Almost Oscillatory Three-Dimensional Dynamical Systems of First Order Delay Dynamic Equations

A. Akgül\(^1\,2\) and E. Akin\(^2\)\(^*\)

\(^1\) Dicle University, Education Faculty Department of Mathematics 21280 Diyarbakır, Turkey,
\(^2\) Missouri University of Science and Technology Department of Mathematics and Statistics Rolla, Missouri 65409-0020, USA

Received: February 17, 2014; Revised: July 5, 2014

Abstract: In this paper, we investigate oscillation and asymptotic properties for three dimensional systems of first order dynamic equations with delays. Most of our results are new in the discrete case.

Keywords: time scales; oscillation; three-dimensional dynamical system.

1 Introduction

In this paper, we investigate three dimensional dynamical systems with delays of the form

\[
\begin{align*}
 x^\Delta(t) &= a(t)f(y(\tau(t))), \\
 y^\Delta(t) &= b(t)g(z(\tau(t))), \\
 z^\Delta(t) &= \lambda c(t)h(x(\tau(t))),
\end{align*}
\]

(1)
on a time scale \(T \), i.e, a closed subset of real numbers, \(\tau : T \to T \) is a rd-continuous function such that \(\tau(t) < t \), \(\lim_{t \to \infty} \tau(t) = \infty \), \(\lambda = \pm 1 \), \(a, b : T \to [0, \infty) \) (not identically zero) and \(c : T \to (0, \infty) \) are rd-continuous functions such that

\[
\int_T^\infty a(s)\Delta s = \int_T^\infty b(s)\Delta s = \infty, \quad T \in T
\]

(2)
and \(f, g, h : \mathbb{R} \to \mathbb{R} \) are continuous functions satisfying

\[
uf(u) > 0, \quad ug(u) > 0, \quad \text{and} \quad uh(u) > 0 \quad \text{for} \ u \neq 0.
\]

(3)

\(^*\) Corresponding author: \texttt{mailto:akine@mst.edu}

© 2014 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/\texttt{http://e-ndst.kiev.ua}