Nonlinear Dynamics and Systems Theory, 14(3) (2014) 209-223

Almost Oscillatory Three-Dimensional Dynamical Systems of First Order Delay Dynamic Equations

A. Akgül 1,2 and E. Akın 2*

 ¹ Dicle University, Education Faculty Department of Mathematics 21280 Diyarbakır, Turkey,
 ² Missouri University of Science and Technology Department of Mathematics and Statistics Rolla, Missouri 65409-0020, USA

Received: February 17, 2014; Revised: July 5, 2014

Abstract: In this paper, we investigate oscillation and asymptotic properties for three dimensional systems of first order dynamic equations with delays. Most of our results are new in the discrete case.

Keywords: *time scales; oscillation; three-dimensional dynamical system.*

Mathematics Subject Classification (2010): 39A10.

1 Introduction

In this paper, we investigate three dimensional dynamical systems with delays of the form

$$\begin{cases} x^{\Delta}(t) = a(t)f(y(\tau(t))), \\ y^{\Delta}(t) = b(t)g(z(\tau(t))), \\ z^{\Delta}(t) = \lambda c(t)h(x(\tau(t))), \end{cases}$$
(1)

on a time scale \mathbb{T} , i.e., a closed subset of real numbers, $\tau : \mathbb{T} \to \mathbb{T}$ is a rd-continuous function such that $\tau(t) < t$, $\lim_{t \to \infty} \tau(t) = \infty$, $\lambda = \pm 1$, $a, b : \mathbb{T} \mapsto [0, \infty)$ (not identically zero) and $c : \mathbb{T} \mapsto (0, \infty)$ are rd-continuous functions such that

$$\int_{T}^{\infty} a(s)\Delta s = \int_{T}^{\infty} b(s)\Delta s = \infty, \quad T \in \mathbb{T}$$
⁽²⁾

and $f,g,h:\mathbb{R}\mapsto\mathbb{R}$ are continuous functions satisfying

$$uf(u) > 0, \quad ug(u) > 0, \quad \text{and} \quad uh(u) > 0 \quad \text{for } u \neq 0.$$
 (3)

^{*} Corresponding author: mailto:akine@mst.edu

^{© 2014} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua209