonlinear function is the
sum of a convex and a concave function. The method of generalized quasilinearization
yields sequences which converge uniformly to the unique solution and the rate of con-
vergence is quadratic. The complexity of this method is that the sequences are solutions
of two systems of coupled linear equations. The solutions of these two systems are dif-
ficult even with constant coefficients for fractional differential equations. To overcome
this difficulty, in this work we have taken the nonlinear function as the sum of a convex
function and a non-increasing function. We have combined the method of generalized
quasilinearization for the convex function and generalized monotone method for the non-
increasing function. We compute the sequences as two systems of Caputo fractional
differential equations which are decoupled. The method yields superlinear convergence.
See [13] for details. In this work, we provide a methodology to compute coupled lower
and upper solutions of type I, to any desired interval by using the mixed generalized
quasilinearization method and generalized monotone method. The convergence is su-
perlinear. Further we can accelerate the convergence by using Gauss-Seidel accelerated
convergence. We have applied our theoretical results to the logistic equation. The first
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set of iterates is in terms of the Mittag-Leffler function. Computation of further iterates
has led to interesting open problems, since it requires the exponential formula related
to Mittag-Leffler function. The exponential properties of the Mittag-Leffler function are
yet to be established. This has been addressed in our conclusion.

2 Preliminary and Auxiliary Results

In this section, we recall known results, some definitions which are needed for our main
results.

Definition 2.1 Caputo fractional derivative of order q is given by:

cDqu(t) =
1

Γ(1 − q)

∫ t

0

(t− s)−qu′(s)ds,

where 0 < q < 1 and Γ(q) is the Gamma function.

Although in this work, we study Caputo fractional differential equations, our compar-
ison results follow from the relation between Riemann-Liouville derivative and Caputo
fractional derivative. Hence the next definition is for the Riemann-Liouville derivative.

Definition 2.2 Riemann-Liouville fractional derivative of order q with respect to t

is defined by:

Dqu(t) =
1

Γ(m− q)

dm

dtm

∫ t

0

(t− s)m−q−1f(s)ds,

where m− 1 < q < m.

In particular, if 0 < q < 1, then

Dqu(t) =
1

Γ(1− q)

d

dt

∫ t

0

(t− s)−qf(s)ds.

Here, and throughout this work, we will consider fractional differential equations of order
q, where, 0 < q < 1.

Consider the nonlinear Caputo fractional differential equation with initial condition
of the form:

cDqu(t) = f(t, u(t)), u(0) = u0, (1)

where f ∈ C[J × R,R] and J = [0, T ]. The integral representation of (1) is given by:

u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, u(s))ds. (2)

The sequences we develop are always solutions of linear Caputo fractional differential
equation. In order to compute the solution of the linear fractional differential equation
with constant coefficients we need Mittag-Leffler function.

Definition 2.3 Mittag-Leffler function of two parameters q, r is given by

Eq,r(λ(t − t0)
q) =

∞
∑

k=0

(λ(t − t0)
q)k

Γ(qk + r)
,
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where q, r > 0. Also, for t0 = 0 and r = 1, we get

Eq,1(λt
q) =

∞
∑

k=0

(λtq)k

Γ(qk + 1)
,

where q > 0.

Also, consider linear Caputo fractional differential equation

cDqu(t) = λu(t) + f(t), u(0) = u0, on J, (3)

where J = [0, T ], λ is a constant and f(t) ∈ C[J,R]. The solution of (3) exists and is
unique. The explicit solution of (3) is given by:

u(t) = u0Eq,1(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t − s)q)f(s)ds. (4)

See [7] for details. In particular, if λ = 0, the solution u(t) is given by:

u(t) = u0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds. (5)

Also we recall known results related to scalar Caputo nonlinear fractional differential
equations of the following form

cDqu(t) = f(t, u) + g(t, u), u(0) = u0 on J = [0, T ], (6)

where 0 < q < 1. Results when q = 1 is proved in [18]. Here f, g ∈ C(J ×R,R), f(t, u)
is non-decreasing in u on J and g(t, u) is non-increasing in u on J .

In order to prove the comparison result relative to coupled lower and upper solutions
of (6) we recall a basic lemma relative to the Riemann-Liouville fractional derivative.

Lemma 2.1 Let m(t) ∈ Cp[J,R] (where J = [0, T ]) be such that for some t1 ∈ (0, T ],
m(t1) = 0 and m(t) ≤ 0, on (0, T ]. Then Dqm(t1) ≥ 0.

Proof. See [4,7] for details. Note that the above result has been proved in [4] without
using the Hölder continuity assumption of m(t). ✷

The above lemma is true for Caputo derivative also, using the relation cDqx(t) =
Dq(x(t) − x(0)) between the Caputo derivative and the Riemann-Liouville derivative.
This is the version we will be using to prove our comparison results.

We recall the following known definitions which are needed for our main results.

Definition 2.4 The functions α0, β0 ∈ C1(J,R) are called natural lower and upper
solutions of (6) if :

{

cDqα0(t) ≤ f(t, α0) + g(t, α0), α0(0) ≤ u0,
cDqβ0(t) ≥ f(t, β0) + g(t, β0), β0(0) ≥ u0.

Definition 2.5 The functions α0, β0 ∈ C1(J,R) are called coupled lower and upper
solutions of (6) of type I if :

{

cDqα0(t) ≤ f(t, α0) + g(t, β0), α0(0) ≤ u0,
cDqβ0(t) ≥ f(t, β0) + g(t, α0), β0(0) ≥ u0.
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See [10] for other types of coupled lower and upper solutions relative to (6).
Denoting F (t, u) = f(t, u) + g(t, u), we state the next comparison result.

Theorem 2.1 Let α, β be natural lower and upper solutions of (6), respectively. Sup-
pose that F (t, β)− F (t, α) ≤ L(β − α) whenever β ≥ α, where L is a constant such that
L > 0, then α(0) ≤ β(0) implies that α(t) ≤ β(t) , t ∈ J .

Proof. See [7] for details. ✷

Also, see [10, 16] for comparison result for coupled lower and upper solution of type
I. Next, we recall a corollary of Theorem 2.1, which is useful in our main result.

Corollary 2.1 Let p ∈ C1[J,R]. cDqp(t) ≤ Lp(t), where L ≥ 0 and p(0) ≤ 0. Then
p(t) ≤ 0 on J .

We define the following sector Ω for convenience. That is,
Ω = [(t, u) : α(t) ≤ u(t) ≤ β(t), t ∈ J ].

Theorem 2.2 Suppose α, β ∈ C1[J,R] are coupled lower and upper solutions of type
I of (6) such that α(t) ≤ β(t) on J and F ∈ C(Ω,R). Further, if g(t, u) is decreasing
in u, on J, then there exists a solution u(t) of (6) such that α(t) ≤ u(t) ≤ β(t) on J ,
provided α(0) ≤ u0 ≤ β(0).

Proof. The proof follows from the scalar version of the result of [13]. ✷

Note that from the hypotheses of the above theorem, it follows that coupled lower
and upper solution of type I are also natural lower and upper solutions.

The next results give the uniqueness theorem.

Theorem 2.3 Let α, β ∈ C1[J,R], where α, β are coupled lower and upper solutions
of (6) of type I, with α(t) ≤ β(t) on J. If f(t, u) is convex in u and g(t, u) is decreasing
in u, the hypotheses of Theorem 2.1 are satisfied. Then,(6) has a unique solution.

The next result is useful in proving the equicontinuity of the sequences we develop in
the next two theorems.

Theorem 2.4 Let αn(t) be a family of continuous functions on [0, T ], for each n > 0,
where cDqαn(t) = f(t, αn(t)), αn(0) = u0 and |f(t, αn(t))| ≤ M for 0 ≤ t ≤ T . Then,
the family {αn(t)} is equicontinuous on [0, T ].

Proof. See [7, 13] for details. ✷

Next, we provide two results relative to (6) where in the first result we assume f is
convex in u and g is concave in u, and in the second result we assume f is convex in
u and g is non-increasing in u. The first result we provide is related to the generalized
quasilinearization method of (6) using coupled lower and upper solutions of type I.

Theorem 2.5 Assume that
(i) α0, β0 ∈ C1[J,R] are coupled lower solutions of type I, for (6) with α0 ≤ β0 on J ,
(ii) f, g ∈ C[Ω,R], fu, gu, fuu, and guu exist, are continuous and satisfy fuu(t, u) ≥

0, guu(t, u) ≤ 0 for (t, u) ∈ Ω,
(iii) gu(t, u) ≤ 0 on Ω.
Then there exit monotone sequences {αn(t}, {βn(t)} which converge uniformly and

monotonically to the unique solution of (6) and the convergence is quadratic.
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Proof. See [13] for details. ✷

The next theorem is proved under the weaker assumption on g(t, u). Also, this result
mixes generalized quasilinearization method relative to the convex function f(t, u) and
generalized monotone method relative to the nonincreasing function g(t, u) for t ∈ J.

Theorem 2.6 Assume that
(i) α0, β0 ∈ C1[J,R] are coupled lower and upper solutions of type I, for (6) with

α0 ≤ β0 on J ,
(ii) f, g ∈ C[Ω,R], fu, gu, and fuu exist, are continuous and satisfy fuu(t, u) ≥ 0 for

(t, u) ∈ Ω,
(iii) gu(t, u) ≤ 0 on Ω.
Then there exit monotone sequences {αn(t)}, {βn(t)} which converge uniformly to the

unique solution of (6) and the convergence is superlinear.

Proof. See [13] for details. ✷

3 Main Results

In this section we will provide a method to compute coupled lower and upper solutions
on any desired interval when we have the natural lower and upper solutions. Natural
lower and upper solutions are relatively easy to compute. For example, equilibrium
solutions are natural solutions. In the next result we use the superlinear convergence
scheme as in Theorem 2.6, using natural lower and upper solutions. However, when we
use natural lower and upper solutions, the results of Theorem 2.6 are true only when
α0 ≤ α1 and β0 ≥ β1. This, in general, will not be true on the interval J, namely, the
interval of existence of the solution. In the next result, monotone sequences constructed
will converge to coupled minimal and maximal solutions as well as they are coupled lower
and upper solutions on the interval of existence J.

Theorem 3.1 Assume that
(i) α0, β0 ∈ C1[J,R], α0 and β0 are natural lower and upper solutions of (6) on J

with α0 ≤ β0 on J ,
(ii) f, g ∈ C[Ω,R], fu, gu,andfuu exist, are continuous and satisfy fuu(t, u) ≥ 0 for

(t, u) ∈ Ω,
(iii) gu(t, u) ≤ 0 on Ω.
Then there exit monotone sequences {αn(t)}, {βn(t)} which converge uniformly to the

coupled lower and upper solution of (6). Here the sequences {αn(t)} and {βn(t)} are
computed using the following iterative scheme

cDqαn+1 = f(t, αn) + fu(t, αn)(αn+1 − αn) + g(t, βn), αn+1(0) = u0, (7)

cDqβn+1 = f(t, βn) + fu(t, αn)(βn+1 − βn) + g(t, αn), βn+1(0) = u0. (8)

Proof. From the first iteration we will have α0(t) ≤ α1(t) on [0, t1] and β1(t) ≤ β0(t)
on [0, t1 ]. If t1 ≥ T, and t1 ≥ T there is nothing to prove, since one can use Theorem
2.6 to compute coupled minimal and maximal solutions. If not, certainly t1 < T and
t1 < T . Also α1(t1) = α0(t1). and β1(t1) = β0(t1). We will now redefine α1(t), and β1(t)
on [0, T ] as follows:

cDqα1(t) = f(t, α0) + fu(t, α0)(α1 − α0) + g(t, β0), α1(0) = u0 on [0, t1],
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cDqβ1(t) = f(t, β0) + fu(t, α0)(β1 − β0) + g(t, α0), β1(0) = u0 on [0, t1 ],

and
α1(t) = α0(t) on [t1, T ],

β1(t) = β0(t) on [ t1, T ].

Proceeding in this manner, we will have αn(tn) = α0(tn), and βn(tn) = β0(tn). Now
we can redefine αn, βn as follows.

cDqαn(t) = f(t, αn−1) + fu(t, αn−1)(αn − αn−1) + g(t, βn−1), vn(0) = u0 on [0, tn],

αn(t) = α0(t) on [tn, T ].

Similarly,

cDqβn(t) = f(t, βn−1) + fu(t, αn−1)(βn − βn−1) + g(t, αn−1), βn(0) = u0 on [0, tn],

βn(t) = β0(t) on [ tn, T ],

where αn, βn intersect α0 and β0 at tn, tn respectively. If tn ≥ T, and tn ≥ T we can
stop the process. Certainly αn ≤ βn and αn and βn are coupled minimum and maximum
solutions of (6) respectively.

Now we can show that the sequences {αn(t)} and {βn(t)} constructed above are
equicontinuous and uniformly bounded on J . Hence by Arzelá-Ascoli theorem, a subse-
quence converges uniformly and monotonically. Since the sequences are monotone, the
entire sequence converges uniformly and monotonically to α and β respectively.

It is easy to observe that

cDqαn(t) = f(t, αn−1) + fu(t, αn−1)(αn − αn−1) + g(t, βn−1), αn(0) = u0 on [0, tn],

αn(t) = α0(t) on [tn−1, T ], such that αn(tn−1) = α0(tn),

and

cDqβn(t) = f(t, βn−1) + fu(t, αn−1)(βn − βn−1) + g(t, αn−1), βn(0) = u0 on [0, tn],

βn(t) = β0(t) on [ tn−1, T ], such that βn( tn) = β0( tn−1),

for all n ≥ 1.
As n → ∞, tn, tn → T, αn(t) → α(t), and βn(t) → β(t), uniformly and monotonically.
Further,

cDqα(t) = f(t, α) + g(t, β), α(0) = u0 on J,

and
cDqβ(t) = f(t, β) + g(t, α), β(0) = u0 on J.

Hence α, β are coupled lower and upper solutions of (6) such that α ≤ β on J . This
concludes the proof. ✷

Theorem 3.2 Assume that
(i) α0, β0 ∈ C1[J,R], α0 and β0 are natural lower and upper solutions of (6) on J

with α0 ≤ β0 on J ,
(ii) f, g ∈ C[Ω,R], fu, gu, fuu exist, are continuous and satisfy fuu(t, u) ≥ 0 for

(t, u) ∈ Ω,
(iii) gu(t, u) ≤ 0 on Ω.
Then there exit monotone sequences {αn(t)}, {βn(t)} which converge uniformly to the

unique solution of (6) and the convergence is superlinear.
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Proof. Theorem 3.1 proves that, there exit monotone sequences {αn(t)}, {βn(t)}
such that {αn(t)} −→ α(t) and {βn(t)} −→ β(t) uniformly and monotonically and (α, β)
are coupled lower and upper solutions of type I for (6) respectively on J. However, it
is easy to observe that each pair of αn(t), βn(t) computed are also coupled lower and
upper solutions of (6) on the common interval of [0, tn] and [0, tn]. Suppose that for some
n = k both tk and tk are ≥ T, then the computation of αk+1(t), βk+1(t) will no longer
need α0(t), β0(t). Then it is easy to observe that αk+1(t), βk+1(t) will be coupled lower
and upper solutions of type I for (6) respectively on J. Also this sequence will converge
uniformly and monotonically to α, β using Theorem 3.1. This implies that α ≤ β on
J . By hypotheses and using Theorem 2.3, it can be shown that α ≡ β ≡ u, where
u is the unique solution of (6) on J . In order to prove superlinear convergence we let
pn(t) = u(t)−αn(t) and qn(t) = βn(t)−u(t). It is easy to see that pn(0) = 0, qn(0) = 0.
Using Gronwall type of Lemma and the estimate on fuu and gu on J , we can prove
that max

J
|pn + qn| ≤ max

J
(|(pn−1 + qn−1)|

2 + |(pn−1 + qn−1)|) which proves superlinear

convergence. See [13]for details. ✷

Note that if g(t, u) is non-increasing in u on J, then α, β constructed above are also
natural lower and upper solutions. By the existence theorem, there exists a solution of
(6) on J such that α ≤ u ≤ β provided, α(0) ≤ u0 ≤ β(0).

Remark 3.1 Note that Theorem 3.1 provides coupled lower and upper solutions of
(6) on J . Now we can develop sequences {αn} and {βn} using Theorem 2.6. These
sequences converge uniformly and monotonically to coupled minimal and maximal solu-
tions. Further if uniqueness condition is satisfied, the sequences converge to the unique
solution of (6). Further we can apply Gauss-Seidel method such that the sequences
converge faster. This is what we have proved in the next result.

Theorem 3.3 Let all the hypotheses of Theorem 2.6 hold with the iterative scheme
given by

cDqα∗

n+1 = f(t, α∗

n) + fu(t, α
∗

n)(α
∗

n+1 − α∗

n) + g(t, β∗

n), α
∗

n+1(0) = u0, (9)

cDqβ∗

n+1 = f(t, β∗

n) + fu(t, α
∗

n+1)(β
∗

n+1 − β∗

n) + g(t, α∗

n), β
∗

n+1(0) = u0. (10)

starting with α∗

0 = α1 on J . Then there exist monotone sequences {αn} and {βn},
which converge uniformly to the unique solution of (6) and the convergence is faster than
superlinear.

Proof. We provide a brief proof. Initially compute α1 using cDqα1 = f(t, α0) +
fu(t, α0)(α1 −α0)+ g(t, β0), α1(0) = u0. Relabel α1 = α∗

0. Now compute β1 using β0and
α∗

0. That is cDqβ1 = f(t, β0) + fu(t, α
∗

0)(β1 − β0) + g(t, α∗

0), β1(0) = u0. One can easily
see that α0(t) ≤ α1(t) on J. Now it is enough if we prove that β∗

0 ≤ β1.

Let p(t) = β∗

0 − β1, p(0) = 0.
cDqp(t) = cDqβ0

∗ − cDqβ1

= f(t, β0) + fu(t, α1)(β1 − β0) + g(t, α1)− (f(t, β0) + fu(t, α0)(β1 − β0) + g(t, α0))
= (fu(t, α1)− fu(t, α0))(β1 − β0) + g(t, α1)− g(t, α0)

≤ 0, since α1(t) ≥ α0(t) on J .

This implies p(t) ≤ 0 on J , using Corollary 2.1. That is β∗

0 ≤ β1 on J. Continuing
the process, we can show that that the sequences {α∗

n} and {β∗

n} converge faster than
the sequences {αn} and {βn} which are computed using Theorem 3.1.
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4 Numerical Results

In this section, we provide a numerical example as an application of our main results.
We take a simple logistic equation and apply Theorem 3.1. In order to apply Theorem
3.1, we assume that α1 and β1 should satisfy α0 ≤ α1, β1 ≤ β0 on [0, T ]. If q = 1, the
solution of the logistic equation can be computed explicitly. However, if 0 < q < 1, we
cannot compute the solution explicitly. Method of lower and upper solution guarantees
the interval of existence. The equilibrium solutions play the role of lower and upper
solutions.

Consider the example

cDqu(t) = u− u2, u(0) =
1

2
, t ∈ [0, T ], T ≥ 1. (11)

It is easy to observe that α0(t) = 0 and β0(t) = 1 are natural lower and upper solutions
respectively of (11) such that α0 ≤ β0 on [0, T ]. Here f(t, u) = u and g(t, u) = −u2.

Using the iterative schemes as in Theorem 3.1 we obtain

cDqα1(t) = α1 − β2
1 and cDqβ1(t) = β1 − α2

1.

Solving for α1 and β1, we arrive at

α1 = 1− 1

2
Eq,1(t

q) and β1 = 1

2
Eq,1(t

q)

Similarly, the next iteration gives rise to

cDqα2(t) = α2 − β2
1 and cDqβ2(t) = β2 − α2

1
cDqα2(t) = α2 − (1

2
Eq,1(t

q))2 and cDqβ2(t) = β2 − (1− 1

2
Eq,1(t

q))2.

In order to compute α2 and β2, we use (3) with λ = 1, and f(t) as −(1
2
Eq,1(t

q))2 and
−(1− 1

2
Eq,1(t

q))2 respectively. Here, we have computed (1
2
Eq,1(t

q))2 and (1− 1

2
Eq,1(t

q))2

using the product formula. The product formula is given by

Eq,1(λ(t− t0)
q) ∗ Eq,1(µ(t− t0)

q) =

∞
∑

k=0

(t− t0)
qk

Γ(qk + 1)
(λ+ µ)kq,1,

where

(λ+ µ)kq,1 =

k
∑

l=0

λlµk−lΓ(qk + 1)

Γ(ql + 1)Γ(q(k − l) + 1)
,

which is the generalized binomial formula. Further we need to multiply this by Eq,q((t−
s)q) as in formula (4) to compute α2 and β2. Computing α2 and β2, we arrive at

α2 = 1

2
Eq,1(t

q)− 1

4
s1 and β2 = 1− 1

2
Eq,1(t

q)− 1

4
s1 + s2,

where

s1 =
∞
∑

j=0

∞
∑

k=0

k
∑

l=0

tq+jq+kqΓ(1 + kq)

Γ(lq + 1)Γ(kq − lq + 1)Γ(q + jq + kq + 1)
,

s2 =

∞
∑

j=0

∞
∑

k=0

tq+jq+kq

Γ(q + jq + kq + 1)
.

The graphs of α1, β1 and α2, β2 have been drawn in Figure 1 where q = 1

2
, t0 = 0.
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Figure 1: Coupled Lower and Upper Solutions of (11) with q = 1/2 using Theorem 3.1.

5 Conclusion

In this work we have mixed generalized quasilinearization method and generalized mono-
tone method to compute the coupled lower and upper solution of type I on the desired
interval. In addition, the method also provides the unique solution of the nonlinear prob-
lem. This mixed method yields superlinear convergence. Computation of the solution of
the coupled lower and upper solutions numerically involves the generalized Mittag-Leffler
function which involves the generalized binomial coefficients. In Figure 1, we can see that
t2 ≯ t1, since the evaluation of β2 is not accurate. This is due to the lack of knowledge of
product of Mittag-Leffler function and its accurate computation. We plan to develop the
necessary properties of the Mittag-Leffler function in our future work and obtain better
estimates for the sequences {αn} and {βn}.
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