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Abstract: In this paper, we study the existence and multiplicity of periodic solutions
of the following second-order Hamiltonian systems

() + V' (t,z(t)) = 0,

where t € R, z € RY and V € C'(R x RY,R). By using a symmetric mountain
pass theorem, we obtain a new criterion to guarantee that second-order Hamiltonian
systems has infinitely many periodic solutions. We generalize and improve recent
results from the literature. Some examples are also given to illustrate our main
theoretical results.
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1 Introduction

Consider the second-order Hamiltonian systems
Z(t) + V'(t,z(t)) = 0, (HS)

where z = (z1,...,7y), V € C}YR x RY R) and V'(t,x) = V,V(t,x). The existence
and multiplicity of periodic solutions for system (H.S) have been studied in many papers
via critical point theory, see the classical monographs [§] and [I0] and the recent papers
[BL6, 12, I3I5,8]. In [I0], Rabinowitz established the existence of periodic solutions for
(HS) under the well known Ambrosetti-Rabinowitz condition:
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(AR) there is a constant p > 2 such that
0 < uV(t,r) < V'(t,x) . x
for all t € [0,7], T > 0, and z € RV\ {0}.

The potential V (¢, z) in (HS) is of the following form:
1
V(t,xz) = —§L(t):zz cx + W(t ),

where L € C(R, RN2) is a symmetric matrix valued function and W € CH(R x RV R)
and satisfy:

(W1) there exist constants ag > 0 and dp > 0 such that

W'(t,z)| < do (|z|*™ +1)Vte[0,T], = € RV,

He and Wu [6] have obtained some results of the existence of nontrivial T'—periodic
solutions for (HS). See also Fei [5].

Motivated by the ideas of [5H7LTOLI2,T4HI8], in this paper we will further study the
existence of T'—periodic solutions for (H.S) under some general conditions.

Here and in the following z . y denotes the inner product of z,y € RY and |.| denotes
the associated norm.

Our main results are the two following theorems.

Theorem 1.1 Assume that V satisfies

(V1) V(t,z) = —K(t,x) + W(t,x), where K,W : R x RN — R are C'-maps and are
T—periodic in its first variable with T > 0, and V (t,0) = 0,
Vit x)

(V2) limsup

5= < 0 uniformly in t € [0,T7],
lz2]—»0 ||

(V3) there exist constants pn > 2, 0 € [2,u), A € (1,2] and b > 0 such that
K(t,z) > blz|*, K'(t,x) .2 < 0K(t,z), V (t,z) € [0,T] x RN,
(V4) there exist constants o € (1, \) and C' € R such that
0 < uW(t,z) < W'(t,z) . x+Clx|”

for allt € [0,T] and x € R,

(Vs) there exist ap(t) > 0 and constants a1 > 0, R > 0 such that

W(t,x) > ag(t)|z|* Y(t,z)€[0,T] xRN, |z| > R.

Then the system (HS) has a nontrivial T—periodic solution.

Moreover, if V (¢, ) is symmetric in z, i.e. V satisfies
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(Ve) V(t,—z) = V(t,x), Y(t,z)e[0,T]xRN;
then we obtain the following result by using the symmetric mountain pass theorem.

Theorem 1.2 Assume that V' satisfies (V1) — (Vs), then the system (HS) has an
unbounded sequence of T'—periodic solutions and, in particular, infinite T — periodic solu-
tions.

Remark 1.1 There are functions K and W which satisfy the hypotheses of Theorem
1.1 and Theorem 2.2, but do not satisfy the corresponding results in [4-710,12,T4HIS)].
For example, define a function K € C'(R x R, R) as follows

5 1 ,

j2ff eap(af¥) + o, if Jal <1,
K(t,z) = .

eap(1) [a]? + |af”, if |o| > 1.

An easy computation shows that K satisfies the condition (V3) but do not satisfy the
corresponding results in [4H7,[10,[12,T4-I8]. Define a function W € C*(R x RV, R) as
follows . )

Wi(t,z) = |a|* exp(|z[*).

Then we have
, 5, 5 1 1, 1 s 1
Wit z) . = Jlz|* exp(|a]?) + 7 J|* |2]* exp(|z]*)

5 1, 1 5 1
= 4 g bl ol eapal).

So, W does not satisfy (7).
Moreover, for any constant p > 2, we have

5 1, 1 5 1
pW(t,x) = W'(t.2) . = (n— 7 = 7 lal*) |2]* exp(|a]*)

which yields that
5 5
0<uW(t,z)—W'(t,z) .z < (u-— Z> |x|i exp(4p —5)

for all (t,7) € R xRY and 0 < |z| < (4p —5)%, i.e. the condition (AR) does not hold for
every t € R and z € RV\ {0} and

pW (t,z) — W' (t,z).x <0,V (t,z) € R x RN |z > (4u — 5)%;
then (V4) holds.
Corollary 1.1 Assume that V satisfies (V1),(V3) — (V5) and
(V%) W(t,z) = o(|z|?) as |z| = 0 uniformly in t € [0,T).

Then the system (HS) has a nontrivial T—periodic solution.
Moreover, if V satisfies (Vs) then the system (HS) has an unbounded sequence of
T —periodic solutions.
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2 Proof of the Main Results

Let

Hy = {x:[0,T] =R, x is absolutely continuous, (0) = z(T), and

i€ L*([0,T],RN)}

Then H1 is a Hilbert space with the norm defined by

T 3
]l = (/0 (lz(t)* + |5c(t)|2)dt>

for x € H%. Consider the functional ¢ : H¥ — R defined by

T
() = /0 (% 12(t)|* + K (t, z(t)) — W(t,z(t))) dt .

It is well known that ¢ € C*(HX,R) and for all z,y € Hh

¢ (z)y = /0 (@()-y(t) + K (¢, x(t)).y(t) — W't x(t)).y()) dt .
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(2)

It is well known that the T—periodic solution of system (H.S) corresponds to the critical
points of ¢ in H}. We will obtain the critical point of ¢ by using the mountain pass theo-
rem and the symmetric mountain pass theorem. We say that ¢ satisfies the Palais-Smale
condition if every bounded sequence {uy} in the space H such that limg_,o0 ¢'(ug) = 0

contains a convergent subsequence. Therefore we state these theorems.

Theorem 2.1 [1()] Let H be a real Banach space and ¢ € C1(H,R) satisfying the

Palais-Smale condition. If ¢ satisfies the following conditions:
(i) ¢(0) =0,
(ii) there exist constants p, a >0 such that ¢,55,0) > «,
(iii) there exists e € H\B,(0) such that ¢(e) < 0.
Then ¢ possesses a critical value ¢ > «a given by

— inf
¢= inf max o(9(s)),

where B,(0) is the open ball in H centered in 0, with radius p, 0B,(0) its boundary and

I'={geC([0,1],H): g(0) =0, g(1) =e}.

Theorem 2.2 [1(] Let H be a real Banach space, ¢ is even and ¢ € C1(H,R)
satisfyies the Palais-Smale condition. If ¢ satisfies (i) and (ii) of Theorem 2.1 and the

following condition:

(i1i’) For each finite dimensional subspace E C H, there is r = r(E) such that ¢(x) <0

for x € E\B,(0) where B.(0) is an open ball in H centered in 0, with radius r.
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Then ¢ possesses an unbounded sequence of critical values.

In the following, we denote C; (i = 1,2, 3...) for different positive constants.

Lemma 2.1 [7] For all x € H%

2]l oo < Coo ]| - 3)

where ||z|| = Jmax |(2)].

2.1 Proof of Theorem 1.1

Let y7 : H: — [0, +00) be given by

W=

() = </0 (Ii(t)l2+2K(t,z(t)))dt> : (4)

By (@) and (@) we have

|~

T
o) = = () - / W (t, 2(t))dt . (5)

Moreover, using (V3) and () we obtain

T T
¢’(z>x§/0 (|§c(t)|2+9K(t,x(t))) dt/o W (¢, 2(t)).z(t)dt. (6)

It is clear that ¢(0) = 0. Firstly, we will show that ¢ satisfies the Palais-Smale condition.
Let (y;) C Hy be a sequence such that (¢(y;));jen is bounded and ¢’ (y;) — 0 as j — +o0.
Then, there exists Cy such that

¢(y;) < Co, " Wil g+ < Co, (7)

for every j € N. Without loss of generality, we can assume that |ly;|| # 0. Then from
@), @) and (V3), we obtain for j € N

) = [ 150 + 2K (s 0)) i

T 2 A
/OT (5O + 2y 1))
. — T
Jo 15O dt 20 (Coe 0¥ i 50 d
min {1, 26(Coe [l3;1)*~*} Jlys|
= min {57 26022 1}

v

IV v

By @), (6) and (V4) we have

T
- % ) < % 16 @)l sl - % / Wty (8) . w5(t) dt. (9)
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By Sobolev’s embedding theorem, (&), (@), (@) and (V4) we obtain
w—0 2 2 (T "
(") ) < 2000042 10 s+ 2 [ Clustol”a
2 2 HJo
< 2Co + Ch ly;ll + Cz [ly; |17 - (10)
Combining () with (Z1I), we obtain

. — 1% o
mln{||yj||2,2170§o 2 ||yj||A} < ﬂ(co + C1 |yl + Ca lly;17)- (11)

It follows from (L)) that ||y;|| is bounded in H7. In a similar way as in Proposition 4.3
in [8], we can prove that (y;) has a convergent subsequence in H7.. Hence, ¢ satisfies the
Palais-Smale condition. Now, let us show that ¢ satisfies assumption (i7) of Theorem
2.1. By (V3), there exist constants ag, pg > 0 such that

V(t,z) < —ag |30|2 (12)

for all |z| < po and t € [0,T]. Choose p = £ and let S = {x € Hy, ||z = p}. ByB]
we have ||z|| < po, for all z € S, which together with (I2) implies

P(z) = 2f0 |z | dt — fo dt
> 2f0 | ( | dt + aofo |:c 2 at
> min{},a}p? =0

for every x € S.
It remains to prove that ¢ satisfies assumption (7i7) of Theorem 2.1. By (V3) we have

K(t,z) < Cs |z’ +Cy ¥ (t,2) €[0,T] x RY, (13)

where C5 = sup  K(t,z) and Cy = sup  K(t,z). By (@) and (I3) we have,
te(0,T],|z|=1 te(0,T],|z|<1

for every s € R\ {0} and z € H+\ {0},

2

2 T . (7 , T
qs(sx)g?/o ((0)|7 dt + Cys /0 ()| dt+C5—/O Wt sz(t)) dt.  (14)

Take some ) € Hi such that ||Q]| = 1. Then there exists a subset {2 of positive measure
of [0,T] such that Q(t) # 0 for ¢t € Q2. Take s > 1 such that s|Q(¢)| > R for ¢t € 2. Then

by (Va), (V) and ()

6(5Q) < Cas’ 5 [ ao(t) Q(OI™ (15)
Q

Since ap(t) > 0 and oy > 6, (IH) implies that ¢(sQ) < 0 for some s > 1 such that

s|Q()] > R for t € Q and s||Q| > p. By Theorem 1.1, ¢ possesses a critical value

¢ > a > 0 given by

)

where

I'={g€C([0,1],H) : g(0) =0, g(1) =e}.
Hence, there is * € HL such that ¢(z) = ¢,¢'(z) = 0. The proof of Theorem 1.1 is
complete.
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2.2 Proof of Theorem 1.2

(Vs) implies that ¢ is even. By Theorem 2.1 and the proof of Theorem 1.1, it suffices to
prove that ¢ satisfies (iii’) of Theorem 2.2.

Let E C HL be a finite dimensional subspace. From the proof of Theorem 1.1 we
know that for any Q € E C Hx such that [|Q|| = 1, there is sg > 1 such that ¢(sQ) < 0,
for every |s| > sg > 1. Since E C Hk is a finite dimensional subspace, we can choose
r =r(E) > 0 such that

¢(z) <0, Ve FE\ B(0).

Hence, by Theorem 2.1, ¢ possesses an unbounded sequence of critical values (¢, )nen
with ¢,, — +o00. The proof of Theorem 1.2 is complete.

2.3 Proof of Corollary 1.1.

It follows from (V3) and (V)

lim sup Vit,z) < limsup <M - b|x|)‘_2> <0

2
lz|—0 || 2| —=0

uniformly in ¢ € [0, T], which implies the conditions (V3). An easy application of Theorem
2.1 and Theorem 2.2 will show that Corollary 1.1 holds.
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