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1 Introduction

The study of nonlinear time-dependent ordinary differential equations (ODEs) has been
going on for several years now. Since there are hardly any general methods for dealing
with such equations one is often forced to look for interesting transformations which either
enable us to simplify the equation or to map it to some linear or nonlinear equation whose
features are already known. The linear harmonic oscillator has been a time honored
favorite and has enhanced our understanding of several key areas of mathematics and
physics. It has the added advantage of being a Hamiltonian system and serves as a first
approximation for many nonlinear differential equations. In [4] Bartuccelli and Gentile
made a beautiful observation regarding the equation of a linear harmonic oscillator,

ẍ+ ω2x = 0. (1.1)

Here the over dot represents differentiation with respect to the independent variable t.
As is well known its solution is

x(t) = A sin(ωt+ φ), (1.2)

where A and φ are arbitrary constants representing the amplitude and phase respectively.
They observed that if (1.1), which may also be written as

d

dt

(

ẋ

ω

)

+ ωx = 0, (1.3)

one assumes that ω, instead of being a constant, is any arbitrary function of the inde-
pendent variable t so that one actually has the following equation:

d

dt

(

ẋ

ω(t)

)

+ ω(t)x = 0, (1.4)

then its solution is similar in structure to (1.2) in the sense that

x(t) = A sin(

∫

ω(t)dt+ φ). (1.5)

It was stressed in [4,5] that the equation in the form (1.4) is still quite interesting and can
be generalized to various directions and gives new results. Our main aim is to explore
all these directions in this paper.

It is obvious that (1.4) is not reducible to the equation of a time-dependent linear
harmonic oscillator

ẍ+ ω2(t)x = 0. (1.6)

Nevertheless the fact that the solution of (1.4) clearly reduces to that of the usual har-
monic oscillator when ω is a constant is indeed remarkable. In fact the following gener-
alization is also possible, namely we replace (1.4) by

d

dt

(

ẋ

ω(t)

)

+ ω(t)F (x) = 0, (1.7)

where F (x) is some nonlinear C1 function of x. Note that (1.7) may be written as the
following system

ẋ = ω(t)y, ẏ = −ω(t)
dU(x)

dx
, (1.8)
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with F (x) = dU/dx. In this paper equations (1.4) and (1.7) will be called the Bartuccelli-
Gentile equations. In general for the linear equation

ẍ+ P (t)ẋ +Q(t)x = 0, (1.9)

one can make use of Jacobi’s Last Multiplier to derive a suitable Lagrangian. Indeed the
last multiplier turns out to be the integrating factor of such an equation given by

M = exp(

∫ t

P (s)ds).

The relationship between a last multiplier and the Lagrangian is given by

M =
∂2L

∂ẋ2
,

from which it follows that a Lagrangian for (2.12) is given by

L(t, x, ẋ) = e
∫
P (t)dt

(

1

2
ẋ2 − 1

2
Q(t)x2

)

. (1.10)

By using the standard Legendre transformation it follows that the corresponding Hamil-
tonian is

H(t, x, px) =
1

2

(

e−
∫
P (t)dtp2x +Q(t)e

∫
P (t)dtx2

)

, (1.11)

where the conjugate momentum is defined in the usual manner

px =
∂L

∂ẋ
= e

∫
P (t)dtẋ.

In case of (1.4) it is clear that P (t) = − ˙ω(t)/ω(t) and Q(t) = ω2(t), so that M = ω−1(t),
and the Hamiltonian therefore assumes the form

H =
1

2
ω(t)

(

p2x + x2
)

.

Note that (1.7) admits the following first integral

I(x, ẋ, t) =
1

2

(

ẋ

ω(t)

)2

+ U(x), (1.12)

where U(x) is a primitive of F (x), as is easy to verify. Clearly the level sets I(x, ẋ, t) = E
allow us to write

∫

dx
√

E − U(x)
= ±

√
2

∫

ω(t)dt,

which in turn means that it is effectively a time-reparametrization of the usual time-
independent case. The invariant (1.12) will be referred to as the Bartuccelli-Gentile
invariant. The special case of F (x) = x allows us to express this invariant as

I =
1

2

(

p2x + x2
)

,

where the definition of px = ẋ/ω has been used, and write

H(t, x, px) = Iω.
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Clearly the invariant I must have the dimension of action. It can be readily seen that
dH
dt 6= 0, as is to be expected of a dissipative system. It is also necessary to mention that
the expressions for the Lagrangian and Hamiltonian given in (2.32) and (2.36) reduce
to those of Caldirola [9] and Kanai [22] when P (t) = γ(t) and the case of H = Iω also
appeared in connection with the derivation of Hannay’s angle in [42].

The celebrated Ermakov-Pinney equation (see [21] for brief introduction) was intro-
duced in the nineteenth century by V.P. Ermakov [15] to find the first integral for the
time-dependent harmonic oscillator. In 1950 E. Pinney [34] found the solution of this
equation. Ermakov systems have been extensively studied in physics as they often arise
in the context of Bose-Einstein condensates, cosmological models, plasma confinements
etc. Lewis [28,29] found independently an exact invariant for this system. Several meth-
ods have subsequently been devised for the derivation of the Lewis invariant, which was
originally obtained in closed form through an application of the asymptotic theory of
Kruskal [24]. Leach [26] has obtained the same result using a time-dependent canoni-
cal transformation. On the other hand Lutzky’s [30] derivation was based on Noether’s
theorem. Moyo and Leach [31] used Noether symmetries to discuss the source of the
Ermakov-Lewis invariant. Ray and Reid [37,38] by resurrecting Ermakov’s original tech-
nique were able to obtain the existence of a Lewis-type invariant for the case of two
coupled nonlinear equations. Grammaticos and Dorizzi [20] proposed a direct method
to investigate the existence of an exact invariant for 2D time-dependent Hamiltonian
systems. The construction of Bartuccelli and Gentile didn’t consider the Ermakov issue.
Although it is clear from their construction that there should be an explicit link between
the Ermakov-Pinney equation and the Bartuccelli-Gentile equation.

The Emden-Fowler equation was first studied in an astrophysical context by Em-
den [14] and subsequently by Fowler who was instrumental in laying its mathemati-
cal foundation [16]. The celebrated Emden-Fowler equation appears in many areas in
physics [33]. More recently Berry and Shukla [7] presented a class of models for particles
moving under curl forces alone. They could not find closed-form solutions for general
motions, but the dynamics can be reduced to the Emden-Fowler equation, for which a
particular exact solution exists for a wide class of cases. In the study of stellar structure
a star is usually considered as a gaseous sphere in thermodynamic and hydrostatic equi-
librium described by a certain equation of state. In particular the polytropic equation of
state yields the Lane-Emden equation, given by

xy′′ + 2y′ + xyn = 0.

This was originally proposed by Jonathan Lane [25] and was analysed by R. Emden [14].
Several applications of the Emden-Fowler and Lane-Emden equations of various forms
arising in astrophysics [11] and nonlinear dynamics have been reported. The Lane-Emden
equation also arises in the study of fluid mechanics, relativistic mechanics, nuclear physics
and in the study of chemical-reaction systems. A detailed account, though somewhat
dated, can be found in the survey by Wong [43].

In recent years this equation has been generalized in many ways. For example, Goen-
ner [17] studied a generalized class of the Lane-Emden equation

xy′′ + k1y
′ + k2x

νyn = 0, first kind,

y′′ + f(x)y′ + g(x)yn = 0, second kind .
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Kara and Mahomed [23] showed that when n = −3 the Lane-Emden equation,

y′′ + (k/x)y′ = σxwyn, n 6= 0, 1, σ 6= 0,

generates the three-dimensional algebra sl(2, R) in which case general solutions are known
for w = −2k. Ranganathan [35, 36] has obtained solutions and first integrals for some
classes of the Emden-Fowler equation.

1.1 Motivation, result and organization

In this paper we explore two important sets of integrable ODEs, namely, the Ermakov-
Pinney systems and the Emden-Fowler systems. Many papers were devoted to the con-
struction of the first integrals of these set of equations. We demonstrate in this survey
that one can give a unified method to describe the first integrals of all these equations
using Bartuccelli-Gentile’s method.

At first we show how the Bartuccelli-Gentile invariant can be mapped to invari-
ants of Ermakov type systems, then we present the two-component generalization of the
Bartuccelli-Gentile construction. We extend their method to compute the first integrals
of the Emden-Fowler equations and second first integrals for Lane-Emden type systems.
It is true that the first integrals for many of these equations have already been found by
means of a variety of different methods [6, 8, 19, 27, 35, 36, 40, 41]. In this paper we give
an alternative and easy method to compute the first integrals of the Emden-Fowler class
of equations.

This paper is organized as follows. In Section 2 we give an intimate connection
between the Bartuccelli-Gentile construction and the Ermakov-Pinney equation, and
extend this connection to coupled system also. We illustrate our construction through
examples. Section 3 is devoted to Emden-Fowler type equations. We show just extending
slightly the method of Bartuccelli-Gentile’s construction one can easily obtain the first
integrals of the Lane-Emden equations.

2 Ermakov-Pinney Equation and Bartuccelli-Gentile Construction

We begin by considering the equation of motion of a linear harmonic oscillator with
time-dependent frequency, namely,

ẍ+ ω2(t)x = 0. (2.1)

The problem of the time-dependent oscillator was first solved by Ermakov [15] who
obtained an invariant for (2.1) by introducing the auxiliary equation

ρ̈+ ω2(t)ρ = ρ−3. (2.2)

Equation (2.2) is usually called the Ermakov-Pinney equation since Pinney provided the
solution, some years after Ermakov’s derivation of its first integral [34]. Ermakov obtained
a first integral for the system of equations (2.1) and (2.2), by first of all eliminating ω2(t)
by multiplying (2.1) with ρ and (2.2) with x and subtracting the two and then finally by
multiplying the resulting equation with the integrating factor (ẋρ − xρ̇). The resulting
first integral is given by

I =
1

2

[

(ρẋ− ρ̇x)2 + (x/ρ)2
]

, (2.3)
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and is called the Ermakov-Lewis invariant after Lewis independently recalculated it in
1966.

As mentioned in the previous section equation (1.7) which is explicitly given by

ẍ− ω̇

ω
ẋ+ ω2(t)F (x) = 0, (2.4)

admits the first integral (1.12). Upon introducing the substitution

x =
y

ρ
, (2.5)

into the first integral (1.12) the latter has the following appearance

I =
1

2

(

ρẏ − yρ̇

ω(t)ρ2

)2

+ U(y/ρ). (2.6)

The transformation (2.5) is a particular case of a general transformation contained in
Magnus and Winkler’s book [32]. Moreover, under the above change of variables, (2.4)
becomes

ρÿ − yρ̈

ρ2
−
(

ρẏ − yρ̇

ρ2

)(

ω̇

ω
+ 2

ρ̇

ρ

)

+ ω2(t)F (y/ρ) = 0. (2.7)

Setting
ω̇

ω
+ 2

ρ̇

ρ
= 0

so that
ω(t)ρ2 = c(> 0) then leads to ρ2 =

c

ω(t)
, (2.8)

and causes (2.7) after partial elimination of the variable ρ, to reduce to the following
equation (assuming c = 1),

ÿ +
1

2

(

ω̈

ω
− 3

2

(

ω̇

ω

)2
)

y + ω2ρF (y/ρ) = 0. (2.9)

In view of (2.8) the first integral (2.6) therefore becomes

I =
1

2

(

ρẏ − ρ̇y

c

)2

+ U(y/ρ).

Such a form of the first integral is suggestive of a deeper relation with the Ermakov
system. Indeed if one assumes F (x) = x, then clearly (2.9) reduces to the time-dependent
linear harmonic oscillator equation,

ÿ +Ω2(t)y = 0, (2.10)

with

Ω2(t) = ω2(t) +
1

2

(

ω̈

ω
− 3

2

(

ω̇

ω

)2
)

. (2.11)

On the other hand elimination of y from (2.7) leads to

ρ̈+ (Ω2(t)− w2(t))ρ = 0,
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which in view of (2.8) is equivalent to the equation

ρ̈+Ω2(t)ρ = ρ−3. (2.12)

We are thus led to the following proposition.

Proposition 2.1 Given the second-order linear time-dependent differential equation

d

dt

(

ẋ

ω(t)

)

+ ω(t)x(t) = 0, (2.13)

then under the transformation x = y/ρ, the equation is equivalent to the coupled system

ÿ +Ω2(t)y = 0, ρ̈+Ω2(t)ρ = ρ−3, (2.14)

provided ρ2ω = 1, where Ω2(t) is defined by (2.11). The solution x = sin
( ∫

ω(t) dt
)

of
the time-dependent equation (2.13) can also be mapped to the solution of the (y, ρ) pair
of equations.

As to the proof of the latter part of the above proposition we note that the solution
of the Bartuccelli-Gentile equation is x = sin

( ∫

ω(t) dt
)

. Consequently substituting

x = y/ρ we obtain y = ρ sin
( ∫

1/ρ2 dt
)

, which is a solution of

1 =
ρ

√

ρ2 − y2
(ẏρ− ρ̇y). (2.15)

Differentiating (2.15) one can easily obtain the TDHO and the Ermakov-Pinney
equations.✷

2.1 Generalized Ermakov-Pinney equations

By an unbalanced Ermakov system [1] is meant a coupled second-order nonlinear system
of the form

ẍ+ ω2
1(t)x = x−3f(y/x), ÿ + ω2

2(t)y = y−3g(x/y), (2.16)

where f and g are arbitrary functions of their arguments and where in general ω1 6= ω2.
When ω1 = ω2 the system is said to be balanced. Systems of the former type were
studied by Ray and Reid [38] and as a result (2.16) is also known as the Ermakov-Ray-
Reid system.

A crucial property of the balanced Ermakov system (i.e., when ω1 = ω2 = ω(t)) is
that it possesses an invariant, given by

IERR =
1

2
(xẏ − ẋy)2 +

∫ y/x

[uf(u)− u−3g(u)]du. (2.17)

The invariance of IERR can be directly verified by checking that dIERR/dt = 0 along the
trajectories of the Ermakov-Ray-Reid system.

The generalized Ermakov-Pinney equation is an Ermakov system in two-dimension
given by a pair of coupled nonlinear second-order differential equations of the form

ẍ+ ω2(t)x =
1

yx2
f(y/x), ÿ + ω2(t)y =

1

xy2
g(x/y), (2.18)
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where f and g are once again arbitrary functions of their arguments. This coupled system
possesses the Lewis-Ray-Reid invariant

IGE =
1

2
(xẏ − ẋy)2 + U(y/x), (2.19)

where U(y/x) =
∫ y/x

f(u)du+
∫ x/y

g(u)du.

We can generalize this result to the time-dependent damped harmonic oscillator equa-
tion

ẍ+ P (t)ẋ +Q(t)x = 0, (2.20)

in which case the invariant turns out to be

IdampedTD =
1

2

(

(x/ρ)2 + (ρ̇x− ρẋ)2 exp
(

2

∫ t

0

P (t) dt
)

)

(2.21)

with ρ(t) satisfying the equation

ρ̈+ P (t)ρ̇+Q(t)ρ = ρ−3 exp
(

− 2

∫ t

0

P (t) dt
)

. (2.22)

The invariant IdampedTD of the damped time-dependent oscillator equation is called the
Eliezer-Grey invariant.

Proposition 2.2 The Eliezer-Grey invariant may be mapped to that of the time-
dependent harmonic oscillator (TDHO) equation

d

dt

(

ẋ

ω(t)

)

+ ω(t)x(t) = 0

by setting P = −ẇ/w, Q = w2(t) and ρ = 1.

Proof. If we expand the time-dependent equation we can easily map it to damped
TDHO provided P = −ω̇/ω and Q = ω2(t). Hence we obtain

exp
(

2

∫ t

0

P (t) dt
)

=
1

ω2
.

If we put ρ = 1, then from the Eliezer-Grey invariant we obtain the invariant

I =
1

2

(

ẋ2

ω2(t)
+ x2

)

. ✷

2.2 Ermakov-Ray-Reid system and Bartuccelli-Gentile construction

Let us consider the generalized time-dependent system

d

dt

(

ẋ

ω(t)

)

+ ω(t)F (x) = 0,

where F (x) is some nonlinear C1 function of x, such that

F (x(t)) =
1

x3
g(x−1) + xf(x). (2.23)
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Proposition 2.3 Given the second-order nonlinear time-dependent differential equa-
tion

d

dt

(

ẋ

ω(t)

)

+ ω(t)F (x) = 0,

if x = y/ρ, then this equation may be transformed to the coupled system:

ÿ +
1

y3
g
(ρ

y

)

= 0, ρ̈+
1

ρ3
f
(y

ρ

)

= 0. (2.24)

Proof. By direct calculation. ✷

Moreover, if we set f = g = 1 then an invariant can be readily found as

I = c1
(y

ρ

)2
+ c2

(ρ

y

)2
+ (yρ̇− ẏρ)2.

Proposition 2.4 Given the matrix second-order linear time-dependent differential
equation

d

dt

(

Θ−1Ẋ
)

+ΘX = 0, (2.25)

where Θ = Θ(t) is a differentiable function, such that its entries are all positive functions
of time. This system has a first integral of motion given by

H =
1

2

(

< Θ−1Ẋ,Θ−1Ẋ > + < X,X >
)

= E = constant . (2.26)

Proof. By explicit differentiation. ✷

Let

Θ =

(

ω1(t) ω0(t)
ω0(t) ω2(t)

)

, X =

(

x
y

)

.

Then the time-dependent matrix equation yields

ẍ− 1

∆

(

(ω̇1ω2 − ω̇0ω0)ẋ) + (ω̇0ω1 − ω̇1ω0)ẏ
)

+ (ω2
1 + ω2

2)x+ ω0(ω1 + ω2)y = 0, (2.27)

ÿ − 1

∆

(

(ω̇2ω1 − ω̇0ω2)ẏ) + (ω̇0ω2 − ω̇2ω0)ẋ
)

+ (ω2
2 + ω2

2)x+ ω0(ω1 + ω2)x = 0, (2.28)

where ∆(t) = ω1ω2 − ω2
0 . We consider now a special case.

Suppose ω0 = 0 and ω1 6= ω2 then we obtain two decoupled equations of the form deduced
earlier by Bartuccelli and Gentile, viz

d

dt

( ẋ

ω1

)

+ ω1x = 0,
d

dt

( ẏ

ω2

)

+ ω2y = 0. (2.29)

Finally if we define ω2 = iω1 ≡ ω and z = x + iy, then equations (2.27) and (2.28)
can be expressed as the following single complex differential equation

d

dt

( ż

ω

)

− iωz = 0. (2.30)

Proposition 2.5 The complex version of the Bartuccelli-Gentile equation has a first
integral of motion given by

Icomplex =
1

2

(

ż

ω

)2

− iz2. (2.31)

Proof. By explicit differentiation we may obtain the desired first integral. ✷
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2.3 Integrable coupled Milne-Pinney type dissipative systems

The study of coupled nonlinear ordinary differential equations of Ermakov-type origi-
nated in 1880 and in modern days the classical Ermakov-Pinney system was extended
by Ray-Reid [37]. There is a class of Ermakov systems [2] given by

q̈ + ω2(t)q =
1

q3
f(q/p), p̈+ ω2(t)p =

1

p3
g(p/q), (2.32)

where ω(t), f and g are essentially arbitrary functions of their arguments. In this case
the Lewis-Ray-Reid invariant is

I =
1

2
(qṗ− q̇p)2 −

∫ q/p
(

u−3f(u)− u g(u)
)2

du. (2.33)

We propose to study, in this section, the following time-dependent generalization of
(2.32)

d

dt

( q̇

ω(t)

)

+ ω(t)q =
ω(t)

q3
f(q/p),

d

dt

( ṗ

ω(t)

)

+ ω(t)p =
ω(t)

p3
g(p/q). (2.34)

In the following proposition an invariant of this system of coupled equation is provided.

Proposition 2.6 The first integral of the coupled integrable Bartuccelli-Gentile equa-
tion of type (2.34) is

I =
1

2

(q̇p− qṗ)2

ω(t)
2 +

∫ p/q
(

uf(u−1)− 1

u3
g(u)

)

du, (2.35)

where ω(t) is a differentiable function.

We can extend this result to a more general case. Consider the following generalized
Ermakov system

d

dt

( q̇

ω(t)

)

+ ω(t)q = ω(t)qmpnf(q/p),
d

dt

( ṗ

ω(t)

)

+ ω(t)p = ω(t)qnpmg(p/q), (2.36)

where ω(t) is a differentiable positive function.

Proposition 2.7 The system (2.36) has a first integral of motion given by

I =
1

2

(q̇p− qṗ)2

ω(t)
2 +

∫ p/q
(

un+1f − 1

un+3
g
)

du, (2.37)

where m = −(n+ 3) and u = p/q.

2.3.1 Generalized Ince equation and coupled Bartuccelli-Gentile equation

Consider the class of second-order homogeneous differential equations

d2p

dt2
+

α+ β cos 2t+ γ cos 4t

(1 + a cos 2t)2
p = 0, where |a| < 1. (2.38)
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It is a four parameter family of Hill’s equation which has been christened as the Ince
equation by Magnus and Winkler [32]. A subclass of this system was studied by Athorne
[3], and is given by

d2p

dt2
+
(

1 +
α′

(1 + a cos 2t)2
)

p = 0. (2.39)

One must note that q(t) = B(1 + a cos 2t)1/2 is a solution of the Ermakov-Pinney equa-
tion. It has been shown by Athorne that this equation can be replaced by the following
coupled nonlinear equations of Ermakov type, namely

p̈+ p = −α′B4

q4
p, q̈ + q =

δ

q3
. (2.40)

We propose to analyze a time-dependent generalization of (2.39) and consider the
following generalization of the two-parameter version of the Ince equation

d

dt

( ṗ

ω(t)

)

+
(

1 +
α′

(1 + acos 2t)2
)

ω(t)p = 0. (2.41)

This equation may also be replaced by the pair of equations:

d

dt

( ṗ

ω(t)

)

+ ω(t)p = −α′B4

q4
p,

d

dt

( q̇

ω(t)

)

+ ω(t)q =
ω(t)δ

q3
, (2.42)

and possesses a first integral which, in this case, is given by

I =
1

2

[ 1

ω2(t)
(qṗ− q̇p)2 +

(p

q

)2
]

, (2.43)

as may easily be checked.

3 A Simple Algorithmic Method to Compute First Integrals of the Emden-
Fowler Family

We can apply this straight forward scheme to compute the first integrals of the Lane-
Emden equation. Consider the equation

y′′ + p(x)y′ = Ke−2F yn,

where
∫ x

F dx = p(x). We can rewrite this equation as

(y′eF )′ = Ke−Fyn,

from the prescription of Bartuccelli and Gentile one can immediately obtain the first
integral

I =
1

2
(y′eF )2 −K/(n+ 1)yn+1,

where ω(x) = e−F .
We modify the preceding scheme to incorporate the Emden-Fowler equation. This

will now be described.
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Proposition 3.1 The second-order ODE y′′ + dxrys = 0 with d > 0 and s 6= 1
admits a first integral of the form

I =
1

2
(y′x− y)2 + V (x, y),

where V (x, y) = dxr+2ys+1/(s+ 1) and r + s = −3.

Proof. Setting dI/dx = 0 and using the given equation lead to

Vx = −dxr+1ys+1 and Vy = dxx+2ys,

respectively. The consistency of these partial derivatives then yields the condition r+s =
−3 and V (x, y) has the stated form. ✷

Remark 3.1 If we compare with the Bartucelli-Gentile construction we can readily
see here ω(x) = x−1, furthermore there is a shift to define the first integral I of the
Emden-Fowler equation. The nature of ω(x) is fixed for the entire family of the Emden-
Fowler systems.

Proposition 3.2 The second-order ODE y′′ = γ2
1y + e−(2γ1−γ2)xh(y) admits a first

integral of the form

I =
1

2
(y′ − γ1y)

2e2γ1x − eγ2x

∫ y

h(u)du

provided h(y) = y−(1+γ2/γ1).

Proof. By an explicit calculation. ✷

Example 3.1 We can apply this scheme to compute the first integrals of the follow-
ing Lane-Emden-Fowler equation [17]

y′′ +
k1
x
y′ = λxk2yn. (3.1)

This equation has been the subject of study by Rosenau [39] for its solution. It is worth
mentioning here that from this equation one obtains immediately a generalization of
Chandrasekhar’s homology theorem. We can rewrite this equation as

(y′x+ (k1 − 1)x)′ = x−1λxk2+2yn

and from our prescription one can immediately obtain the first integral

I =
1

2
(y′x+ (k1 − 1)x)2 − λ

n+ 1
xk2+2yn+1,

where (n+ 1)(k1 − 1) = λ(k2 + 2).

We present a slightly different method to compute the first integrals for the Emden-
Fowler equation y′′+dxrys = 0 for other sets of values of (r, s) than given in the previous
section.

Proposition 3.3 The Emden-Fowler equation y′′ + dxrys = 0 with d > 0 and
r 6= 1 admits a first integral of the form I = y′(y′x − y) + V (x, y), where V (x, y) =
dxr+1ys+1/(r + 1) and 2r + s = −3.

Proof. It is clear that (y′x−y)′ = y′′x. We can recast the equation y′′+dxrys = 0 as
(y′x− y)′ + dxr+1ys = 0. We compute d

dx(y
′(y′x− y)) using the Emden-Fowler equation

and equate it with the derivative of V (x, y). This immediately yields the condition
2r + s = −3. ✷
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3.1 The (Generalized) Lane-Emden equation

Consider the Lane-Emden equation

y′′ + 2
y′

x
+ y5 = 0.

One can rewrite this equation in either of the following two different forms, namely

(x2y′)′ + x2y5 = 0, (y′x+ y)′ + xy5 = 0.

Once again we use these two equations to compute
(

x2y′(y′x+y)
)

′

. Finally equating with
a potential V (x, y) = Kxnym we obtain the first integral of the Lane-Emden equation

I = x3(y′)2 + x2yy′ +
1

3
x3y6.

We can extend this scheme to more complicated systems. Let us compute the first
integrals of the above Emden-Fowler equation for different values of (r, s). The gener-
alized Lane-Emden equation as proposed by Goenner (3.1) in [17, 18] can be expressed
either as

(y′x+ (k1 − 1)x)′ = λxk2+1yn or (y′xk1)′ = λxk2+k1yn.

Using these two forms we obtain

d

dx

(

y′xk1(y′x+ (k1 − 1)x)
)

= 2λxk1+k2+1yny′ + λ(k1 − 1)xk1+k2yn+1.

If we take V = −2λ/(n+1)yn+1xβ we obtain β = k1 + k2 +1 = (k1 − 1)(n+1)/2. Thus
we can get the first integral for equation (3.1)

I = y′xk1(y′x+ (k1 − 1)x)− 2
λ

n+ 1
yn+1x(k1−1)(n+1)/2, n 6= −1.

Incidentally this first integral was first derived by Crespo Da Silva [12]. In this way we
can find new first integrals for the Emden-Fowler type systems.

3.2 First integrals for other type of equations

One can extend the scheme to compute the first integral of more complicated equation
with more terms, such as

y′′ +
k1
x
y′ +

k3
x2

y = λxk2yn. (3.2)

We then use our old trick to club the first two terms and express them either as

(y′x+ (k1 − 1)x)′ = λxk2+1yn − k3
x
y or (y′xk1)′ = λxk2+k1yn − k3x

k1−1y.

Once again we differentiate (y′xk
1)(y

′x + (k1 − 1)x) and equate it with the derivative of
V and obtain the first integral of (3.2) in the form

I = y′xk1(y′x+ (k1 − 1)x)− 2
λ

n+ 1
yn+1x(k1−1)(n+1)/2 + k3y

2xk1−1.
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For an isothermal gaseous sphere, Emden studied also the equation

xy′′ + 2y′ + xeny = 0.

We can also compute the first integral from our method. It is easy to see that this
equation can be rewritten either (x2y′)′ + x2eny = 0 or (xy′ + y)′ + xeny = 0. Again
using our scheme we obtain the first integral

I = (x2y′(xy′ + y) +
1

3
x3eny, for n = 6.

Hence we have shown in this section how one can generalize the Barucelli-Gentile
scheme to encompass various classes of Emden-Fowler systems.

4 Conclusion

In this paper we have examined the connection between a time-dependent second-order
ODE due to Bartuccelli and Gentile which was derived by modifying the equation of a
linear harmonic oscillator and the Ermakov-Pinney system of ODEs. It is interesting to
note that though the system (1.8) can be generalized further to the following

ẋ = ω(x, y, t)
∂G

∂y
, ẏ = −ω(x, y, t)

∂G

∂x
,

with G = G(x, y) and one can easily verify that G(x, y) is an invariant, the solution of
the above system is in general not known in closed form unlike that of (1.8) which can be
obtained explicitly. This is the main reason for our interest in the Bartuccelli and Gentile
construction. It is found that by a simple rational transformation of the dependent
variable one can easily extract the well known Ermakov-Lewis invariant. Furthermore a
matrix formulation is also considered and a decoupled version of the Bartuccelli-Gentile
equation is obtained. Finally we present a simple scheme to compute the first integrals
of several equations belonging to the Emden-Fowler and Lane-Emden class.
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