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1 Introduction

The double pendulum may be considered as a simplified model of the coupled rigid
bodies and finds wide use in engineering and technology. Both mathematical and physical
interest to this model arises from the phenomena of its motion. Although this motion is
described by rather simple ODE system, the pendulum exhibits the dynamical behavior
which may be complex and unpredictable [1,2]. In particular, the motion of the double
pendulum has the ability of beats and is strongly sensitive to the initial perturbations.
These perturbations may provoke an increased amplitude of the second limb oscillations
and, as a result, the switch from regular regime to chaotic one [3,4].

The problem of elimination or reduction of the undesired vibration in various technical
systems has a long history and great achievements [5], mostly during the last century. For
this purpose the damping devices are used, which may be divided into active and passive
dampers. The classical example of passive damper is a dynamic vibration absorber (DVA)
[6,7] or vibration neutralizer. It represents the mechanical appendage comprising inertia,
stiffness, and damping elements and is connected to a given structure, named herein the
primary [5] or original [8] system, with the aim to absorb the excessive vibratory energy.
A DVA may be used both in cases of free oscillations and vibrations caused by harmonic
excitations. For the case of a simple pendulum, DVA was used in papers [8,9].
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2 Description of the Model

Consider the double pendulum with distributed mass (Fig. 1) which has a fixed point O
and is in a gravitational field. Assume that the mass center of the first limb is located at
C1. At the point O1 located on the axis OC1 a second limb is pivotally attached. The
point C2 is mass center of the second link. The first limb (configuration A) is attached
with a dynamic absorber with stiffness k and damping coefficient h. The absorber oscil-
lates along the axis O2x

′, which is orthogonal to the line OO1 and intersects it at the
point O2. Hinges at the points O, O1 are supposed frictionless.

Figure 1: Double pendulum with dynamic vibration absorber in first limb.

Let us write the Lagrange function for the described mechanical system. One can get
the kinetic energy K of the system in the form

K = Kp +Ka,

whereKp, Ka are the kinetic energies of the primary system (pendulum without absorber)
and vibration absorber, respectively, calculated by the formulas

Kp =
1

2
[J1ϕ̇

2

1
+ J2ϕ̇

2

2
+m2l

2ϕ̇2

1
+ 2m2ll2ϕ̇1ϕ̇2cos(ϕ1 − ϕ2)],

Ka =
1

2
ma[ϕ̇

2

1
(l2a + u2) + 2laϕ̇1u̇+ u̇2].

Here J1, J2 are the moments of inertia of the first and second limbs of pendulum with
respect to poles O, O1 respectively, m1,m2,ma are the masses of the first and second
links, and absorber respectively, u is the extension of the spring, ϕ1, ϕ2 are the angles of
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deflection of the pendulum limbs about a vertical axis, l is the length of the first limb,
l1, l2 are the distances from the suspension points of each of the links to its mass center,
la is the distance OO2.

The potential energy can be written as

Π = −gcosϕ1(mala +m1l1 +m2l)−m2l2gcosϕ2 +magusinϕ1 +
1

2
ku2.

The equations of motion can be written in the form of Lagrange

(J1 +m2l
2 +mal

2

a)ϕ̈1 +m2ll2ϕ̈2cos(ϕ1 − ϕ2) +m2ll2ϕ̇2(ϕ̇1 − ϕ̇2)sin(ϕ1 − ϕ2)+

+malaü+ gsinϕ1(m1l1 +m2l +mala) +magucosϕ1 = 0, (2.1)

J2ϕ̈2 +m2ll2ϕ̈1cos(ϕ1 − ϕ2)−m2ll2ϕ̇1(ϕ̇1 + ϕ̇2)sin(ϕ1 − ϕ2) +m2gl2sinϕ2 = 0,

malaϕ̈1 +maü+magsinϕ1 + ku = −hu̇.

Let us define the conditions of stability of motion of the system (2.1) when the
pendulum is in the lower position of equilibrium, i.e. solution

ϕ1 = 0, ϕ2 = 0, u = 0, ϕ̇1 = 0, ϕ̇2 = 0, u̇ = 0. (2.2)

3 Stabilization Conditions

Firstly, we write the linear approximation of the system (2.1)

(J1 +m2l
2 +mal

2

a)ϕ̈1 +m2ll2ϕ̈2 +malaü+ g(m1l1 +m2l +mala)ϕ1 +magu = 0,

J2ϕ̈2 +m2ll2ϕ̈1 +m2gl2ϕ2 = 0, (3.1)

malaϕ̈1 +maü+magϕ1 + ku = −hu̇.

We introduce the dimensionless parameters by the formulas

m̃a =
ma

m1

, m̃2 =
m2

m1

, l̃a =
la
l1
, l̃ =

l

l1
, l̃2 =

l2
l1
, τ =

√
g

l1
t,

k̃ =
kl1
m1g

, h̃ =
h

m1

, ũ =
u

l1
. (3.2)

The system (3.1) can be rewritten as

(J1 + m̃2 l̃
2 + m̃a l̃

2

a)ϕ̃
′′

1 + m̃2 l̃l̃2ϕ̃
′′

2 + m̃a l̃aũ
′′ + (1 + m̃2 l̃ + m̃a l̃a)ϕ̃1 + m̃aũ = 0,

J̃2ϕ̃
′′

2 + m̃2 l̃l̃2ϕ̃
′′

1 + m̃2 l̃2ϕ̃2 = 0, (3.3)

m̃a l̃aϕ̃
′′

1
+ m̃aũ

′′ + m̃aϕ̃1 + k̃ũ = −h̃ũ′.

For simplicity, we omit the symbol ˜ in what follows.
To investigate the problem of the stability of motion (2.2) we will use the results from

[10] below.
Suppose that the motion equations of a mechanical system are described by the

following system of differential equations

Aq̈ +Bq̇ +Cq = F (t, q̇, q)q̇1 +N (t, q̇, q), (3.4)
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where square matrices A, C of order m + n, and F (t, q, q̇) of order m are symmetric,
square matrix B is skew-symmetric, q = (q1, q2)

T , i.e. vector q is divided into sub-
vectors q1, q2 with ordersm,n respectively. Denotation “T” means transposition, vector
N(t, q̇, q) represents a set of arbitrary nonlinear terms. Dependence on t is periodic or
quasi-periodic.

We assume that the system provides steady motion:

q = 0, q̇ = 0. (3.5)

It is supposed that the matrix F 0 = F (t, 0, 0) is positive definite for t ≥ 0. Denote
by d,d22 the linear differential operators

d = A
d2

dt2
+ (B + F 0)

d

dt
+C, d22 = A22

d2

dt2
+B22

d

dt
+C22,

and D(λ),D22(λ) are the corresponding λ-matrices:

D(λ) = Aλ2 + (B + F 0)λ+C, D22(λ) = A22λ
2 +B22λ+C22.

Let λ0 be an eigenvalue of d22, and γ20 be the corresponding eigenvector. Introduce
the equality

D12(λ0)γ20
= 0. (3.6)

Theorem 3.1 Let us consider a mechanical system whose motion equations are dis-
cribed by (3.4) and suppose that none of the eigenvectors of operator d22 satisfies con-
dition (3.6). Then adding to system an arbitrary dissipative force, which provides full
dissipation (by linear terms) on q̇1 leads to the following results:

I) If all eigenvalues of matrix C are positive, then equilibrium (3.5) becomes asymp-
totically stable. Stability is exponential and uniform.

II) If matrix C has some negative eigenvalues, then equilibrium (3.5) is unstable,
even if it was stabilized before by gyroscopic forces. Among particular solutions of the
system at least one has negative Liapunov characteristic number.

According to the above statements, matrices A and C (B = 0) for the system (3.3)
take the following form

A =




J1 +m2l
2 +mal

2

a m2ll2 mala
m2ll2 J2 0
mala 0 ma


 ,

C =




1 +m2l +mala 0 ma

0 m2l2 0
ma 0 k



 .

To verify condition (3.6) one may investigate the compatibility of the following system

[λ2(J1 +m2l
2 +mal

2

a) + 1 +m2l +mala]γ1 + λ2m2ll2γ2 = 0,

λ2m2ll2γ1 + (λ2J2 +m2l2)γ2 = 0, (3.7)

(λ2la + 1)γ1 = 0.
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The third equation of (3.7) implies that λ2 = −1/la. Then the condition of compati-
bility of the system (3.7) takes the form

δ1 = (m2l2 +m2

2ll2)l
2

a − (J1m2l2 +m2

2l
2l2 +m2lJ2 + J2)la+

+J1J2 +m2l
2J2 −m2

2
l2l2

2
= 0. (3.8)

Choosing an arbitrary la (la ≤ l), excluding the value which transforms (3.8) into
true equality, we obtain an inconsistent system (3.7). Consequently, the conditions of
the theorem are satisfied and we have asymptotic stability of the studied solution.

For more clarity let us compare the results obtained with the standart procedure
based on the Routh–Hurwitz criterion [11].

Characteristic equation of system (3.3) is written in the form

a0λ
6 + a1λ

5 + a2λ
4 + a3λ

3 + a4λ
2 + a5λ+ a6 = 0,

where the coefficients are given by the formulas

a0 = ma[J1J2 +m2l
2(J2 −m2l

2

2)], a1 = h[m2l
2(J2 −m2l

2

2) + J2(J1 + l2ama)],

a2 = m2l
2k(J2 −m2l

2

2
) + J1J2k + [m2l2(J1 +m2l

2) + J2(1 +m2l)]ma+

+J2mala(kla −ma), a3 = h[J2 + J1m2l2 +m2l(J2 +m2ll2) +mala(J2 + lam2l2)],

a4 = k[m2l2(J1 +m2l
2) + J2(1 +m2l)] + (1 +m2l)mam2l2 − J2m

2

a+

+(J2k −mam2l2)lama +m2l2kmal
2

a, a5 = m2l2h(1 +m2l +mala),

a6 = m2l2k(1 +m2l) +mam2l2(kla −ma).

The solution of the system will be asymptotically stable if and only if the following
conditions hold

a0 > 0, a3 > 0, a5 > 0, a6 > 0, ∆3 =

∣∣∣∣∣∣

a1 a0 0
a3 a2 a1
a5 a4 a3

∣∣∣∣∣∣
> 0,

∆5 =

∣∣∣∣∣∣∣∣∣∣

a1 a0 0 0 0
a3 a2 a1 a0 0
a5 a4 a3 a2 a1
0 a6 a5 a4 a3
0 0 0 a6 a5

∣∣∣∣∣∣∣∣∣∣

> 0. (3.9)

It is not hard to see that a0, a3, a5, a6 are positive.

∆3 = h2m2

a∆30 = h2m2

a(p0 − 2p1la + p2l
2

a +mal
4

am
4

2
l4
2
l2),

where
p0 = J2[l

2m2(J2 −m2l
2

2) + J1J2]
2,

p1 = (m3

2l
3

2l
2 +m2lJ

2

2 + J2

2 )[l
2m2(J2 −m2l

2

2) + J1J2],

p2 = J2(1 +m2l)[J
2

2
(1 +m2l) + 2m3

2
l3
2
l2] +m4

2
l2l4

2
(m2l

2 + J1).

Let us transform the expression for ∆30 to the following form

∆30 = p0(la −
p1
p2

)2 +m4

2
l4
2
l2(J1J2 +m2l

2J2 −m2

2
l2l2

2
)3 +mam

4

2
l4
2
l2l4a.
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So, it is obviously positive, because of p0 > 0, J2 ≥ m2l
2

2
.

The determinant ∆5 can be represented as ∆5 = m4

2
l2l4

2
h3m4

aδ
2

1
.

Obviously, the conditions of criterion Routh–Hurwitz for system (3.3) are always
satisfied, except for δ1 = 0.

Therefore, δ1 6= 0 is a necessary and sufficient condition for asymptotic stability of
motion of the system (2.1). That is, selecting a value of parameter la that does not
satisfy (3.7), we can achieve the exponential stability of a double pendulum motion with
additionally introduced mass.

Consider the case where the vibration absorber is located in the second link of the
pendulum (Fig. 2).

Figure 2: Double pendulum with dynamic vibration absorber in second limb.

In this situation, the choice of dimensionless parameters should be replaced by m1 to
m2 and l1 to l2. Then the matrices take the form

A =




J1 + l2 +mal
2 l +malla mal

l +malla J2 +mal
2
a mala

mal mala ma


 ,

C =




m1l1 + l +mal 0 0
0 1 +mala ma

0 ma k


 .

Obtain a system of conditions

[λ2(J1 + l2 +mal
2) +m1l1 + l +mal]γ1 + λ2(l +malla)γ2 = 0,
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λ2(l +malla)γ1 + [λ2(J2 +mal
2

a) + 1 +mala]γ2 = 0, (3.10)

λ2lγ1 + γ2λ
2la + γ2 = 0.

To check the consistency of the system express from the second equation (3.10)

γ2 = −
λ2l(1 +mala)γ1

λ2J2 + λ2mal2a + 1 +mala
.

Upon substituting this expression into the third equation (3.10) we obtain

λ2lγ1(λ
2J2 + 2 + 2mala − λ2la)

λ2J2 + λ2mal2a + 1 +mala
= 0,

whence λ2 = −2(1 +mala)/(J2 − la).
The condition of compatibility of the system of (3.10) can be represented in the form

δ2 = l3ama[(4l
2 + 4J1 + 2l)ma + 2l+ 2m1l1]− l2a[(6l

2 + 2lJ2)m
2

a − (l − 2lJ2 − 2m1l1J2+

+6J1 + 6l2)ma − l −m1l1] + la[(2l
2m2

a + 2J1ma + 2mal
2)J2 − 10mal

2 + 2J1+

+2l2]− (mal +m1l1 + l)J2

2
+ (2J1 + 2mal

2 + 2l2)J2 − 4l2 = 0. (3.11)

Similarly to the first case by selecting la that does not satisfy equality (3.11) asymp-
totic stability of the studied solutions can be obtained.

It is possible to verify that the conditions of asymptotic stability obtained by using
the Routh–Hurwitz criterion, are also satisfied for δ2 6= 0.

Remark 3.1 In the case when equality (3.7) or (3.11) holds, this fact does not
prevent the asymptotic stability of equilibrium. The linear approximation has a pair
of pure imaginary roots, and we get the critical case in Liapunov sense. To prove the
asymptotic stability, the Liapunov function may be constructed [8]. This function is
a sum of positively defined quadratic form and form of fourth order and has negative
derivative on time. Basically, this procedure is not difficult, but it leads to extremely
huge analytical expressions for coefficients of the function (and its derivative) and cannot
be given here.

Remark 3.2 The approach employed to prove the asymptotic stability of the motion
is relatively simple and much more easier than the use of determinants or innors tech-
nique. However, it does not provide the estimation of the damping rate for perturbed
oscillations of primary system. For this purpose our approach can be modified, or added
by some special evaluating procedure. Obviously, in exchange for this gain, it (approach)
will lose a part of simplicity.

We don’t discuss now the problem about choice of absorbers parameters with
the aim to optimize the decaying rate. For arbitrary set of the pendulum
parameters this problem leads to extrema problem for function of high order
and, probably, has no explicit finite solution. However, if the pendulum mass
distribution is given, numerical calculations may help. Our simulations witness,
that configuration B with small distance la is a bet, and values k, h strongly
depend on primary system parameters. For example, with m1 = m2 = m,
l1 = l2 = l,J1 = J2 = ml2, m̃a = 2m/5, for configuration A one gets l̃a = 0.552,

k̃ = 0.45, h̃ = 0.463, and σ = max{Reλj} ≈ −0.0140. For configuration B

corresponding values are l̃a = 0.05, k̃ = 0.486, h̃ = 0.234, and σ = max{Reλj} ≈
≈ −0.0943.
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4 Conclusion

In the paper we prove that attaching a DVA to double pendulum stabilizes its equilibrium
i.e. provides the exponential stability. Special simple procedure to verify the conditions
of stabilization is applied. Some aspects of the optimal absorber’s configuration are
discussed.
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