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Abstract: This paper studies the equation ẋ(t) = −g(x(t)) + f(x(t − τ )) with one
trivial equilibrium and only one unstable positive equilibrium. For a class of linear
initial values, two sufficient conditions are established to guarantee that the corre-
sponding solutions converge to the trivial equilibrium and the positive equilibrium
respectively. All solutions, with the exception of two equilibria, are divided into three
classes according to their eventual tendency. The first class solutions are strictly
greater than 0 ultimately and converge to it; the second class ones are strictly greater
than the positive equilibrium ultimately and converge to it; the third class solutions
oscillate about the positive equilibrium up and down and converge to it. Furthermore,
the existence of the third class of solutions is determined. Numerical simulations are
given to illustrate the main results.
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1 Introduction

Delay differential equations are always the research focus of mathematicians dealing with
theory of functional differential equations and scientists applying the theory to practical
problems. It is not difficult to found a variety of application of delay differential equation
in several fields of natural science such as viscoelasticity, mechanics, models for nuclear
reactors, distributed networks, heat flow, neural networks, combustion theory, interaction
of species, microbiology, learning models, epidemiology, physiology see e.g. [9,11,15,22].
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The introduction of delays makes a much richer range of phenomena possible, however,
it also causes sever mathematical complications.

Even with consideration of the simplest-looking equation

ẋ(t) = −µx(t) + f(x(t− 1)), µ > 0, (1)

where µ > 0, just as pointed out by T. Krisztin in paper [17], the dynamics of equation
(1) can be very rich. In the monotone feedback case, the properties of equation (1) have
been explored comprehensively, including the local and global dynamics, structure of the
global attractor, existence and properties of periodic orbit (see [1,7,16,19–21,29]). In the
case of a non-monotone feedback function f(x) , the dynamics can be very complicated.
Though a majority of literatures study the property of equation (1) with nonmonotone
feedback (see [2,4,5,8,12]). In general there are still much unknown. One important result
comes from paper [26], in which G. Röst and J. Wu showed the existence of the global
attractor and gave the bounds of the attractor in the case when f(x) is a general unimodal
function, which is the situation for the well-known Nicholson’s blowflies equation [10] and
the Mackey-Glass equation [25].

Recently C. Huang, Z. Yang, T. Yi and X. Zou [14] investigated the following model

ẋ(t) = −g(x(t)) + f(x(t− τ)), (2)

where g and f are continuous on R
+ with the values in R

+, and satisfy (F1) and (F2).

(F1) g(x) is strictly increasing on R
+, ġ(x) > 0, g(0) = 0 and lim

x→+∞
g(x) = +∞.

(F2) f(ξ) > 0 for all ξ > 0, f(0) = 0, and there exists a unique ξ0 > 0, such that
f ′(ξ) > 0 if 0 < ξ < ξ0, f

′(ξ0) = 0 = f ′(0) and f ′(ξ) < 0 if ξ > ξ0, furthermore, there
also exists a unique 0 < ξ1 < ξ0 such that f ′′(ξ) > 0 if 0 < ξ < ξ1, f

′′(ξ1) = 0 and
f ′′(ξ) < 0 if ξ1 < ξ < ξ0 , and lim

ξ→+∞
f(ξ) = 0.

Evidently, the famous Allee-type model with f(x) = axne−x in [23] satisfies conditions
(F1) and (F2) when n > 1. The distinction between the models in [14] and [26] is
whether f ′(0) = 0, it is this property that makes equation (2) have different properties
such as multiple equilibria or one unstable positive equilibrium. For equation (2), Huang
et.al determined the invariant intervals and the multistability properties of equilibria of
equation (2). When the system has only one positive equilibrium, their results imply
that the positive equilibrium is unstable, but the equilibria 0 and x1 have their own local
attractive region.

The dynamics of delay differential equations can be affected by many factors. For
example, delays can cause the loss of stability and induce oscillations, periodic solutions
and the occurrence of Hopf bifurcations [28, 30]. Many papers consider the effect of
increasing mortality and harvesting on equation (2) see e.g. [3,6,8,18,28]. E. Liz and G.
Gost [24] obtained some new results for equation (2) with negative Schwarzian derivative.
However, the role of initial condition on the property of solutions is not considered. In
finite dimensional systems, it is direct to judge the property of orbits by initial value.
As we known, systems generated by delay differential equations are infinite dimensional,
the previous results can not be applied here. Thus we pay attention to the role of the
initial value.

Motivated by the above discussion, we mainly explore the property of the solutions of
equation (2) with a class of initial value. Throughout the paper we assume that equation
(2) fulfills conditions (F ′

1), (F2) and (F3).
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(F ′
1) g(x) is strictly increasing on R

+, ġ(x) > 0, g̈(x) ≤ 0, g(0) = 0 and lim
x→+∞

g(x) =

+∞.
(F3) f(x) and g(x) have only one positive intersection point denoted by x1.
Obviously, Losota’s model fulfills (F ′

1), (F2) and (F3) if µ = a(n−1
e

)n−1 and n > 1.
For equation (2) with τ = 1, considering the wide variety of the initial value, we mainly
investigate the convergence of the solution with linear initial value φ(s) = ks + x1 + h
for −1 ≤ s ≤ 0 and 0 < h ≤ x1. Since φ(s) is not in the attractive region of 0 or x1 for
some k and h, the results in [14] can not be directly applied to deduce the convergence
of the corresponding solutions. Here, we establish two sufficient conditions to ensure
that the corresponding solutions converge to 0 and x1 respectively. Furthermore, we give
more detailed description and classification of the solutions of (2). The paper divides all
solutions of (2) with the exception of two equilibria into three categories according to
their way of convergence. The first class solutions are strictly greater than 0 ultimately
and converge to it; the second class ones are strictly greater than x1 ultimately and
converge to it; the third class solutions oscillate about x1 up and down and converge to
it. Moreover, we show the existence of the third class of solutions.

Consider one example of (2) in the form

ẋ(t) = −µx(t) + a1x(t− 1)2e−a2x(t−1), (3)

where parameters satisfy µ = a1
a2e

and the two equilibria are 0 and 1
a2
. We further explore

the convergence of the solution with linear initial value φ(s) = 1
a2
(s+1+h) for −1 ≤ s ≤ 0

and 0 < h < 1, which is across the attractive region of the two equilibria. When the
information about g and f is more specific, the wider range of h can be obtained to
guarantee the same convergence.

The rest of the paper is organized as follows. Section 2 mainly presents the basic
definitions and introduces some relevant results. Section 3 explores the convergence of
the solution with a class of linear initial value. Section 4 divides all the solutions into three
classes according to their eventual tendency and shows the existence of the oscillatory
solution. In Section 5 an example is given, for a class of linear initial value, more specific
relationships are put forward between the location of the line and the eventual tendency
of the corresponding solution. In Section 6 numerical simulations are given to illustrate
the main results in Sections 4 and 5. In the final section we make a conclusion and
present some unsolved issues.

2 Preliminary

Let C = C([−τ, 0],R) be the Banach space of continuous functions with the norm given
by

‖φ‖ = max
−τ≤s≤0

|φ(s)| for any φ ∈ C.

The Banach space C contains the cone as follows,

C+ = {φ ∈ C : φ(s) ≥ 0,−τ ≤ s ≤ 0}.

The usual notations <,≤ and ≪ can be used to denote the various relations on C
generated by the positive cone C+. In particular, φ ≤ ψ holds if φ(s) ≤ ψ(s) for
−τ ≤ s ≤ 0; φ < ψ holds if φ(s) ≤ ψ(s) and φ(s) 6= ψ(s) for −τ ≤ s ≤ 0; φ ≪ ψ
holds if φ(s) < ψ(s) for −τ ≤ s ≤ 0. Likewise, there are order relations >,≥ and ≫.
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Therefore, we can define the order intervals [φ, ψ] := {ξ ∈ C : φ ≤ ξ ≤ ψ} if φ ≤ ψ and
(φ, ψ) := {ξ ∈ C : φ≪ ξ ≪ ψ} if φ≪ ψ.

Solutions of equation (2) are determined by the initial value x(θ) = φ(θ), where−τ ≤
θ ≤ 0, φ ∈ C, and we use the universal symbol xt to denote the state of the system at
time t, where xt(θ) = x(t + θ) for −τ ≤ θ ≤ 0. Then x0(θ) = φ(θ) and xt(0) = x(t). In
order to emphasize the dependence of a solution on the initial value φ, we write xt(φ) or
x(t, φ). Equation (2) generates a semiflow Φ on C given by

Φ : R+ × C → C,

(t, φ) 7→ xt(φ) := Φt(φ).

We also define the functional λ : C → R by

λ(φ) := −g(φ(0)) + f(φ(−τ)), ∀φ ∈ C.

So equation (2) can be written as ẋ(t) = λ(xt). If x ∈ R we denote by x∗ the element
of C which takes the value x on [−τ, 0]. The set of equilibria for (2) is then given by
E = {φ ∈ C|φ ≡ x, λ(x∗) = 0}.

The positive orbit of φ is denoted by O+(φ) = {Φt(φ) : t ≥ 0}. The ω(φ) of φ ∈ C+

is defined by
ω(φ) = ∩t≥0∪s≥tΦs(φ).

i.e, whenever ψ ∈ ω(φ) there exists an infinite sequence tn such that lim
tn→∞

Φtn(φ) = ψ.

The semiflow Φ is said to be monotone provided Φt(φ) ≤ Φt(ψ) whenever φ ≤ ψ
and t ≥ 0. Φ is called strongly monotone on C+ if it is monotone and Φt(φ) ≪ Φt(ψ)
whenever φ < ψ and t > 0. Φ is said to be eventually strong monotone if it is monotone
and whenever φ < ψ there exists t0 > 0 such that Φt0(φ) ≪ Φt0(ψ). Φ is said to be
strongly order-preserving on C+ if it is monotone and whenever φ < ψ there exists open
subsets U, V ⊂ C+ and t0 > 0 such that φ ∈ U,ψ ∈ V and Φt0(U) ≤ Φt0(V ). For
more knowledge related to functional equations, please refer to [13] and [27].

Proposition 2.1 [27] If Φ is eventually strongly monotone, then it is strongly order-
preserving.

Here, one main result from Huang et.al [14] about system (2) is as follows.

Theorem 2.1 [14] For the system (2) fulfilling (F ′
1), (F2) and (F3) (see Figure 1),

x∗0 = 0∗ is asymptotically stable and x∗1 is unstable, there exists a heteroclinic orbit x(t),
which connects x∗0 and x∗1. Furthermore, the following results hold:
(1) lim

t→∞
x(t, φ) = 0 for φ ∈ [0∗, x∗1]/{x∗1};

(2) lim
t−→∞

x(t, ψ) = x1 for ψ ∈ [x∗1, η
∗], where η = f̂−1(f(x1)), f̂ denotes the restriction

of f to the interval [ξ0,∞).
(3) The order interval [0∗, (g−1f(ξ0))

∗] is invariant and globally attractive on C+.

Based on the results of Theorem 2.1, it is clear that [0∗, η∗0 ] is also invariant and
globally attractive on C+ if η0 ∈ [g−1f(ξ0), η]. If we denote by f̃ the restriction of f to
the interval [0, ξ0], then f̃ is non-decreasing on this interval. The invariance of [0∗, ξ∗0 ]
and the monotonicity of f̃ guarantee that the semiflow generated by (2) is monotone on
[0∗, ξ∗0 ] [27].
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Figure 1: Schematic of equation (2) with one positive equilibrium.

3 The Convergence of the Solution with a Class of Linear Initial Value

This section mainly explores the convergence of the solution of (2) with τ = 1 and linear
initial value φ(s) = ks + x1 + h for −1 ≤ s ≤ 0, where 0 < k ≤ ξ0 and 0 < h ≤
ξ0 − x1. Evidently, φ does not completely locate in the attractive region [0∗, x∗1]/{x∗1}
or [x∗1, (g

−1f(ξ0))
∗] for some k and h. Given k, h will determine the convergence of

the solution x(t, φ). Before presenting the principal results, we need to introduce some

definitions and explanations. First define a new function G(x), G(x) = g(x)
x

if x > 0 and
G(0) = g′(0). It is easy to check that G(x) is continuous, non-increasing and G(x) > 0 by
(F ′

1). The fact that ġ(x) > 0 and g̈(x) ≤ 0 implies the following definition is meaningful.

δ1 = min
0≤x≤2x1+ξ0

g′(x) = g′(2x1 + ξ0) > 0 and δ2 = max
0≤x≤2x1+ξ0

g′(x) = g(0) > 0.

Therefore, 0 < δ1 ≤ G(x) = g(x)
x

≤ δ2 for 0 ≤ x ≤ 2x1 + ξ0.
From (2) it follows that

ẋ(t) + x(t)G(x(t)) = f(x(t− τ)). (4)

By multiplying both sides of (4) by e
∫

t
0
G(x(s))ds and then by integrating from nτ to t, the

solutions of (2) can be obtained for ordinary differential equations on successive intervals
of length τ .

x(t) = x(nτ)e−
∫

t

nτ
G(x(s))ds +

∫ t

nτ

e
∫

s

t
G(x(ω))dωf(x(s− τ))ds (5)

with n ∈ N, nτ ≤ t ≤ (n+ 1)τ .
For the initial value φ(s) = ks+ x1 + h, in order to ensure that lim

t→∞
x(t, φ) = x1, we

give the following hypothesis denoted by (H0).
Suppose that

(H0) ξ0 − x1 ≥ h ≥ hup =
−(k − δ2k + δ2x1) +

√

(k − δ2k + δ2x1)2 + 4δ22x1k

2δ2
.
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Theorem 3.1 Given φ(s) = ks+ x1 + h for −1 ≤ s ≤ 0, where k ≤ ξ0. If h fulfills
(H0), then lim

t→∞
x(t, φ) = x1.

Proof. If k ≤ h ≤ ξ0 − x1, then φ(s) ∈ [x∗1, ξ
∗
0 ], it is clear that lim

t→∞
x(t, φ) = x1. If

h ≤ k, set s1 = −h
k
and t1 = 1 + s1. When 0 ≤ t ≤ t1, from (5) it follows that

x(t, φ) = e−
∫

t

0
G(x(s,φ))dsx(0, φ) +

∫ t

0

e
∫

s

t
G(x(ω,φ))dωf(x(s− 1, φ))ds

≥ e−
∫

t

0
G(x(s,φ))ds(x1 + h) + f(φ(−1))

∫ t

0

e
∫

s

t
G(x(ω,φ))dωds

= e−
∫

t
0
G(x(s,φ))ds(x1 + h) + f(φ(−1))

∫ t

0

1

G(x(s, φ))
de

∫
s
t
G(x(ω,φ))dω

≥ e−
∫

t
0
G(x(s,φ))ds(x1 + h) +

f(φ(−1))

δ2
(1− e−

∫
t
0
G(x(s,φ))ds)

= (x1 + h− f(φ(−1))

δ2
)e−

∫
t
0
G(x(s,φ))ds +

f(φ(−1))

δ2

≥ (x1 + h− f(φ(−1))

δ2
)(1− δ2t1) +

f(φ(−1))

δ2
= (1− δ2t1)(x1 + h) + f(φ(−1))t1

≥ (1− δ2t1)(x1 + h).

If h satisfies (1− δ2t1)(x1 + h) ≥ x1, then ξ0 ≥ x(t, φ) ≥ x1 for s1 ≤ t ≤ t1 = s1 + 1. By
Theorem 2.1, there holds lim

t→∞
x(t, φ) = x1.

Therefore, it suffices to show that

(1 − δ2t1)(x1 + h) ≥ x1, (6)

i.e.
δ2
k
h2 + (1− δ2 +

δ2x1
k

)h− δ2x1 ≥ 0.

It is easy to check that (6) holds if h fulfills (H0). By the fact that k ≤ ξ0 − x1 and
Theorem 2.1, there holds lim

t→∞
x(t, φ) = x1.

In the following we consider the convergence of the solution of (2) with initial value
ψ(s) = x1s+ x1 + h. First, we introduce some hypotheses as follows.

Suppose that

(H1) 1 ≤ δ2
δ1

= α < 2

and

(H2) (α− 1)(eδ2 +
δ2
4

− 1)− (1− e−
δ2
2 )(1− α

2
) < 0.

Set

h1 =
x1(

√

1 + (2− α)2(1− e−
δ1
2 )2 − 1)

(2− α)(1 − e−
δ1
2 )
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and

h2 =
2x1(

√
△2 − (αeδ2 − α− δ2

2 + 1)

3δ2
,

where

△2 = (αeδ2 − α− δ2
2

+ 1)2 − 3δ2((α − 1)(eδ2 − 1)− δ2
4
).

Set

h3 =
x1(

√△3 − (αeδ2 − α− δ2
2 + 1))

2((1− e−
δ2
2 )(1− α

2 )− α
4 (δ2 − 3δ1))

,

where

△3 = (αeδ2 − α− δ2
2

+ 1)2 − 4((1 − e−
δ2
2 )(1− α

2
)− α

4
(δ2 − 3δ1))

((α− 1)(eδ2 +
δ2
4

− 1)− (1− e−
δ2
2 )(1− α

2
)).

Another hypothesis is as follows.

(H3) h ≤ hdown , min{h1, h2, h3}.

Theorem 3.2 Given ψ(s) = x1s+ x1 + h for −1 ≤ s ≤ 0. If (H1)–(H3) hold, then
lim
t→∞

x(t, ψ) = 0.

Proof. Set s1 = − h
x1

and s0 = s1−1
2 , t0 = 1 + s0 and t1 = 1 + s1. The aim of the

following part is to show x(t, ψ) ≤ x1 for t0 ≤ t ≤ 1 + t0. Here we divide the proof into
four points.

(1) When 0 ≤ t ≤ t0, from (5) it follows that

x(t, ψ) = e−
∫

t

0
G(x(s,ψ))dsx(0, ψ) +

∫ t

0

e
∫

s

t
G(x(ω,ψ))dωf(x(s− 1, ψ))ds

≤ e−
∫

t
0
G(x(s,ψ))ds(x1 + h) + f(ψ(s0))

∫ t

0

e
∫

s
t
G(x(ω,ψ))dωds

= e−
∫

t
0
G(x(s,ψ))ds(x1 + h) + f(ψ(s0))

∫ t

0

1

G(x(s, ψ))
de

∫
s
t
G(x(ω,ψ))dω

≤ e−
∫

t
0
G(x(s,ψ))ds(x1 + h) +

δ2ψ(s0)

δ1
(1− e−

∫
t
0
G(x(s,ψ))ds)

≤ (x1 + h)(1 − α

2
)e−δ1t +

α

2
(x1 + h).

Therefore,

x(t0, ψ) ≤ (x1 + h)(1− α

2
)e−δ1t0 +

α

2
(x1 + h) (7)

≤ (x1 + h)(1− α

2
)(2(e−

δ1
2 − 1)t0 + 1) +

α

2
(x1 + h).

Let

(x1 + h)(1− α

2
)(2(e−

δ1
2 − 1)t0 + 1) +

α

2
(x1 + h) ≤ x1, (8)

i.e. (1− α

2
)(1 − e−

δ1
2 )
h2

x1
+ h− (1− α

2
)(1− e−

δ1
2 )x1 ≤ 0.
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Since h ≤ hdown ≤ h1, it is easy to check that (8) holds. Therefore, x(t0, ψ) ≤ x1.

(2) When t1 ≤ t ≤ 1, from (5) it follows that

x(t, ψ) = e−
∫

t

0
G(x(s,ψ))dsx(0, ψ) +

∫ t

0

e
∫

s

t
G(x(ω,ψ))dωf(x(s− 1, ψ))ds

≤ e−
∫

t

0
G(x(s,ψ))ds(x1 + h) + f(ψ(s0))

∫ t0

0

e
∫

s

t
G(x(ω,ψ))dωds

+f(ψ(s1))

∫ t1

t0

e
∫

s
t
G(x(ω,ψ))dωds+ f(ψ(0))

∫ t

t1

e
∫

s
t
G(x(ω,ψ))dωds

≤ e−
∫

t
0
G(x(s,ψ))ds(x1 + h) +

α

2
(x1 + h)(e

−
∫

t
t0
G(x(s,ψ))ds − e−

∫
t
0
G(x(s,ψ))ds)

+αx1(e
−

∫
t
t1
G(x(s,ψ))ds − e

−
∫

t
t0
G(x(s,ψ))ds

) + α(x1 + h)(1− e
−

∫
t
t1
G(x(s,ψ))ds

)

= e−
∫

t

0
G(x(s,ψ))ds((1 − α

2
)(x1 + h) +

α

2
(h− x1)e

∫ t0
0
G(x(s,ψ))ds

−αhe
∫ t1
0
G(x(s,ψ))ds) + α(x1 + h).

Since

(1− α

2
)(x1 + h) +

α

2
(h− x1)e

∫ t0
0
G(x(s,ψ))ds − αhe

∫ t1
0
G(x(s,ψ))ds

= x1(1−
α

2
− α

2
e
∫ t0
0
G(x(s,ψ))ds) + h(1− α

2
− α

2
e
∫ t1
0
G(x(s,ψ))ds)

+
αh

2
(e

∫ t0
0
G(x(s,ψ))ds − e

∫ t1
0
G(x(s,ψ))ds)

< 0,

there holds

x(t, ψ) ≤ e−δ2((1− α

2
)(x1 + h) +

α

2
(h− x1)e

∫ t0
0
G(x(s,ψ))ds (9)

−αhe
∫ t1
0
G(x(s,ψ))ds) + α(x1 + h)

≤ e−δ2((1− α

2
)(x1 + h) +

α

2
(h− x1)e

δ1t0 − αheδ1t1) + α(x1 + h) (10)

≤ e−δ2((1− α

2
)(x1 + h) +

α

2
(h− x1)(1 + δ1t0)− αh(1 + δ1t1)) + α(x1 + h)

= e−δ2(
3δ2
4x1

h2 − (α+
δ2
2

− 1)h− (α+
δ2
4

− 1)x1) + α(x1 + h).

Let

e−δ2(
3δ2
4x1

h2 − (α+
δ2
2

− 1)h− (α +
δ2
4

− 1)x1) + α(x1 + h) ≤ x1, (11)

i.e.
3δ2
4x1

h2 + (αeδ2 − α− δ2
2

+ 1)h+ ((α− 1)(eδ2 − 1)− δ2
4
)x1 ≤ 0.

By (H2), there holds (α − 1)(eδ2 − 1) − δ2
4 < 0. Since h ≤ hdown ≤ h2, (11) holds, i.e.

x(t, ψ) ≤ x1 for t1 ≤ t ≤ 1.
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(3) When t0 ≤ t ≤ t1, from (5) it follows that

x(t, ψ) = e−
∫

t
0
G(x(s,ψ))dsx(0, ψ) +

∫ t

0

e
∫

s
t
G(x(ω,ψ))dωf(x(s− 1, ψ))ds

≤ e−
∫

t

0
G(x(s,ψ))ds(x1 + h) + f(ψ(s0))

∫ t0

0

e
∫

s

t
G(x(ω,ψ))dωds

+f(ψ(s1))

∫ t

t0

e
∫

s

t
G(x(ω,φ))dωds

≤ e−
∫

t
0
G(x(s,ψ))ds(x1 + h+

α

2
(x1 + h)(e

∫ t0
0
G(x(s,ψ))ds − 1)

+αx1e
∫ t0
0
G(x(s,ψ))ds) + αx1

= e−
∫

t
0
G(x(s,ψ))ds((x1 + h)(1− α

2
) +

α

2
(h− x1)e

∫ t0
0
G(x(s,ψ))ds) + αx1.

If (x1 + h)(1− α
2 ) +

α
2 (h− x1)e

∫ t0
0
G(x(s,ψ))ds ≥ 0, there holds

x(t, ψ) ≤ e−
∫ t0
0
G(x(s,ψ))ds((x1 + h)(1− α

2
) +

α

2
(h− x1)e

∫ t0
0
G(x(s,ψ))ds) + αx1

≤ (x1 + h)(1 − α

2
)e−δ1t0 +

α

2
(h+ x1). (12)

As we have proved that the right-hand part of (12) (i.e.inequaltiy (7)) is less than x1,
which means that x(t, ψ) ≤ x1 for t0 ≤ t ≤ t1.

If (x1 + h)(1− α
2 ) +

α
2 (h− x1)e

∫ t0
0
G(x(s,ψ))ds ≤ 0, there holds

x(t, ψ) ≤ e−δ2((x1 + h)(1− α

2
) +

α

2
(h− x1)e

∫ t0
0
G(x(s,ψ))ds) + αx1. (13)

Subtracting the right-hand part of inequalities (9) from that of (13) gives

αhe−δ2+
∫ t1
0
G(x(s,ψ))ds − αh ≤ 0.

Since the right-hand part of (9) is less than x1, then x(t, ψ) ≤ x1 for t0 ≤ t ≤ t1.

(4) When 1 ≤ t ≤ 1 + t0, from (5) it follows that

x(t, ψ) = e−
∫

t
1
G(x(s,ψ))dsx(1, ψ) +

∫ t

1

e
∫

s
t
G(x(ω,ψ))dωf(x(s− 1, ψ))ds

≤ e−
∫

t
1
G(x(s,ψ))dsx(1, ψ) + f(ψ(0))

∫ t

1

e
∫

s
t
G(x(ω,ψ))dωds

≤ e−
∫

t
1
G(x(s,ψ))dsx(1, ψ) + α(x1 + h)(1− e−

∫
t
1
G(x(s,ψ))ds)

≤ (x(1, ψ) − α(x1 + h))e−δ2t0 + α(x1 + h).

Since (10) implies that

x(1, ψ) ≤ e−δ2((1 − α

2
)(x1 + h) +

α

2
(h− x1)e

δ1t0 − αheδ1t1) + α(x1 + h),
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there holds

x(t, ψ) ≤ e−δ2((1− α

2
)(x1 + h)e−δ2t0 +

α

2
(h− x1)e

δ1t0−δ2t0 − αheδ1t1−δ2t0) + α(x1+h)

≤ e−δ2((1− α

2
)(x1 + h)(2(e−

δ2
2 − 1)t0 + 1) +

α

2
(h− x1)(1 + δ1t0 − δ2t0)

−αh(1 + δ1t1 − δ2t0)) + α(x1 + h) (b = 1− e−
δ2
2 )

= e−δ2((b(1− α

2
)− α

4
(δ2 − 3δ1))

h2

x1
− (α+

δ2
2

− 1)h

+((α− 1)(
δ2
4

− 1)− b(1− α

2
))x1) + α(x1 + h).

Letting the right-hand part of the above inequality be less than x1, by equivalent trans-
formation, we have

(b(1− α

2
)− α

4
(δ2 − 3δ1))

h2

x1
+ (αeδ2 − α− δ2

2
+ 1)h

+((α− 1)(eδ2 +
δ2
4

− 1)− b(1− α

2
))x1 ≤ 0. (14)

Based on (H2) and the fact that h ≤ hdown ≤ h3, (14) holds, i.e. x(t, ψ) ≤ x1 for
1 ≤ t ≤ 1 + t0.

As a conclusion, x(t, ψ) ≤ x1 for t0 ≤ t ≤ 1 + t0 if (H1)–(H3) hold. By Theorem 2.1,
there holds lim

t→∞
x(t, ψ) = 0.

4 The Classification of Solutions and the Existence of Oscillatory Solution

This section is devoted to divide all solutions of (2) into three categories according to
their eventual tendency and show the existence of oscillatory solution. First the definition
of oscillatory solutions is formulated as follows.

Definition 4.1 [9, 11, 12] The solution x(t, φ) of (2) with initial value φ ∈ C+ is
said to be oscillatory about x̄, if there exists a sequence {ξn} → ∞ as n→ ∞ such that
x(ξn, φ) = x̄ and x(t, φ)− x̄ simultaneously has positive and negative values in (ξn, ξn+1)
for n = 1, 2, 3, · · · . Otherwise, x(t, φ) is said to be non-oscillatory about x̄.

For the systems of delay differential equations, there are various ways to define oscil-
lation. For instance, in [9, 11] the real function x is said to be oscillatory about zero if
x has arbitrarily large zeros. Here the definition is stricter than those mentioned above.
Consider x(t) = sin t+2, which is oscillatory about 1 according to the concept in [9,11].
However, it is non-oscillatory about 1 according to Definition 4.1.

Theorem 4.1 If x(t, φ) is oscillatory about x1, then lim
t→∞

x(t, φ) = x1.

Proof. First we assert that the semiflow generated by (2) is eventually strongly
monotone on [0∗, ξ∗0 ], then by Proposition 2.1, it is strongly order-preserving. For any
φ, ψ ∈ [0∗, ξ∗0 ], if φ < ψ, there exists a t0 ∈ [0, τ ] such that x(t0, φ) < x(t0, ψ). Otherwise,
x(t, φ) = x(t, ψ) for 0 ≤ t ≤ τ .
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From (5) it follows immediately that

x(t, φ) − x(t, ψ) = e−
∫

t
0
G(x(s,φ))dsx(0, φ) − e−

∫
t
0
G(x(s,ψ))dsx(0, ψ)

+

∫ t

0

e
∫

s
t
G(x(ω,φ))dωf(x(s− τ, φ))ds

−
∫ t

0

e
∫

s
t
G(x(ω,ψ))dωf(x(s− τ, ψ))ds,

i.e. 0 =

∫ t

0

e
∫

s
t
G(x(ω,φ))dω(f(x(s− τ, φ)) − f(x(s− τ, ψ)))ds

with 0 ≤ t ≤ τ . By the fact that x(t, φ) ≤ x(t, ψ) ≤ ξ0 and f(x) is strictly increasing on
[0, ξ0], there holds x(s − τ, φ) = x(s − τ, ψ) for 0 ≤ s ≤ τ , i.e. φ = ψ, which contradicts
the assumption.

Replacing nτ in (5) by t0, we have

x(t) = e
−

∫
t
t0
G(x(s))ds

x(t0) +

∫ t

t0

e
∫

s
t
G(x(ω))dωf(x(s− τ))ds

with t0 ≤ t ≤ t0 + τ . By the fact that x(t, φ) ≤ x(t, ψ) ≤ ξ0, f(x) is strictly increasing
on [0, ξ0] and G(x) is non-increasing, there holds f(x(t, φ)) ≤ f(x(t, ψ)) and G(x(t, φ)) ≥
G(x(t, ψ)). Furthermore,

x(t, φ)− x(t, ψ) ≤ e
−

∫
t
t0
G(x(s,φ))ds

x(t0, φ)− e
−

∫
t
t0
G(x(s,ψ))ds

x(t0, ψ)

< 0 whenever t0 ≤ t ≤ t0 + τ,

i.e. for φ < ψ, there exists a t1 = t0+τ such that xt1(φ) ≪ xt1(ψ), then the semiflow gen-
erated by (2) is eventually strongly monotone. Therefore, it is strongly order-preserving
on [0∗, ξ∗0 ].

If x(t, φ) is oscillatory about x1 with 0∗ ≤ φ < ξ∗0 , by Theorem 3.7 in [27], we have
ω(φ) < or = ω(ξ∗0) = {x∗1}. If the former holds, the compactness of O+(φ) suggests that
ω(φ) is nonempty, compact, invariant and connected, so 0∗ ∈ ω(φ). Obviously, 0∗ ≤
ω(φ), Corollary 2.4 in [27] implies that ω(φ) = {0∗}, which contradicts the oscillation of
x(t, φ). Thus ω(φ) = {x∗1}, and xtk(φ) → x∗1 if and only if xtk(ξ

∗
0) → x∗1. The fact that

x(t, ξ∗0 ) → x1 implies x(t, φ) → x1.
Based on the global attractivity of [0∗, ξ∗0 ], the solution x(t, φ) with φ ∈ C+ oscillating

about x1 will eventually tend to x1.

Proposition 4.1 Given any φ ∈ C+ \ {0∗, x∗1}, only one of the following results
holds:

(1) x(t, φ) enters (0, x1) ultimately , thus lim
t→∞

x(t, φ) = 0.

(2) x(t, φ) enters (x1, ξ0] ultimately, thus lim
t→∞

x(t, φ) = x1.

(3) x(t, φ) oscillates about x1, thus lim
t→∞

x(t, φ) = x1.

Proof. Assume, by contradiction, that there exists φ ∈ C+ \ {0∗, x∗1}, a T and a
sequence {ξn} → ∞ as n→ ∞ such that one of the following two cases holds.
(a) x(ξn, φ) = x1 for n = 1, 2, 3, · · · , and x(t, φ) ≥ x1 for t > T .
(b) x(ξn, φ) = 0 for n = 1, 2, 3, · · · , and 0 ≤ x(t, φ) < x1 for t > T .
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Assume that case (a) holds. Choose a sufficiently large ξn > T + 2τ and denote it
by ξn0+2 such that x(ξn0+2, φ) = x1. Note that x(t, φ) eventually enters [x1, ξ0] and the
derivative of x(t, φ) is continuous, then ẋ(ξn, φ) = 0 for n = 1, 2, 3, · · · .
Therefore,

0 = ẋ(ξn0+2, φ) = −g(x(ξn0+2, φ)) + f(x(ξn0+2 − τ, φ)),

i.e. g(x1) = f(x(ξn0+2 − τ, φ)),

which implies that x(ξn0+2 − τ, φ) = x1. Here, denote ξn0+2 − τ by ξn0+1 and ξn0+2 − 2τ
by ξn0

for brevity. Then they satisfy the following coditions.
(a1) x(ξn0+i, φ) = x1 where i = 0, 1, 2.
(a2) ẋ(ξn0+i, φ) = 0 where i = 0, 1, 2.

Let ξn0+1 be an initial point of integration in (5), then

x(t, φ) = e
−

∫
t
ξn0+1

G(x(s,φ))ds
x(ξn0+1, φ) +

∫ t

ξn0+1

e
∫

s

t
G(x(ω,φ))dωf(x(s− τ, φ))ds (15)

with ξn0+1 ≤ t ≤ ξn0+1 + τ = ξn0+2.
Replacing t by ξn0+2 in (15) gives

x(ξn0+2, φ) = x1e
−

∫ ξn0+2

ξn0+1
G(x(s,φ))ds

+

∫ ξn0+2

ξn0+1

e

∫
s
ξn0+2

G(x(ω,φ))dω
f(x(s− τ, φ))ds, (16)

i.e.

x1(1 − e
−

∫ ξn0+2

ξn0+1
G(x(s,φ))ds

) =

∫ ξn0+2

ξn0+1

e

∫
s
ξn0+2

G(x(ω,φ))dω
f(x(s− τ, φ))ds

=

∫ ξn0+2

ξn0+1

f(x(s− τ, φ))

G(x(s, φ))
G(x(s, φ))e

∫
s

ξn0+2
G(x(ω,φ))dω

ds.

Note that
∫ ξn0+2

ξn0+1

G(x(s, φ))e

∫
s
ξn0+2

G(x(ω,φ))dω
ds = 1− e

−
∫ ξn0+2

ξn0+1
G(x(s,φ))ds

,

by equivalent transformation, (16) becomes

0 =

∫ ξn0+2

ξn0+1

(
f(x(s− τ, φ))

x1G(x(s, φ))
− 1)G(x(s, φ))e

∫
s

ξn0+2
G(x(ω,φ))dω

ds. (17)

By the fact that ξ0 ≥ x(t, φ) ≥ x1 for t > T , f(x) increases on [x1, ξ0] and G(x) is
non-increasing, there holds

f(x(s− τ, φ))

x1G(x(s, φ))
≥ f(x1)

x1G(x(s, φ))
=

G(x1)

G(x(s, φ))
≥ 1.

Equality in (17) holds if and only if x(s− τ, φ) = x1 and G(x(s, φ)) = G(x1) for ξn0+1 ≤
s ≤ ξn0+2. Induction implies φ = x1, which contradicts the assumption. Similarly, case
(b) does not hold. So far the proof is completed.

In the following part, attention will be paid to show the existence of the oscillatory
solution. Here consider the initial value φ(s) = ks + b for −τ ≤ s ≤ 0, where 0 <
k ≤ min{x1

τ
, ξ0−x1

τ
} and x1 ≤ b ≤ ξ0. Given k, the parameter b will determine the

eventual tendency of the solution x(t, φ). In order to stress the dependence of the eventual
tendency of x(t, φ) on the parameter b, we abbreviate φ(s) to φb.
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Proposition 4.2 Given φ ∈ C+, if lim
t→∞

x(t, φ) = 0, then there exists a δ > 0 such

that lim
t→∞

x(t, ψ) = 0 for any ψ ∈ O(φ, δ).

Proof. If lim
t→∞

x(t, φ) = 0, then there exists a T0 > 0 such that x(t, φ) < x1 for

t ∈ [T0, T0 + 2τ ]. Set l = max
T0≤t≤T0+2τ

x(t, φ), ǫ = (x1 − l)/3 and T = T0 + 2τ , by

the continuous dependence of solutions on the initial value [13, 15, 27], there exists a
δ(ǫ, T ) > 0 such that |x(t, φ) − x(t, ψ)| < ǫ for 0 ≤ t ≤ T and any ψ ∈ O(φ, δ). This
means that x(t, ψ) < x1 for T0 ≤ t ≤ T0 + 2τ . Therefore lim

t→∞
x(t, ψ) = 0 by Theorem

2.1.

Remark 4.1 From the above proposition it is easy to get the following conclusion.
If b = b0, i.e. the initial value φ(s) = ks+ b0 for −τ ≤ s ≤ 0, and lim

t→∞
x(t, φb0) = 0, then

there exists a δ > 0 such that lim
t→∞

x(t, φb) = 0 for any b ∈ O(b0, δ) ∩ [x1, ξ0].

Remark 4.2 The above proposition can not be generalized to lim
t→∞

x(t, φ) = x1, i.e.

if lim
t→∞

x(t, φ) = x1, it does not provide that there exists a δ > 0, such that lim
t→∞

x(t, ψ) =

x1 for any ψ ∈ O(φ, δ). This case can be confirmed in the following part. The following
proposition is a special case.

Proposition 4.3 If b = ξ0, i.e, the initial value φ(s) = ks+ ξ0 for −τ ≤ s ≤ 0, then
there exists a δ > 0 such that lim

t→∞
x(t, φb) = x1 for any b ∈ [ξ0 − δ, ξ0].

Proof. Note that φξ0 ∈ [x∗1, ξ
∗
0 ], the argument of Theorem 4.1 implies that there

exists a T1 such that x(t, φ) > x1 for t ≥ 0. Let T2 = T1 + 2τ , l = min
0≤t≤2τ

x(t, φξ0 ) and

ǫ = (l− x1)/3, by the continuous dependence of solutions on the initial value [13,15,27],
there exists a δ(ǫ, T2) > 0, when b ∈ [ξ0−δ, ξ0], 0 ≤ x(t, φξ0 )−x(t, φb) < ǫ for 0 ≤ t ≤ T2.
This means that x(t, φb) > x1 for T1 ≤ t ≤ T2, so lim

t→∞
x(t, φb) = x1 by Theorem 2.1.

Theorem 4.2 There exists an initial value φ such that x(t, φ) oscillates about x1.

Proof. Consider the linear initial value φ(s) = ks + b for −τ ≤ s ≤ 0. We restrict
b to [x1, ξ0]. Then there must exist a b0 ∈ (x1, ξ0) such that x(t, φb) oscillates about x1.
Otherwise, given b ∈ [x1, ξ0], by Theorem 4.1, Propositions 4.2 and 4.3, there exists a δ
such that lim

t→∞
x(t, φb

′

) = lim
t→∞

x(t, φb) = 0 or x1 for any b′ ∈ O(b, δ). This contradicts

the finiteness of b, which is restricted to [x1, ξ0]. Thus such a b0 exists, i.e. the oscillatory
solution exists.

In the following section, denote

B := { b | x1 ≤ b ≤ ξ0, lim
t→∞

x(t, φb) = x1}, β = inf B,

A := { b | x1 ≤ b ≤ ξ0, lim
t→∞

x(t, φb) = 0}, α = supA.

Proposition 4.4 The solution x(t, φα) oscillates about x1, lim
t→∞

x(t, φ) = 0 for φ ∈
[0∗, φα) and lim

t→∞
x(t, φ) = x1 for φ ∈ [φα, ξ∗0 ].
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Proof. If x(t, φα) does not oscillate about x1, then it will eventually enter the
domain (x1, ξ0] or (0, x1). If it enters (0, x1), by Proposition 4.2, there exists a δ such
that lim

t→∞
x(t, φb) = 0 for b ∈ O(α, δ), which contradicts the definition of α. Similarly, it

will not eventually enter the domain (x1, ξ0]. Therefore x(t, φ
α) oscillates about x1. The

second part is clear by the monotonicity of the semiflow generated by (2).
In the same way, we can immediately get the following result.

Corollary 4.1 The solution x(t, φβ) oscillates about x1 and α = β.

Remark 4.3 For system (2) with τ = 1 and the initial value φ(s) = x1(s+1+ h) in
Section 3, according to Theorem 4.2, there exists a h0 such that x(t, φ) oscillates about
x1 and then converges to it if h = h0, lim

t→∞
x(t, φ) = 0 if 0 ≤ h < h0 and lim

t→∞
x(t, φ) = x1

if h0 ≤ h ≤ ξ0 − x1.

5 Example

This section mainly investigates model (3)

ẋ(t) = −µx(t) + a1x(t− 1)2e−a2x(t−1),

where parameters satisfy µ = a1
a2e

and the two equilibria are 0 and 1
a2
. Their attractive

regions are [0∗, ( 1
a2
)∗] \ {( 1

a2
)∗} and [( 1

a2
)∗, (f̂−1(f( 1

a2
)))∗] respectively [14]. Let us set

the linear initial value φ(s) = 1
a2
(s + 1 + h) for −1 ≤ s ≤ 0 and 0 < h < 1. Obviously,

φ does not completely locate in any attractive region. The parameter function h will
determine the convergence of the solution x(t, φ).

The following two theorems describe the relationship between the eventual tendency
of the solution x(t, φ) and the parameter µ (i.e. a1 and a2).

Theorem 5.1 Set h1(µ) = µ
µ+1 for 0 < µ < ∞ and φ(s) = 1

a2
(s + 1 + h) for

−1 ≤ s ≤ 0, if h1 ≤ h ≤ 1, then lim
t→∞

x(t, φ) = 1
a2
.

The proof of this theorem is given in Appendix A. For system (3) and the initial value
with slope 1

a2
, if µ increases, the ratio of the intercept to 1

a2
needs to be increased appro-

priately so that the corresponding solution converges to 1
a2
. If µ decreases, appropriate

reduction in the ratio can still guarantee that the corresponding solution converges to
1
a2
.

According to Theorem 3.1, hup =
−1+

√
1+4µ2

2µ
1
a2
, i.e. lim

t→∞
x(t, φ) = 1

a2
if φ(s) =

1
a2
(s+1)+h for hup ≤ h ≤ 1

a2
. Note that hup ≥ 1

a2
h1, it implies that Theorem 5.1 gives

wider range of linear initial value, the corresponding solutions of which converge to the
positive equilibrium of system (3).

Theorem 5.2 Set

h2(µ) =











µ

3(µ+ 1)
, 0 < µ ≤ 1,

1

6µ
, 1 < µ <∞,

and ψ(s) = 1
a2
(s+ 1 + h) for −1 ≤ s ≤ 0, if 0 ≤ h ≤ h2(µ), then lim

t→∞
x(t, ψ) = 0.
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The proof of this theorem is given in Appendix A. Note that in the case 0 < µ ≤ 1,
for system (3) and the initial value with slope 1

a2
, the ratio of the intercept to 1

a2
needs

to be decreased appropriately so that the corresponding solution converges to 0 if µ
decreases. Appropriate increase in the ratio still can guarantee that the corresponding
solution converges to 0 if µ increases.

According to Theorem 3.2, h2 =
µ
2
−eµ+

√
△2

1.5a2µ
where △2 = e2µ − µeµ + µ2. Note that

hdown ≤ h2 ≤ 1
a2
h2, it implies that Theorem 5.2 gives wider range of linear initial value,

the corresponding solutions of which converge to the trivial equilibrium of system (3).

Remark 5.1 The above two parameter functions indeed guarantee that the corre-
sponding solution belongs to the first class and the second class mentioned in Proposi-
tion 4.1. However, they are just sufficient conditions. For system (3) with the initial
φ(s) = 1

a2
(s + 1 + h), according to Theorem 4.2, there exists a h0 such that x(t, φ) os-

cillates about 1
a2

and then converges to it if h = h0, lim
t→∞

x(t, φ) = 0 if 0 ≤ h < h0 and

lim
t→∞

x(t, φ) = 1
a2

if h0 ≤ h ≤ 2
a2
.

6 Simulations

In this section, numerical simulations are given to illustrate some results in Sections 4
and 5.

Consider the model from Section 5

ẋ(t) = −µx(t) + a1x(t− 1)2e−a2x(t−1)

and the initial value φ(s) = 1
a2
(s+ 1 + h(µ)) for −1 ≤ s ≤ 0.

Simulation 1: Let h(µ) = h1(µ) =
µ
µ+1 for 0 < µ <∞.

Case A: Fix a1 = e.
(1) Choose a2 = 10, then µ = 1

10 and φ1(s) =
1
10 (s +

12
11 ). From Theorem 5.1 it follows

lim
t→∞

x(t, φ1) =
1
10 (see Figure 2).

(2) Choose a2 = 4, then µ = 1
4 and φ2(s) = 1

4 (s +
6
5 ). From Theorem 5.1 it follows

lim
t→∞

x(t, φ2) =
1
4 . However, if set φ3(s) =

1
4 (s+

12
11 ), simulation implies lim

t→∞
x(t, φ3) = 0

(see Figure 4).
(3) Choose a2 = 1, then µ = 1 and φ4(s) = s + 3

2 . From Theorem 5.1 it follows
lim
t→∞

x(t, φ4) = 1. However, if set φ5(s) = s+ 6
5 , simulation implies lim

t→∞
x(t, φ5) = 0 (see

Figure 6).

Case B: Fix a2 = 5.
(1) Choose a1 = e, then µ = 1

5 and ψ1(s) = 1
5 (s +

7
6 ). From Theorem 5.1 it follows

lim
t→∞

x(t, ψ1) =
1
5 (see Figure 3).

(2) Choose a1 = 3e, then µ = 3
5 and ψ2(s) = 1

5 (s +
11
8 ). From Theorem 5.1 it follows

lim
t→∞

x(t, ψ2) =
1
5 . However, if set ψ3(s) =

1
5 (s+

7
6 ), simulation implies lim

t→∞
x(t, ψ3) = 0

(see Figure 5).
(3) Choose a1 = 20e, then µ = 4 and ψ4(s) = 1

5 (s +
9
5 ). From Theorem 5.1 it follows

lim
t→∞

x(t, ψ4) =
1
5 . However, if set ψ5(s) =

1
5 (s+

11
8 ), simulation implies lim

t→∞
x(t, ψ5) = 0

(see Figure 7).
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Figure 2: The numerical solution of ẋ(t) =

- x(t)
10

+ ex(t − 1)2e−10x(t−1) with the initial
value φ1.
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Figure 3: The numerical solution of ẋ(t) =

−

x(t)
5

+ ex(t − 1)2e−5x(t−1) with the initial
value ψ1.
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Figure 4: The numerical solutions of ẋ(t) =

−

x(t)
4

+ ex(t − 1)2e−4x(t−1) with the initial
value φ2 and φ3.
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Figure 5: The numerical solutions of ẋ(t) =

−

3x(t)
5

+ 3ex(t − 1)2e−5x(t−1) with the initial
value ψ2 and ψ3.

Remark 6.1 For model (3) with τ = 1 and the linear initial value with slope 1
a2
, if

µ increases, the ratio of the intercept to 1
a2

needs to be increased appropriately to ensure
the same convergence of the corresponding solution. Otherwise, it probably converges
to 0. If µ decreases, appropriate reduction in the ratio can still guarantee that the
corresponding solution converges to 1

a2
.

Simulation 2: Let h(µ) = h2(µ) =
µ

3(µ+1) for 0 < µ ≤ 1.

Case A: Fix a1 = e.
(1) Choose a2 = 1, then µ = 1 and φ1(s) = s + 7

6 . From Theorem 5.2 it follows
lim
t→∞

x(t, φ1) = 0 (see Figure 8).

(2) Choose a2 = 4, then µ = 1
4 and φ2(s) = 1

4 (s +
16
15 ). From Theorem 5.2 it follows

lim
t→∞

x(t, φ2) = 0. However, if set φ3(s) =
1
4 (s +

7
6 ), simulation implies lim

t→∞
x(t, φ3) =

1
4

(see Figure 10).
(3) Choose a2 = 10, then µ = 1

10 and φ4(s) =
1
10 (s +

34
33 ). From Theorem 5.2 it follows

lim
t→∞

x(t, φ4) = 0. However, if set φ5(s) =
1
10 (s+

16
15 ), simulation implies lim

t→∞
x(t, φ5) =

1
10
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Figure 6: The numerical solutions of ẋ(t) =
−x(t)+ex(t−1)2e−x(t−1) with the initial value
φ4 and φ5.
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Figure 7: The numerical solutions of ẋ(t) =
−4x(t)+20ex(t−1)2e−5x(t−1) with the initial
value ψ4 and ψ5.

(see Figure 12).

0 2 4 6 8 10
0.8

0.9

1

1.1

1.2

1.3
 

time t

 

 

 
x(t,φ

1
)

x
1
* =1*

Figure 8: The numerical solution of ẋ(t) =
−x(t)+ex(t−1)2e−x(t−1) with the initial value
φ1.
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Figure 9: The numerical solution of ẋ(t) =
−x(t) + 5ex(t − 1)2e−5x(t−1) with the initial
value ψ1.

Case B: Fix a2 = 5.
(1) Choose a1 = 5e, then µ = 1 and ψ1(s) = 1

5 (s +
7
6 ). From Theorem 5.2 it follows

lim
t→∞

x(t, ψ1) = 0 (see Figure 9).

(2) Choose a1 = 2e, then µ = 2
5 and ψ2(s) = 1

5 (s +
23
21 ). From Theorem 5.2 it follows

lim
t→∞

x(t, ψ2) = 0. However, if set ψ3(s) =
1
5 (s+

7
6 ), simulation implies lim

t→∞
x(t, ψ3) =

1
5

(see Figure 11).
(3) Choose a1 = e, then µ = 1

5 and ψ4(s) = 1
5 (s +

19
18 ). From Theorem 5.2 it follows

lim
t→∞

x(t, ψ4) = 0. However, if set ψ5(s) =
1
5 (s+

23
21 ), simulation implies lim

t→∞
x(t, ψ5) =

1
5

(see Figure 13).

Remark 6.2 For model (3) with τ = 1 and the linear initial value with slope 1
a2
, if µ

decreases, the ratio of the intercept to 1
a2

needs to be decreased appropriately to ensure
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Figure 10: The numerical solutions of ẋ(t) =

−

x(t)
4

+ ex(t − 1)2e−4x(t−1) with the initial
value φ2 and φ3.
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Figure 11: The numerical solutions of ẋ(t) =

−

2x(t)
5

+ 2ex(t − 1)2e−5x(t−1) with the initial
value ψ2 and ψ3.
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Figure 12: The numerical solutions of ẋ(t) =

−

x(t)
10

+ ex(t − 1)2e−10x(t−1) with the initial
value φ4 and φ5.
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Figure 13: The numerical solutions of ẋ(t) =

−

x(t)
5

+ ex(t − 1)2e−5x(t−1) with the initial
value ψ4 and ψ5.

the same convergence of the corresponding solution. Otherwise, it probably converges
to 1

a2
. If µ increases, appropriate increase in the ratio can still guarantee that the

corresponding solution converges to 0.

Simulation 3: Set a1 = e, a2 = 1 and τ = 1, then µ = 1. The model is:

ẋ(t) = −x(t) + ex(t− 1)2e−x(t−1). (18)

For the initial value φ(s) = s + b, by Proposition 4.2, there must exist a special b0
such that the solution x(t, φb0) oscillates about 1. By making use of the dichotomy, the
range of b0 is given as follows.

Step 1: Set φ1(s) = s + 4
3 and φ2(s) = s + 7

6 , by Theorem 5.1 and 5.2, we have
lim
t→∞

x(t, φ1) = 1 and lim
t→∞

x(t, φ2) = 0 (see Figure 14).

Step 2: Set φ3(s) = s + 5
4 (i.e. 1

2 (φ1 + φ2)) and φ4(s) = s + 31
24 (i.e. 1

2 (φ1 + φ3)),
simulation implies that lim

t→∞
x(t, φ3) = 0 and lim

t→∞
x(t, φ4) = 1 (see Figure 15).
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Figure 14: The numerical solutions of (18)
with the initial value φ1 and φ2.
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Figure 15: The numerical solutions of (18)
with the initial value φ3 and φ4.
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Figure 16: The numerical solutions of (18)
with the initial value φ5 and φ6.
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Figure 17: The numerical solutions of
(18)with the initial value φ7.

Step 3: Set φ5(s) = s + 61
48 (i.e. 1

2 (φ3 + φ4)) and φ6(s) = s + 123
96 (i.e. 1

2 (φ4 + φ5)),
simulation implies that lim

t→∞
x(t, φ5) = 0 and lim

t→∞
x(t, φ6) = 1 (see Figure 16).

Step 4: Set φ7(s) = s+ 245
192 (i.e. 12 (φ5 +φ6)), the convergence of x(t, φ7) is not evident

(see Figure 17). Therefore the special b0 that makes x(t, φb0 ) oscillate about 1 must
locate in [ 6148 ,

123
96 ] .

7 Conclusions and Discussions

For equation (2) with τ = 1, when the unique positive equilibrium is not globally asymp-
totic stable, the initial value plays an important role in practical problems. In order to
ensure that the solution converges to the trivial or positive equilibrium, i.e. population
size or density disappears or approximates a positive steady state, we need to fully con-
sider the effects of the initial value. Since the form of initial value is so abundant, the
paper conducts a preliminary study of the convergence of the solution with the initial
value φ(s), which means that population size or density increases linearly in the initial
stage. Theorem 3.1 implies that lim

t→∞
x(t, φ) = x1 if (H0) is satisfied. Theorem 3.2 im-
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plies that lim
t→∞

x(t, φ) = 0 if (H1)–(H3) hold. By the monotonicity of the flow generated

by (2), we show the existence of the oscillatory solution, and prove that the solution os-
cillating about x1 must converge to it. Furthermore, we give more detailed descriptions
and classifications of all solutions of (2). When an example (3) is given, wider range of h
compared to that of the general case is established to guarantee that the corresponding
solution converges to 0 and x1 respectively.

For equation (2) with a class of linear initial value φ(s), by the argument of Theorem
4.2, there exists a unique h0 such that x(t, φ) oscillates about x1 if h = h0, x(t, φ)
converges to 0 if 0 ≤ h < h0 and x(t, φ) converges to x1 if h0 ≤ h < ξ0 − x1. However,
which h0 should be chosen needs to be further explored.

Here we mainly investigate the convergence of the solution with the initial value that
is linear and across the attractive region of 0 and x1. However, in real-world problems,
the initial value is various. When φ(s) is in other form and not in the attractive region
of 0 and x1 such as φ(s) = k sin s + x1 + h, new method needs to be explored to found
the condition which guarantees that the corresponding solution converges to 0 or x1.
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