
Nonlinear Dynamics and Systems Theory, 14 (3) (2014) 244–257

Perturbed Partial Fractional Order Functional

Differential Equations with Infinite Delay
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1 Introduction

In this paper we are concerned with the existence of solutions to fractional order initial
value problem (IV P for short), for the system

(cDr
0u)(t, x) = f(t, x, u(t,x)) + g(t, x, u(t,x)), if (t, x) ∈ J, (1)

u(t, x) = φ(t, x), if (t, x) ∈ J̃ , (2)

u(t, 0) = ϕ(t), u(0, x) = ψ(x), (t, x) ∈ J, (3)

where ϕ(0) = ψ(0), J := [0,∞) × [0,∞), J̃ := (−∞,+∞) × (−∞,+∞)\[0,∞) ×
[0,∞), cDr

0 is the standard Caputo’s fractional derivative of order r = (r1, r2) ∈
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(0, 1] × (0, 1], f, g : J × B ⇒ R
n are given functions, φ : J̃ → R

n is a given continu-
ous function with φ(t, 0) = ϕ(t), φ(0, x) = ψ(x) for each (t, x) ∈ J, ϕ : [0,∞) → R

n,
ψ : [0,∞) → R

n are given absolutely continuous functions and B is called a phase space
that will be specified in Section 3.

We denote by u(t,x) the element of B defined by

u(t,x)(s, τ) = u(t+ s, x+ τ); (s, τ) ∈ (−∞, 0]× (−∞, 0],

here u(t,x)(., .) represents the history of the state u.
There has been a significant development in ordinary and partial fractional differential

equations in recent years. We can find numerous applications of differential equations
of fractional order in viscoelasticity, electrochemistry, control, porous media, electro-
magnetic, etc. (see [1–5]). There has been a significant development in ordinary and
partial fractional differential equations in recent years; see the monographs [6–8], and
the papers [9–15] and the references therein.

The theory of functional differential equations has emerged as an important branch of
nonlinear analysis. Differential delay equations, or functional differential equations, have
been used in modeling scientific phenomena for many years. Often, it has been assumed
that the delay is either a fixed constant or is given as an integral in which case it is called
a distributed delay; see for instance the books [16–20], and the papers [21, 22].

In this paper, we present existence result for the problem (1)-(3). Our main result for
this problem is based on a nonlinear alternative for the sum of a completely continuous
operator and a contraction one in Fréchet spaces due to Avramescu [23]. To our knowl-
edge, there are very few papers devoted to fractional differential equations with delay on
Fréchet spaces. This paper can be considered as a contribution in this setting case.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper. Let p ∈ N and J0 = [0, p] × [0, p]. By C(J0,R) we denote the
Banach space of all continuous functions from J0 into R

n with the norm

‖w‖∞ = sup
(t,x)∈J0

‖w(t, x)‖,

where ‖.‖ denotes a suitable complete norm on R
n.

As usual, by AC(J0,R) we denote the space of absolutely continuous functions from J0
into R

n and L1(J0,R) is the space of Lebesgue-integrable functions w : J0 → R
n with

the norm

‖w‖L1 =

∫ p

0

∫ p

0

‖w(t, x)‖dtdx.

Definition 2.1 [24] Let r = (r1, r2) ∈ (0,∞)×(0,∞), θ = (0, 0) and u ∈ L1(J0,R
n).

The left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Irθu)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1u(s, τ)dτds.

In particular,

(Iθθu)(t, x) = u(t, x), (Iσθ u)(t, x) =

∫ t

0

∫ x

0

u(s, τ)dτds; for almost all (t, x) ∈ J0,
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where σ = (1, 1). For instance, Irθu exists for all r1, r2 ∈ (0,∞) × (0,∞), when u ∈
L1(J0,R

n). Note also that when u ∈ C(J0,R
n), then (Irθu) ∈ C(J0,R

n), moreover

(Irθu)(t, 0) = (Irθu)(0, x) = 0; t, x ∈ J0.

Example 2.1 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθ t
λxω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
tλ+r1xω+r2 , for almost all (t, x) ∈ J0.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
tx := ∂2

∂t∂x
, the mixed

second order partial derivative.

Definition 2.2 [24] Let r ∈ (0, 1]× (0, 1] and u ∈ L1(J0,R
n). The mixed fractional

Riemann-Liouville derivative of order r of u is defined by the expression

Dr
θu(t, x) = (D2

txI
1−r
θ u)(t, x)

and the Caputo fractional-order derivative of order r of u is defined by the expression

(cDr
0u)(t, x) = (I1−r

θ

∂2

∂t∂x
u)(t, x).

The case σ = (1, 1) is included and we have

(Dσ
θ u)(t, x) = (cDσ

θ u)(t, x) = (D2
txu)(t, x), for almost all (t, x) ∈ J0.

Example 2.2 Let λ, ω ∈ (−1,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

Dr
θt

λxω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
tλ−r1xω−r2 , for almost all (t, x) ∈ J0.

In the sequel we will make use of the following generalization of Gronwall’s lemma
for two independent variables and singular kernel.

Lemma 2.1 [25] Let υ : J → [0,∞) be a real function and ω(., .) be a nonnegative,
locally integrable function on J. If there are constants c > 0 and 0 < r1, r2 < 1 such that

υ(t, x) ≤ ω(t, x) + c

∫ t

0

∫ x

0

υ(s, τ)

(t− s)r1(x− τ)r2
dτds,

then there exists a constant δ = δ(r1, r2) such that

υ(t, x) ≤ ω(t, x) + δc

∫ t

0

∫ x

0

ω(s, τ)

(t− s)r1(x− τ)r2
dτds,

for every (t, x) ∈ J.
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3 The Phase Space B

The notation of the phase space B plays an important role in the study of both qualitative
and quantitative theory for functional differential equations. A usual choice is a semi-
normed space satisfying suitable axioms, which was introduced by Hale and Kato (see
[22]). For further applications see for instance the books [16,17,19] and their references.

For any (t, x) ∈ J denote E(t,x) := [0, t] × {0} ∪ {0} × [0, x], furthermore in case
t = a, x = b we write simply E. Consider the space (B, ‖(., .)‖B) is a seminormed
linear space of functions mapping (−∞, 0]×(−∞, 0] into R

n, and satisfying the following
fundamental axioms which were adapted from those introduced by Hale and Kato for
ordinary differential functional equations:

(A1) If y : (−∞, a] × (−∞, b] → R
n continuous on J and y(t,x) ∈ B, for all (t, x) ∈ E,

then there are constants H,K,M > 0 such that for any (t, x) ∈ J the following
conditions hold:

(i) y(t,x) is in B;

(ii) ‖y(t, x)‖ ≤ H‖y(t,x)‖B,

(iii) ‖y(t,x)‖B ≤ K sup(s,τ)∈[0,t]×[0,x] ‖y(s, τ)‖+M sup(s,τ)∈E(t,x)
‖y(s,τ)‖B,

(A2) For the function y(., .) in (A1), y(t,x) is a B-valued continuous function on J.

(A3) The space B is complete.

Now, we present some examples of phase spaces [26, 27].

Example 3.1 Let B be the set of all functions φ : (−∞, 0] × (−∞, 0] → R
n which

are continuous on [−α, 0]× [−β, 0], α, β ≥ 0, with the seminorm

‖φ‖B = sup
(s,τ)∈[−α,0]×[−β,0]

‖φ(s, τ)‖.

Then we have H = K = M = 1. The quotient space B̂ = B/‖.‖B is isometric to the
space C([−α, 0] × [−β, 0],Rn) of all continuous functions from [−α, 0]× [−β, 0] into R

n

with the supremum norm, this means that partial differential functional equations with
finite delay are included in our axiomatic model.

Example 3.2 Let γ ∈ R and let Cγ be the set of all continuous functions φ :
(−∞, 0] × (−∞, 0] → R

n for which a limit lim‖(s,τ)‖→∞ eγ(s+τ)φ(s, τ) exists, with the
norm

‖φ‖Cγ
= sup

(s,τ)∈(−∞,0]×(−∞,0]

eγ(s+τ)‖φ(s, τ)‖.

Then we have H = 1 and K =M = max{e−γ(a+b), 1}.

Example 3.3 Let α, β, γ ≥ 0 and let

‖φ‖CLγ
= sup

(s,τ)∈[−α,0]×[−β,0]

‖φ(s, τ)‖ +

∫ 0

−∞

∫ 0

−∞

eγ(s+τ)‖φ(s, τ)‖dτds
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be the seminorm for the space CLγ of all functions φ : (−∞, 0]×(−∞, 0] → R
n which are

continuous on [−α, 0]× [−β, 0] measurable on (−∞,−α]×(−∞, 0]∪(−∞, 0]×(−∞,−β],
and such that ‖φ‖CLγ

<∞. Then

H = 1, K =

∫ 0

−α

∫ 0

−β

eγ(s+τ)dτds, M = 2.

4 Some Properties in Fréchet Spaces

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N. We assume that the
family of semi-norms {‖ · ‖n} verifies :

‖u‖1 ≤ ‖u‖2 ≤ ‖u‖3 ≤ . . . for every u ∈ X.

Let Y ⊂ X , we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤Mn for all y ∈ Y.

To X we associate a sequence of Banach spaces {(Xn, ‖·‖n)} as follows : For every n ∈ N,
we consider the equivalence relation ∼n defined by : u ∼n v if and only if ‖u− v‖n = 0
for u, v ∈ X . We denote by Xn = (X |∼n

, ‖ · ‖n) the quotient space, the completion of
Xn with respect to ‖ · ‖n. To every Y ⊂ X , we associate a sequence {Y n} of subsets
Y n ⊂ Xn as follows: For every u ∈ X , we denote by [u]n the equivalence class of u of
subset Xn and we define Y n = {[u]n : u ∈ Y }. We denote by Y n, intn(Y

n) and ∂nY
n,

respectively, the closure, the interior and the boundary of Y n with respect to ‖ · ‖n in
Xn. For more information about this subject see [28].

Definition 4.1 Let X be a Fréchet space. A function N : X → X is said to be a
contraction if for each n ∈ N there exists kn ∈ [0, 1) such that

‖N(u)−N(v)‖n ≤ kn‖u− v‖n for all u, v ∈ X.

Theorem 4.1 (Nonlinear Alternative of Avramescu) [23] Let (X, |.|n) be a Fréchet
space and let A,B : X → X be two operators. Suppose that the following hypotheses are
fulfilled:

(i) A is a compact operator;

(ii) B is a contraction operator with respect to a family of seminorms ||.||n equivalent
to the family |.|n;

(iii) the set E = {u ∈ X : u = λA(u) + λB(u
λ
) for some λ ∈ (0, 1)} is bounded.

Then there is u ∈ X such that u = Au+ Bu.

5 Existence of Solutions

In this section, we give our main existence result for problem (1)-(3). Before starting and
proving this result, we give what we mean by a solution of this problem. Let the space

Ω := {u : R2 → R
n : u(t,x) ∈ B for (t, x) ∈ E and u|J ∈ C(J,Rn)}.
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Definition 5.1 A function u ∈ Ω is said to be a solution of (1)-(3) if u satisfies
equations (1) and (3) on J and the condition (2) on J̃ .

For the existence of solutions for the problem (1)–(3), we need the following lemma:

Lemma 5.1 A function u ∈ Ω is a solution of problem (1)-(3) if and only if u
satisfies the equation

u(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1f(s, τ, u(s,τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, u(s,τ))dτds,

for all (t, x) ∈ J and the condition (2) on J̃ .

For each p ∈ N we consider following sets,

Cp = {u : (−∞, p]× (−∞, p] → R
n : u(t,x) ∈ B, u(t,x) = 0 for (t, x) ∈ E and

u|J0 ∈ C(J0,R
n)},

and C0 = {u ∈ Ω : u(t,x) = 0 for (t, x) ∈ E}.
On C0 we define the semi-norms:

‖u‖p = sup
(t,x)∈E

‖u(t,x)‖+ sup
(t,x)∈J0

‖u(t, x)‖ = sup
(t,x)∈J0

‖u(t, x)‖, u ∈ Cp.

Then C0 is a Fréchet space with the family of semi-norms {‖u‖p}.

Theorem 5.1 Assume:

(H1) The functions f, g : J × B → R
n are continuous.

(H2) For each p ∈ N, there exist constants ℓp(t, x) ∈ C(J0,R
n) such that

‖g(t, x, u)− g(t, x, v)‖ ≤ ℓp(t, x)‖u− v‖B, for any u, v ∈ B and (t, x) ∈ J0.

(H3) For each p ∈ N, there exist p, q ∈ C(J,R+) such that

‖f(t, x, u)‖ ≤ p(t, x) + q(t, x)‖u‖B, for (t, x) ∈ J0 and each u ∈ B.

If
Kℓ∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
< 1, (4)

where ℓ∗p = sup(t,x)∈J0
ℓp(t, x), then there exists a unique solution for IVP (1)-(3) on

(−∞,+∞)× (−∞,+∞).

Proof. Transform the problem (1)-(3) into a fixed point problem. Consider the
operator N : Ω → Ω defined by,

(Nu)(t, x) =





φ(t, x), (t, x) ∈ J̃ ,
z(t, x)

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, u(s,τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, u(s,τ))dτds, (t, x) ∈ J.

(5)
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Let v(., .) : Rn → R
n be a function defined by,

v(t, x) =

{
z(t, x), (t, x) ∈ J.

φ(t, x), (t, x) ∈ J̃ ,

Then v(t,x) = φ for all (t, x) ∈ E.
For each w ∈ C(J,Rn) with w(t, x) = 0 for each (t, x) ∈ E we denote by w the

function defined by

w(t, x) =

{
w(t, x), (t, x) ∈ J,

0, (t, x) ∈ J̃ .

If u(., .) satisfies the integral equation,

u(t, x) = z(t, x) +
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1f(s, τ, u(s,τ))dτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, u(s,τ))dτds,

we can decompose u(., .) as u(t, x) = w(t, x) + v(t, x); (t, x) ∈ J, which implies u(t,x) =
w(t,x) + v(t,x), for every (t, x) ∈ J, and the function w(., .) satisfies

w(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(t,x) + v(t,x))dτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, w(t,x) + v(t,x))dτds.

Let the operators A,B : C0 → C0 be defined by

(Aw)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1f(s, τ, w(t,x) + v(t,x))dτds

and

(Bw)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ, w(t,x) + v(t,x))dτds.

Obviously, the operator N has a fixed point which is equivalent to finding the fixed
point of the operator equation (Aw)(t, x) + (Bw)(t, x) = w(t, x), (t, x) ∈ J . We shall
show that the operators A and B satisfy all the conditions of Theorem 4.1.

For better readability, we break the proof into a sequence of steps.
Step 1: A is continuous.

Let {wn} be a sequence such that wn → w in C0. Then

‖(Awn)(t, x) − (Aw)(t, x)‖ ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

× ‖f(s, τ, wn(s,τ) + vn(s,τ))− f(s, τ, w(s,τ) + v(s,τ))‖dτds.

Since f is a continuous function, we have

‖(Awn)−(Aw)‖p ≤
pr1+r2‖f(., ., wn(.,.) + vn(.,.))− f(., ., w(.,.) + v(.,.))‖p

Γ(r1 + 1)Γ(r2 + 1)
→ 0 as n→ ∞.
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Thus A is continuous.

Step 2: A maps bounded sets into bounded sets in C0. Indeed, it is enough to show

that, for any η > 0, there exists a positive constant
∼

ℓ such that, for each w ∈ Bη = {w ∈

C0 : ‖w‖p ≤ η}, we have ‖A(w)‖p ≤
∼

ℓ .

Let w ∈ Bη. By (H3) we have for each (t, x) ∈ J0,

‖(Aw)(t, x)‖ ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1‖f(s, τ, w(s,τ) + v(s,τ))‖dτds

≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1p(s, τ)

+q(s, τ)‖w(s,τ) + v(s,τ)‖Bdτds

≤
‖p‖p

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1dτds

+
‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1dτds

≤
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
pr1+r2 := ℓ∗,

where

‖w(s,τ) + v(s,τ)‖B ≤ ‖w(s,τ)‖B + ‖v(s,τ)‖B ≤ Kpη +Kp‖φ(0, 0)‖+Mp‖φ‖B := η∗.

Hence ‖(Aw)‖p ≤ ℓ∗.

Step 3: A maps bounded sets into equicontinuous sets in C0.
Let (t1, x1), (t2, x2) ∈ J0, t1 < t2, x1 < x2, Bη be a bounded set as in Step 2, and let
w ∈ Bη. Then

‖(Aw)(t2, x2)− (Aw)(t1, x1)‖ ≤
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1

−(t1 − s)r1−1(x1 − τ)r2−1]||f(s, τ, w(s,τ) + v(s,τ))||dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ, w(s,τ) + v(s,τ))||dτds

+
1

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ, w(s,τ) + v(s,τ))||dτds

+
1

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1||f(s, τ, w(s,τ) + v(s,τ))||dτds
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≤
‖p‖p + ‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t1

0

∫ x1

0

[(t2 − s)r1−1(x2 − τ)r2−1 − (t1 − s)r1−1(x1 − τ)r2−1]dτds

+
‖p‖p + ‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t2

t1

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖p + ‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t1

0

∫ x2

x1

(t2 − s)r1−1(x2 − τ)r2−1dτds

+
‖p‖p + ‖q‖pη

∗

Γ(r1)Γ(r2)

∫ t2

t1

∫ x1

0

(t2 − s)r1−1(x2 − τ)r2−1dτds

≤
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
[xr22 (t2 − t1)

r1 + tr12 (x2 − x1)
r2

−(t2 − t1)
r1(x2 − x1)

r2 + tr11 x
r2
1 − tr12 x

r2
2 ]

+
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
(t2 − t1)

r1(x2 − x1)
r2

+
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
[tr12 − (t2 − t1)

r1 ](x2 − x1)
r2

+
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
(t2 − t1)

r1 [xr22 − (x2 − x1)
r2−1

≤
‖p‖p + ‖q‖pη

∗

Γ(r1 + 1)Γ(r2 + 1)
[2xr22 (t2 − t1)

r1 + 2tr12 (x2 − x1)
r2

+tr11 x
r2
1 − tr12 x

r2
2 − 2(t2 − t1)

r1(x2 − x1)
r2 ].

The right-hand side of the above inequality tends to zero as t1 → t2, x1 → x2. The
equicontinuity for the cases t1 < t2 < 0, x1 < x2 < 0 and t1 ≤ 0 ≤ t2, x1 ≤ 0 ≤ x2 is
obvious.

As a consequence of steps 1 to 3 together with Arzela-Ascoli theorem, we can conclude
that A : C0 → C0 is a compact operator.

Step 4: B is a contraction.
Let w,w∗ ∈ C0. Then we have for each (t, x) ∈ J0

‖(Bw)(t, x) − (Bw∗)(t, x)‖ ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

× ‖g(s, τ, w(s,τ) + v(s,τ))− g(s, τ, w∗
(s,τ) + v(s,τ))‖dτds

≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1ℓp(s, τ)‖w(s,τ) − w∗
(s,τ)‖B

≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1Kℓp(s, τ)

× sup
(s,τ)∈[0,t]×[0,x]

‖w(s, τ)− w∗(s, τ)‖dτds

≤
Kℓ∗p(s, τ)

Γ(r1)Γ(r2)

∫ p

0

∫ p

0

(t− s)r1−1(x− τ)r2−1dτds‖w − w∗‖p.

Therefore,

‖(Bw)− (Bw∗)‖p ≤
Kℓ∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
‖w − w∗‖p,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (3) (2014) 244–257 253

since by (4), B is a contraction.

Step 5: (A priori bounds)

Now it remains to show that the set

E={w ∈ C(J,R) : w = λA(w) + λB(w
λ
) for some λ ∈ (0, 1)}

is bounded. Let w ∈ E , then w = λA(w) + λB(w
λ
) for some 0 < λ < 1. Thus for each

(t, x) ∈ J0, we have

w(t, x) =
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1f(s, τ, w(s,τ) + v(s,τ))dτds

+
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1g(s, τ,
w(s,τ) + v(s,τ)

λ
)dτds.

This implies by (H2) and (H3) that, for each (t, x) ∈ J0, we have

‖w(t, x)‖ ≤
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1[p(s, τ)

+q(s, τ)‖w(s,τ) + v(s,τ)‖B]dτds

+
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1

∣∣∣∣g(s, τ,
w(s,τ) + v(s,τ)

λ
)− g(s, τ, 0)

∣∣∣∣ dτds

+
λ

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1|g(s, τ, 0)|dτds

≤
pr1+r2‖p‖p

Γ(r1 + 1)Γ(r2 + 1)
+

pr1+r2g∗

Γ(r1 + 1)Γ(r2 + 1)

+
||q||p

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1‖w(s,τ) + v(s,τ)‖Bdτds

+
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1ℓp(s, τ)||w(s,τ) + v(s,τ)||Bdτds

≤
pr1+r2(‖p‖p + g∗)

Γ(r1 + 1)Γ(r2 + 1)

+
(||q||p + ℓ∗p)

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x − τ)r2−1‖w(s,τ) + v(s,τ)‖Bdτds,

where g∗ = sup
(s,τ)∈J0

|g(s, τ, 0)| and

‖w(s,τ) + v(s,τ)‖B ≤ ‖w(s,τ)‖B + ‖v(s,τ)‖B

≤ K sup{w(s̃, τ̃) : (s̃, τ̃ ) ∈ [0, s]× [0, τ ]}

+M‖φ‖B +K‖φ(0, 0)‖. (6)
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If we name y(s, τ) the right hand side of (6), then we have

‖w(s,τ) + v(s,τ)‖B ≤ y(t, x),

and therefore, for each (t, x) ∈ J0 we obtain

‖w(t, x)‖ ≤
pr1+r2(‖p‖p + g∗)

Γ(r1 + 1)Γ(r2 + 1)

+
||q||p + ℓ∗p
Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, τ)dτds. (7)

Using the above inequality and the definition of y for each (t, x) ∈ J0 we have

y(t, x) ≤ M‖φ‖B +K‖φ(0, 0)‖+
Kpr1+r2(‖p‖p + g∗)

Γ(r1 + 1)Γ(r2 + 1)

+
K(‖q‖p + ℓ∗p)

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1y(s, t)dτds.

Then by Lemma 2.1, there exists δ = δ(r1, r2) such that we have

‖y(t, x)‖ ≤ R+ δ
K(‖q‖p + ℓ∗p)

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− s)r1−1(x− τ)r2−1Rdτds,

where

R =M‖φ‖B +K‖φ(0, 0)‖+
Kpr1+r2(‖p‖p + g∗)

Γ(r1 + 1)Γ(r2 + 1)
.

Hence

‖y‖p ≤ R+
RδKpr1+r2(‖q‖p + ℓ∗p)

Γ(r1 + 1)Γ(r2 + 1)
:= R̃.

Then, (7) implies that

‖w‖p ≤
pr1+r2

Γ(r1 + 1)Γ(r2 + 1)
[‖p‖p + g∗ + R̃(‖q‖p + ℓ∗p)] := R∗

p.

This shows that the set E is bounded. As a consequence of Theorem 4.1 we deduce that
A+B has a fixed point which is a solution of problem (1)-(3). ✷

6 An Example

As an application of our results we consider the following partial perturbed hyperbolic
functional differential equations of the form

(cDr
0u)(t, x) =

2 + et+x(|u(t− 2, x− 3)|+ 3)

cpet+x(2 + |u(t− 2, x− 3)|)
, if (t, x) ∈ J := [0,∞)× [0,∞), (8)

u(t, 0) = t, u(0, x) = x2, (t, x) ∈ J, (9)

u(t, x) = t+ x2, (t, x) ∈ J̃ , (10)
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where J̃ := R
2\[0,∞)× [0,∞).

Set

f(t, x, u(t,x)) =
|u(t− 2, x− 3)|+ 3

cp(2 + |u(t− 2, x− 3)|)
, if (t, x) ∈ J,

g(t, x, u(t,x)) =
2

cpet+x(2 + |u(t− 2, x− 3)|)
, if (t, x) ∈ J,

and

cp =
3pr1+r2

Γ(r1 + 1)Γ(r2 + 1)
.

Let γ > 0, and consider the following phase space

Bγ= {u ∈ C((−∞, 0]× (−∞, 0],R) : lim‖(θ,η)‖→∞ eγ(θ+η)u(θ, η) exists ∈ R}.

The norm of Bγ is given by

‖u‖γ = sup
(θ,η)∈(−∞,0]×(−∞,0]

eγ(θ+η)|u(θ, η)|.

Let
E := [0, 1]× {0} ∪ {0} × [0, 1],

and u : (−∞, 1]× (−∞, 1] → R such that u(t,x) ∈ Bγ for (t, x) ∈ E, then

lim
‖(θ,η)‖→∞

eγ(θ+η)u(t,x)(θ, η) = lim
‖(θ,η)‖→∞

eγ(θ−t+η−x)u(θ, η)

= eγ(t+x) lim
‖(θ,η)‖→∞

u(θ, η) <∞.

Hence u(t,x) ∈ Bγ . Finally we prove that

‖u(t,x)‖γ = K sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}

+M sup{‖u(s,τ)‖γ : (s, τ) ∈ E(t,x)},

where K =M = 1 and H = 1.
If t+ θ ≤ 0, x+ η ≤ 0 we get

‖u(t,x)‖γ = sup{|u(s, τ)| : (s, τ) ∈ (−∞, 0]× (−∞, 0]},

and if t+ θ ≥ 0, x+ η ≥ 0, then we have

‖u(t,x)‖γ = sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.

Thus for all (t+ θ, x+ η) ∈ [0, 1]× [0, 1], we get

‖u(t,x)‖γ = sup{|u(s, τ)| : (s, τ) ∈ (−∞, 0]× (−∞, 0]}

+sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.

Then

‖u(t,x)‖γ = sup{‖u(s,τ)‖γ : (s, τ) ∈ E}+ sup{|u(s, τ)| : (s, τ) ∈ [0, t]× [0, x]}.

(Bγ , ‖.‖γ) is a Banach space. We conclude that Bγ is a phase space.
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For each u, u ∈ Bγ and (t, x) ∈ J , we have

|g(t, x, u(t,x))− g(t, x, u(t,x))| ≤
1

cpet+x
‖u− u‖Bγ

.

Hence condition (H2) is satisfied with ℓpe
t+x = 1

cpet+x . Since

ℓ∗p = sup

{
1

cpet+x
, (t, x) ∈ J × R

}
≤

1

cp

and K = 1, we get
kℓ∗pp

r1+r2

Γ(r1 + 1)Γ(r2 + 1)
=

1

3
< 1.

Hence condition (4) holds for each (r1, r2) ∈ (0, 1] × (0, 1] and all p ∈ N
∗. Also, the

function f is continuous on [0,∞)× [0,∞)× [0,∞) and

|f(t, x, w)| ≤ |w|+ 3, for each (t, x, w) ∈ [0,∞)× [0,∞)× Bγ .

Thus conditions (H1) and (H3) hold. Consequently Theorem 5.1 implies that problem
(8)-(10) has at least one solution defined on (−∞,+∞)× (−∞,+∞).
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