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Abstract: In this paper, stability analysis for a class of nonlinear time delay system
is done. A state space representation of the class of system under consideration is
used and a transformation is carried out to represent the system by an arrow form
matrix. Taking advantage of this representation and applying the Kotelyanski lemma
in combination with properties of M-matrices, some new sufficient stability conditions
are determined. An illustrative example is presented to show the effectiveness of the
proposed approach.
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1 Introduction

Time delay exists in many practical systems. This includes chemical processes, teleop-
erators, mechanical systems, network control systems etc. see [2, 3, 8, 11]. The delay can
be an inherent part of the dynamics of the system or can be a result of actuators and
sensors used and the time needed for transmission of control signals. Presence of delay
complicates the analysis of such systems and can even cause instability [6,10,11]. In many
situations industrial models have to represent nonlinear phenomena for the delay or the
system itself. This is justified by the insufficiency of the first order linear approximations
to explain the typically nonlinear problem of instability linked to excessive initial condi-
tions or perturbations. Difficulties are greater when delays appear in nonlinear systems,
see [1,3–5] for an excellent exposition of nonlinear delay equations. For all these reasons,
there has been an extensive literature on stability of time delay systems [7,19,21]. In this
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paper, we determine sufficient stability conditions for nonlinear systems with constant
delay.

There are mainly two main approaches in determining stability conditions for time
delay systems, namely, delay independent conditions and delay dependent conditions.
To this extent most of the existing results are delay-independent [6, 9, 12, 20] and few
are delay-dependent, see [13,18,22] and the references therein. Even fewer give practical
results which can be applied to nonlinear systems. In this paper, we determine sufficient
delay dependent stability conditions for nonlinear systems with a constant delay.

The paper is organized as follows. In Section 2, the main result is given. Delay de-
pendent sufficient conditions for stability of the nonlinear system with delay are derived.
Section 3 is devoted to the application of the obtained result to delayed Lurie systems.
An illustrative example is given in Section 4. We finish this paper by some concluding
remarks in Section 5.

2 Sufficient Stability Conditions

Our work consists of determining stability conditions for systems described by the fol-
lowing equation:

S̃ :











y(n)(t) +

n−1
∑

i=0

f̃i(t, xt, ℘)y
(i)(t) +

n−1
∑

i=0

g̃i(t, xt, ℘)y
(i)(t− τ) = 0,

y(i)(t) = φi(t), ∀t ∈ [−τ 0], i = 0, . . . , n− 1,

(1)

where τ is a constant delay and f̃i, g̃i i = 0, . . . , n− 1 are nonlinear functions. Let us fix
the notation used. Let Cn= C([−τ 0] , Rn) be the Banach space of continuous functions
mapping the interval [−τ 0] into Rn with the topology of uniform convergence. Let
xt ∈ Cn be defined by xt(θ) = x(θ), θ ∈ [−τ 0]. For a given φ ∈ Cn, we define ‖φ‖ =
sup−τ≤θ≤0 ‖φ(θ)‖, φ(θ) ∈ Rn. Let xt ∈ Cn be defined by xt(θ) = x(θ), θ ∈ [−τ 0]. The

functions f̃i, g̃i, i = 0, 1, .., n−1 are completely continuous mapping the set Ja×CH
n ×S℘

into R, where CH
n = {φ ∈ Cn, ‖φ‖ < H}, H > 0, Ja = [a +∞), a ∈ R and S℘ = {℘ ∈

R,℘ ≤ ℘ ≤ ℘ where ℘ ≤ ℘ ∈ R} . Finally we say that the function g satisfies the finite

sector condition if g ∈ E([k1 , k2]) =
{

g | g(0) = 0, k1σ
2 < σg(σ) < k2σ

2, σ 6= 0 and
k1 < k2}. In the sequel, we denote (t, xt, ℘) = (.). We start by making the following
changes:

xi+1(t) = y(i)(t), i = 0, . . . , n− 1

which implies that
ẋi(t) = xi+1(t), i = 0, . . . , n− 1,

therefore,

ẋn(t) = −

n
∑

i=1

f̃i−1(.)xi(t)−

n
∑

i=1

g̃i−1(.)xi(t− τ).

The studied system is described by the following state space representation:

{

ẋ(t) = F̃ (.)x(t) + G̃(.)x(t − τ),
x(t) = φ(t), ∀t ∈ [−τ 0],

(2)

where
x(t) =

(

x1(t) x2(t) . . . xn−1(t) xn(t)
)
′

,
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φ(t) =
(

φ1(t) φ2(t) . . . φn−1(t) φn(t)
)
′

.

The matrices F̃ (.) and G̃(.) are given by

F̃ (.) =

















0 1 · · · 0 0

0 0
. . . 0 0

...
...

. . .
. . .

...
0 0 . . . 0 1

−f̃0(.) −f̃1(.) · · · −f̃n−2(.) −f̃n−1(.)

















(3)

and

G̃(.) =















0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

0 0 . . . 0 0
−g̃0(.) −g̃1(.) . . . −g̃n−2(.) −g̃n−1(.)















. (4)

Applying the following transformation:

x = Pz, (5)

where

P =















1 1 · · · 1 0
α1 α2 · · · αn−1 0
...

... · · ·
...

...
αn−2
1 αn−2

2 · · · αn−2
n−1 0

αn−1
1 αn−1

2 · · · αn−1
n−1 1















αi 6= αj ∀i, j (6)

leads to the following state representation

S : ż(t) = F (.)z(t) + ∆(.)z(t− τ) (7)

which describes the dynamics of system (1) by using the new state vector z. The matrix
F (.) is given by

F (.) = P−1F̃ (.)P =















α1 β1

α2 β2

. . .
...

αn−1 βn−1

γ1(.) γ2(.) · · · γn−1(.) γn(.)















. (8)

Elements of the matrix F (.) are defined in [15] by

γi(.) = −D(αi, .) i = 1...n− 1, (9)

where

D(s, .) = sn +

n−1
∑

i=0

f̃i(.)s
i (10)
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and

γn(.) = −f̃n−1(.)−

n−1
∑

i=1

αi, (11)

βi =
αi − λ

Q(λ)

∣

∣

∣

∣

λ=αi

i = 1...n− 1, (12)

where

Q(λ) =

n−1
∏

j=1

(λ − αj). (13)

The matrix ∆(.) is given by

∆(.) = P−1G̃(.)P =





On−1,n−1 On−1,1

δ1(.) · · · δn−1(.) δn(.)



 (14)

with

δi(.) = −N(αi, .), i = 1, . . . , n− 1, (15)

where

N(s, .) =

n−1
∑

i=0

g̃i(.)s
i (16)

and
δn(.) = −g̃n−1(.). (17)

Based on this transformation and the arbitrary choice of parameters αi, i = 1, . . . , n−
1 which play an important role in simplifying the use of aggregate techniques, we give
now the main result. Let us start by writing our system in another form. By using the
Newton-Leibniz formula

z(t− τ) = z(t)−

∫ t

t−τ

ż(θ)dθ, (18)

equation (7) becomes

ż(t) = (F (.) + ∆(.))z(t) −∆(.)

∫ t

t−τ

ż(θ)dθ. (19)

Let Ω be a domain of Rn, containing a neighborhood of the origin, and sup
Jτ , Ω,S℘

the

suprema calculated for t ∈ Jτ (i.e t ≥ τ), for functions x with values in Ω, and for ℘ in S℘.
Next, using the special form of system (1) and applying the notation sup[.] = sup

Jτ , Ω,S℘

,

we can announce the following theorem.

Theorem 2.1 The system (1) is asymptotically stable, if there exist distinct param-
eters αi < 0 i = 1, ..., n − 1, such that the matrix T (.) is the opposite of an M-matrix,
where T (.) is given by

T (.) =















α1 |β1|
α2 |β2|

. . .
...

αn−1 |βn−1|
t1(.) t2(.) · · · tn−1(.) tn(.)















(20)
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and the elements ti(.), i = 1, ..., n are given by

ti(.) =
|γi(.) + δi(.)|+ τ |αi| sup[.] |δi(.)|

1− τ sup[.] |δn(.)|
(21)

and

tn(.) = γn(.) + δn(.) +
τ sup[.] |δn(.)||γn(.) + δn(.)|

1− τ sup[.] |δn(.)|
+

τ

n−1
∑

i=1

|βi| sup
[.]

|δi(.)|

1− τ sup[.] |δn(.)|
.

(22)

Proof. We use the following vector norm

p(z) = ( p1(z) p2(z) p3(z) ... pn(z) )
′

, (23)

where pi(z) = |zi|, i = 1, . . . , n− 1 and pn(z) is given by

pn(z) = |zn|+

n
∑

i=1

sup
[.]

|δi(.)|

1− τ

(

sup
[.]

|δn(.)|

)

∫ 0

−τ

∫ t

t+θ

|żi(ϑ)|dϑdθ (24)

with the condition

τ

(

sup
[.]

|δn(.)|

)

< 1. (25)

Let V (t) be a radially unbounded Lyapunov function given by (26).

V (t) =
〈

(p(z(t)))
′

, w
〉

=

n
∑

i=1

wipi(z(t)), (26)

where w ∈ Rn
+, wi > 0, i = 1, . . . , n. First, note that

V (t0) ≤

n−1
∑

i=1

wi |zi(t0)|+ wn (|zn(t0)| +
sup[.](|δn(.)|)

1− τ sup[.](|δn(.)|)
sup
[−τ,0]

|φ̇n|
τ2

2
) := r < +∞

(27)
and

V (t) ≥

n
∑

i=1

wi |zi(t)| . (28)

The right Dini derivative of V (t), along the solution of (19), gives

D+V (t) =

n
∑

i=1

wi

d+pi(z(t))

dt+
. (29)

For clarification reasons, each element of d+pi(z(t))
dt+

, i = 1, ..., n is calculated separately.
Let us begin with the first (n− 1) elements. Because |zi| = zisign(zi), we can write, for
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i = 1, ..., n− 1,
d+pi(z(t))

dt+
=

d+|zi(t)|

dt+

=
d+zi(t)

dt+
sign(zi(t))

= (αizi(t) + βizn(t))sign(zi(t))
≤ αi |zi(t)|+ |βi| |zn(t)|

(30)

and d+pn(z)
dt+

is given by

d+pn(z)
dt+

=
d+ |zn|

dt+
+

n
∑

i=1

sup
[.]

|δi(.)|

1− τ sup
[.]

|δn(.)|

d+

dt+

[∫ 0

−τ

∫ t

t+θ

|żi(ϑ)|dϑdθ

]

.
(31)

Finally, it is easy to see that equation (31) can be overvalued by the following one

d+pn(z)

dt+
≤

n
∑

i=1

ti(.) |zi| , (32)

where elements ti(.), i = 1, ..., n are given by

ti(.) = |γi(.) + δi(.)|+
τ sup[.] |δn(.)||γi(.) + δi(.)|

1− τ sup[.] |δn(.)|
+

τ |αi| sup[.] |δi(.)|

1− τ sup[.] |δn(.)|

=
|γi(.) + δi(.)| + τ |αi| sup[.] |δi(.)|

1− τ sup[.] |δn(.)|

(33)

and

tn(.) = γn(.) + δn(.) +
τ sup[.] |δn(.)||γn(.) + δn(.)|

1− τ sup[.] |δn(.)|
+

τ

n−1
∑

i=1

|βi| sup
[.]

|δi(.)|

1− τ sup[.] |δn(.)|
.

(34)

Then the inequality (29) becomes

D+V (t) <
〈

T
′

(.)w, |z|
〉

, (35)

where T (.) is given by (36)

T (.) =















α1 |β1|
α2 |β2|

. . .
...

αn−1 |βn−1|
t1(.) t2(.) · · · tn−1(.) tn(.)















. (36)

Because the nonlinear elements of T (.) are isolated in the last row, the eigenvec-
tor v(t, xt, ℘) relative to the eigenvalue λm is constant [17], where λm is such that
Re(λm) = max{Re(λ), λ ∈ λ(T (.))}. Then, in order to have D+V (t) < 0, it is suffi-
cient to have T (.) as the opposite of an M−matrix. Indeed, according to properties of
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M−matrices, we have ∀ σ ∈ R∗n
+ , ∃ w ∈ R∗n

+ such that −
(

T
′

(.)
)−1

σ = w. This enables

us to write the following equation

〈

T
′

(.)w, |z(t)|
〉

= 〈−σ, |z(t)|〉 = −

n
∑

i=1

σi|zi(t)| (37)

which yields

D+V (t) ≤ −

n
∑

i=1

σi|zi(t)|. (38)

This completes the proof of theorem.

Remark 2.1 If the couple (D(s, .) +N(s, .), Q(s)) forms a positive pair, then
there exist distinct negative parameters αi, i = 1, ..., n − 1, verifying the condition
(γi(.) + δi(.))βi > 0 for i = 1, ..., n− 1.

Using Theorem 2.1 and Remark 2.1, the obtained supremum is a function of αi values,
i = 1, ..., n− 1. As a result, a sufficient condition for asymptotic stability of our system
is when values of the time delay are less than this supremum.

Corollary 2.1 If the couple (D(s, .) +N(s, .), Q(s)) forms a positive pair and there
exist distinct negative parameters αi, i = 1, ..., n− 1, such that:

2τ

(

(γn(.) + δn(.)) sup
[.]

|δn(.)| − ν(.)

)

+
D(0, .) +N(0, .)

Q(0)
> 0, (39)

then the system (1) is asymptotically stable.

Proof. According to Remark 2.1, we find that

γn(.) + δn(.) −
n−1
∑

j=1

|γj(.) + δj(.)||βj |

αj

= γn(.) + δn(.)−
n−1
∑

j=1

(γj(.) + δj(.))βj

αj

= −
D(0, .) +N(0, .)

Q(0)
.

The result of Theorem 2.1 becomes

−2τ(γn(.) + δn(.)) sup
[.]

|δn(.)|+ 2τν(.)−
D(0, .) +N(0, .)

Q(0)
< 0

which is equivalent to

2τ

(

(γn(.) + δn(.)) sup
[.]

|δn(.)| − ν(.)

)

+
D(0, .) +N(0, .)

Q(0)
> 0.

This completes the proof of corollary.

Remark 2.2

•• Theorem 2.1 depends on the new basis change, where parameters αi of the matrix
P are arbitrary chosen such that matrix T (.) is the opposite of an M -matrix.
The appropriate choice of the set of free parameters αi makes the given stability
conditions satisfied.
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• The theorem takes into account the fact that delayed terms may stabilize our
system [22]. Theorem 2.1 can hold even if D(s, .) is unstable. This is another
advantage as the majority of previously published results assume that D(s) is
linear and stable.

• The theorem can easily be extended to the study of systems with multiple time-
delays and can generalize the work of [14] in the case of fuzzy TS systems with
time-delay and the work of [16] in the case of discrete time delay system.

3 Application to Delayed Nonlinear n-th Order All Pole Plant

Consider the complex system S given in Figure 1.

e(t) u
g(.) g(u) e−τs

D(s)

y(t)

Figure 1: Block representation of the studied system.

D(s) is defined by (10) and N(s) = 1, respectively. In this case f̃i(.) are constants
and g is a function satisfying the finite sector condition. Let ĝ be a function defined as
follows

ĝ(e(θ), y(θ)) =
g(e(θ)− y(θ))

e(θ)− y(θ)
, e(θ) 6= y(θ) ∀θ ∈ [−τ +∞[, (40)

sup
[.]

|ĝ(e(t), y(t))| = ḡ ∈ R∗
+.

The presence of delay in the system of Figure 1 makes stability study difficult. The
following steps show how to represent this system in the form of system (1). Then we
can write

y(n)(t) +
n−1
∑

i=0

ai

diy(t)

dti
= −ĝ(e(t− τ ), y(t− τ ))y(t− τ ) + ĝ(e(t− τ ), y(t− τ ))e(t− τ ). (41)

We use the following notation

ĝ(.) = ĝ(e(t− τ), bx(t − τ)),

therefore,

y(n)(t) +

n−1
∑

i=0

aiy
(i)(t) + ĝ(.)y(t− τ) = ĝ(.)e(t− τ). (42)

It is clear that system (42) is equivalent to system (1) in the special cases e(θ) = 0 and

e(θ) = −Kx(θ), x(t) =
(

y(t), ẏ(t), ..., y(n)(t)
)

′

, ∀ θ ∈ [−τ +∞[. We will now consider
each case separately.
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3.1 Case e(t) = 0

In the case e(t) = 0 ∀t ∈ [−τ +∞[, the description of the system becomes

y(n)(t) +

n−1
∑

i=0

aiy
(i)(t) + ĝ(.)y(t− τ) = 0. (43)

This is a special representation of system (1) where f̃i(.) = ai,g̃1(.) = ĝ(.) g̃i(.) = 0

∀ i = 2, ..., n − 1, D(s, .) = D(s), N(s, .) = ĝ(.), γn(.) = γn = −an−1 −
∑n−1

i=1 αi

and δn(.) = 0. A sufficient stability condition for this system is given in the following
proposition.

Proposition 1 If there exist distinct αi < 0 i = 1, ..., n− 1, such that the following
conditions

{

γn < 0,
µ1(.) + 2τν1(.)− ξ1(.) < 0,

(44)

where






µ1(.) = γn,

ν1(.) = ḡ,

ξ1(.) =
|D(α1)+ĝ(.)||β1|

α1
+
∑n−1

i=2
|D(αi)||βi|

αi
,

(45)

are satisfied. Then the system S is asymptotically stable.

Suppose that D(s) admits n distinct real roots pi, i = 1, ..., n among which there
are n− 1 negative ones. We use the fact that an−1 = −

∑n

i=1 pi, then the choice αi = pi,

∀i = 1, .., n−2 and αn−1 = pn−1+ε permits us to write γn = −an−1−
∑n−1

i=1 pi = pn−ε.
In this case the last proposition becomes

Proposition 2 If D(s) admits n−1 distinct real negative roots such that the following
conditions

{

pn − ε < 0,
µ2(.) + 2τν2(.)− ξ2(.) < 0,

(46)

are satisfied, where






µ2(.) = pn − ε,

ν2(.) = ḡ,

ξ2(.) =
|ĝ(.)||β1|

α1
+ |D(αn−1)||βn−1|

αn−1
,

(47)

then the system S is asymptotically stable.

3.2 Case e(t) = −Kx(t)

In this case, take e(t) = −Kx(t) with K = (k0, k1, . . . , kn−1), then the obtained system
has the same form as (1), with ĝK1 (.) = ĝK(.) (k0 + 1) and ĝKi (.) = ĝK(.)ki−1, i =
2, . . . , n. The stabilizing values of K can be obtained by making the following changes:

γn = −an−1 −
∑n−1

i=1 αi, δKn (.) = −ĝK(.)kn−1, νK1 (.) = ḡK
n−1
∑

i=1

∣

∣

∣Ñ(αi)
∣

∣

∣ where ḡK =

sup[.] |ĝ
K(.)| and Ñ(α) = (1 + k0) +

n−1
∑

i=1

(bi + ki)α
i.
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Proposition 3 If there exist distinct αi < 0, i = 1, ..., n− 1, such that the following
conditions















γn − ĝK(.)kn−1 < 0,

τ <
1

2ḡK |kn−1|
,

µK
1 (.) + 2τνK1 (.)− ξk1 (.) < 0,

(48)

where










µK
1 (.) = (1− 2ḡKτ |kn−1|)(γn + δKn (.)),

νK1 (.) = ḡK
∑n−1

i=1 |βi||Ñ(αi)|,

ξK1 (.) =
∑n−1

i=1
|D(αi)+ĝK(.)Ñ(αi)||βi|

αi
,

(49)

are satisfied. Then the system S is asymptotically stable.

By a special choice of K the result of Proposition 3 can be simplified. In fact, if
the conditions of this proposition are verified we can choose the vector K such that
D(pi) = Ñ(pi). In this case we obtain D(pi) = Ñ(pi) = 0, ∀, i = 1, ..., n − 1 and
ν1(.) = ξ1(.) = 0 which yields the following new proposition.

Proposition 4 If D(s) admits n − 1 distinct real negative roots pi such that the
following conditions







pn − ḡK(.)kn−1 < 0, pn is the n-th root of D(s),

τ <
1

2ḡK |kn−1|
,

(50)

are satisfied. Then the system S is asymptotically stable.

4 Illustrative Example

Let us consider the block diagram in Figure 2 which describes the dynamics of a time-
delayed DC motor speed control system with nonlinear gain, where:

Processing 

delay

Measurement and

communication delay

Nonlinear gain DC Motor

e−τc

e−τf

e(t)
g(.)

wu g(u) 1

s (s+ p1) (s+ p2)

Figure 2: Block diagram of time-delayed DC motor speed control system with nonlinear gain.
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• p1 = 1
Te

and p2 = 1
Tm

where Te and Tm are respectively electrical constant and
mechanical constant.

• τf present the feedback delay between the output and the controller. This delay
represents the measurement and communication delays (sensor-to-controller delay).

• τc the controller processing and communication delay (controller-to-actuator
delay) is placed in the feedforward part between the controller and the DC motor.

• g(.) : R → R is a function that represents a nonlinear gain.

The process of Figure 2 can also be modeled by Figure 3, where τ = τf + τc.

e(t)
g(.)

yu g(u) e−τs

s (s+ p1) (s+ p2)

Figure 3: Delayed nonlinear model of DC motor speed control.

It is clear that model of Figure 3 is a particular form of delayed Lurie system in the
case where D(s) = s(s+p1)(s+p2) = s3+(p1+p2)s

2+p1p2s and N(s) = 1. Thereafter,
applying the result of Theorem 2.1, a stability condition of the system is that the matrix
T (.) given by

T (.) =





α1 0 | (α1 − α2)
−1

|

0 α2 | (α2 − α1)
−1

|
t1(.) t2(.) t3(.)



 , (51)

where

t1(.) = |γ1 + ĝ(.)|+ τ |α1|ḡ, t2(.) = |γ2|, t3(.) = γ3 + τ |β1|ḡ,

must be the opposite of an M-matrix. By choosing αi, i = 1, 2, negative real and distinct,
we get the following stability condition:

γ3 + 2τ |β1|ḡ −
|β1||γ1 + ĝ(.)|

α1
−

|β2||γ2|

α2
< 0. (52)

For the particular choice of α1 = −p1 and α2 = −p2 + ε, ε > 0 yields |β1| = |β2| =
|(ε+ p1 − p2)

−1| and we obtain the new stability condition:

2τ ḡ + |p1|
−1|ĝ(.)|+ |α2|

−1|D(α2)| < ε|ε+ p1 − p2|. (53)
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Assume that we have this inequality:

ḡ < |D(α2)|.

We can find from (53) the stabilizing delay given by the following condition:

τ <
1

2

(

ε|ε+ p1 − p2|

|D(α2)|
− |p1|

−1| − |α2|
−1

)

.

By applying the control e(t) = −Kx(t) with K = (k0, k1, k2), we can determine the
stabilizing values of K that can be obtained by making the following changes: γ3 =
− (p1 + p2)−

∑2
i=1 αi, δ

K
1 (.) = −ĝK(.) (k0 + 1) , δKi (.) = −ĝK(.)ki−1, i = 2, 3. νK1 (.) =

ḡK
∑2

i=1 |βi||Ñ(αi)| where ḡK = sup[.] |ĝ
K(.)| and Ñ(α) = 1 + k0 +

2
∑

i=1

kiα
i.

If we choose αi < 0, i = 1, 2, such that the following conditions D(αi) = Ñ(αi) = 0,

∀, i = 1, 2 hold, we get
1 + k0

k2
= p1 + p2,

k1

k2
= p1p2 and from Proposition 3 the

stabilizing gain values satisfying the following relations:






0− ḡK(.)k2 < 0,

|k2| <
1

2τ ḡK
.

Finally we find the domain of stabilizing k0, k1, k2 as follows











0 < k2 <
1

2τ ḡK
,

k1 = p1p2k2,

k0 = (p1 + p2) k2 − 1.

5 Conclusion

In this paper, new sufficient stability conditions for a class of time delay systems are
derived. The proposed method is based on a specific choice of a Lyapunov function.
The obtained conditions are explicit and easy to apply. Indeed, the proposed approach
is successfully applied to nonlinear n-th order all pole plant that is a particular form of
delayed Lurie Postnikov systems. In addition, the simplicity of the application of these
criteria is demonstrated on model of time-delayed DC motor speed control.
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