Nonlinear Dynamics and Systems Theory, 15 (2) (2015) 107-126

Parabolic Equations with Measure Data and Three Unbounded Nonlinearities in Weighted Sobolev Spaces

Y. Akdim 1, J. Bennouna 2, M. Mekkour 1* and H. Redwane 3

¹ Sidi Mohamed Ben Abdellah University, Poly-disciplinary Faculty of Taza, Laboratory LSI, Department MPI, P.O. Box 1223 Taza Gare, Morocco

 2 Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, Laboratory

LAMA, Department of Mathematics, B.P. 1796, Atlas Fez, Morocco.

³Faculté des Sciences Juridiques, Economiques et Sociales. Université Hassan 1, B.P. 784, Settat. Morocco

Received: June 17, 2014; Revised: April 2, 2015

Abstract: In this work, we study the degenerated problem

$$\frac{\partial b(x,u)}{\partial t} + \operatorname{div}(a(x,t,u,Du)) + H(x,t,u,Du) = \mu \quad \text{in } Q,$$

$$u = 0 \quad \text{on } \partial\Omega \times (0,T),$$

$$b(x,u)(t=0) = b(x,u_0) \quad \text{on } \Omega,$$
(1)

in the framework of weighted Sobolev space. The main contribution of our work is to prove the existence of a renormalized solution without the sign condition and the coercivity condition on H(x, t, u, Du). The critical growth condition on H is with respect to Du and no growth with respect to u. The datum μ is assumed in $L^1(Q) + L^{p'}(0, T; W^{-1,p'}(\Omega, w^*))$ and $b(x, u_0) \in L^1(\Omega)$.

Keywords: nonlinear parabolic equation; weighted Sobolev spaces; renormalized solutions.

Mathematics Subject Classification (2010): 35K61, 35R06, 34B1.

^{*} Corresponding author: mailto:mekkour.mounir@yahoo.fr

^{© 2015} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua107