
Nonlinear Dynamics and Systems Theory, 14 (2) (2014) 162–174

Indirect Adaptive Fuzzy Control of Multivariable

Nonlinear Systems Class with Unknown Parameters
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Abstract: This paper develops an adaptive fuzzy control of nonlinear system class.
In this method, we investigated the possibilities offered by the fuzzy systems of Takagi-
Sugeno type in terms of approximation capacity of the continuous nonlinear functions
and we exploited the Lyapunov theory to establish a parametric adaptation law,
ensuring the total stability of the system. Finally, simulation results are presented to
show the effectiveness of this kind of controller.
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1 Introduction

The vast majority of conventional control techniques have been devised for linear time-
invariant systems that are assumed to be completely known and well understood. In most
practical instances, however, the systems to be controlled are nonlinear, time-varying
and the basic physical processes in them are not completely known a priori. These types
of model uncertainties are extremely difficult to manage, even with the conventional
techniques. For these systems, the linear control exhibits generally poor performances
and the recourse to a nonlinear adaptive control can be a judicious solution. Besides,
the theory of fuzzy logic has also been applied successfully for the control of nonlinear
systems. In general the control strategy used for fuzzy logic controller is based on expert
knowledge, so the fuzzy logic controller has the ability to emulate the human strategies
control [1–5] and [6]. Moreover, it would be necessary that the control strategy can
perform the control objectives even if the parameters of the system evolve or are badly
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known. In order to solve this problem, we develop an adaptive fuzzy controller which is
able to modify the control law according to the evolution of the system parameters.

During the past two decades, many works have been devoted to the development
of the fuzzy logic controllers [7–10] based on the Takagi−Sugeno (T−S) model or the
fuzzy dynamic models. The basic idea of these methods is: 1) To represent the complex
nonlinear system by a family of local linear models, each linear model exhibits the dy-
namics of the complex system in one local region. Then, to construct a global nonlinear
model by aggregating all the local models through the fuzzy membership functions. 2)
To design the local controllers based mainly on each local model, which is much easier
than on the global region for the nonlinear system. Then, the global controller can be
aggregated from the local controllers. It was also proven that the fuzzy system is capable
to approximate any nonlinear functions over a convex compact region [11]. Based mainly
on this property, the fuzzy logic system is applied in the area of the adaptive control
where the unknown nonlinear functions are approximated by a fuzzy basis functions and
its parameters are updated on line to cope with uncertainties.

Many researchers have considered adaptive fuzzy control of nonlinear dynamical sys-
tems. The methods appeared in the literature could be derived into two groups: indirect
methods and direct methods. An indirect adaptive controller tries to identity the dy-
namics of the system, and then generates a control input based on certainty equivalent
principle [13,14,16,30–32]. Direct adaptive controller, on the other hand, directly adjusts
the parameters of a controller to archive control objectives [12, 30–32]. The approaches
presented in [12, 15, 17–19, 31, 32] are limited to SISO nonlinear systems with constant
control gain. In the paper [30], the authors propose a direct adaptive control by us-
ing either fuzzy systems or neural networks for uncertain SISO nonlinear systems with
state dependent control gain. In their proof of stability, the authors assume that the
time derivative of the control gain is bounded from above by a known function, which is
difficult to find for unknown systems.

In this paper, we develop a new stable fuzzy adaptive control for a class of MIMO
nonlinear systems in order to confer high robustness to the controller in the presence
of parametric uncertainties and dominant uncertain nonlinearities. The fuzzy systems
are used to approximate the model of controlled system. The approximation theory and
the Lyapunov method are used together to construct, in first stage, the fuzzy adaptive
control law and to establish, in second stage, the convergence of the tracking error and
the boundedness of the adaptive. The method is applied by simulation to the problem
of tracking speed or position of the permanent magnet synchronous motor (PMSM).

This paper is organized as follows: in Section 2 the used fuzzy logic system is briefly
described and Section 3 is devoted to the problem statement. The proposed fuzzy adap-
tive scheme for a class of MIMO nonlinear system is developed in Section 4. In Section
5, the performances of the proposed scheme are evaluated by simulation for the case of
PMSM. The conclusion is presented in Section 5.

2 Description of the Used Fuzzy Logic System

The fuzzy logic system incorporates generally four principal components: fuzzifier, fuzzy
rules base, inference engine and defuzzifier [20–22]:

– Fuzzifier maps crisp points in the input space into fuzzy sets in the input space.

– Fuzzy rules base contains the fuzzy rules interpreting the behavior of a given system;
it is the central element from which the other components interpret and combine these
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rules to form the final output.
– Inference engine exploits an approximate reasoning procedure in order to map fuzzy

sets in the input space into fuzzy sets in the output space.
– Defuzzifier extracts crisp points in the output space from fuzzy sets in the output

space.
A FLS can be seen as a mathematical application of the input towards the output.

This application is very rich in its mathematical formulation by the existence of various
mathematical interpretations concerning the fuzzy rules, the fuzzy inference and the
defuzzifier. It is significant to note that the implementation of the adaptive fuzzy control,
in real time, requires that the mathematical model of the FLS must be simple. In our
case, we are interested in the FLS of Sugeno-Takagi model, developed initially to model
system from numerical data [22]. In this case the consequences rules are numerical
functions, which depend on the values of the crisp input variables.

In this section, we give a mathematical formulation of used fuzzy systems and fuzzy
basis functions in the case of Sugeno-Takagi model. Denote by xsf1 , . . . , xsfn the inputs

of the FLS, and by ysf its output. Each variable xsfi is related to mi fuzzy sets F j
i

defined on Ui. Moreover, it is assumed that for any value of xsfi on Ui, there exists at

least one fuzzy set among F j
i (i = 1, · · · , n and i = 1, · · · ,m) for which the membership

degree is non null. The rule base of the FLS incorporates
∏n

1
mi rules of the form:

Rl : if xsf1 is F l1
1

and ... and xsfi is F
li
i and ... and xsfn is F ln

n ,
then ysfl (x) = al0 + al1xsf1 + ...+ alnxfn

(1)

with l = 1, ...,M ; i = 1, ..., n and 1 ≤ li ≤ mi.
Indeed, the base of fuzzy rules contains all the combinations of the fuzzy sets related
to the input variables. By considering the rules of the form (1) and using the product
to interpret the fuzzy implication and the T -norm, therefore the expression of the FLS
output is involved by the following relation [21, 24, 25]:

ysf =

M
∑

l=1

µl · ysfl

M
∑

l=1

µl

, (2)

where µl stands for the firing strength of the Rl rule, which is given by:

µl =

n
∏

i=1

µ
F

li
i

(xi), 1 ≤ li ≤ mi, (3)

and µ
F

li
i

is the membership function of variable xi associated to fuzzy set F li
i . This

function is selected as Gaussian function:

µ
F

j

i
(xsfi ) = exp

{

−0.5
(

vji

(

xsfi − cji

))}

, (4)

where c is the average, v is the inverse of the variance. If the premises parameters are
fixed apriori, only the conclusion parameters can be freely adjustable. Thus, the final
output can be rewritten in the form:

ysf = W (xsf ) · A, (5)

where A is a vector gathering the parameters aji and W (xsf ) is a vector of basis fuzzy
functions.
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3 Problem Statement

Consider a class of MIMO non-linear systems described by the following set of differential
equations (for i = 1, · · · ,m):

ẋi = fi (x) + gi (x) · ui,
yi = xi,

(6)

where fi (x) and gi (x) are unknown functions, whereas x = [x1, . . . , xm]T , u =
[u1, . . . , um] and y = [y1, . . . , ym] are the system state, the control input and the plant
output respectively. The control objective is to force the output vector x = [x1, . . . , xm]T

to follow the specified desired trajectory xd = [xd1, . . . , xdm]T . Define the tracking error
vector e(t) as:

e(t) = x(t)− xd(t).

Therefore, we should design a fuzzy adaptive control law u(t) such that e(t) converges
to a small neighbourhood of zero. To this end, the following assumptions are assumed:

Assumption 3.1 Let:
• fi(x) ∈ R and gi(x) ∈ R are bounded smooth nonlinear functions,
• The state vector is available,
• The reference signal xd and its derivation ẋd are known bounded signals.

If the functions fi(x) and gi(x) are well known the control input can be taken as [26]:

u∗ =
vi − fi (x)

gi (x)
(7)

with
vi = ẋid + λiei, (8)

ei = xid − xi, λi > 0, i = 1, . . . ,m. (9)

Introducing (7) into (6) leads to the tracking error dynamic equation:

ėi + λi · e = 0. (10)

Since the coefficients λi are imposed such that p+λi polynomial is Hurwitz, the tracking
error vector e(t) converges asymptotically to zero. In the case where the functions fi (x)
and gi (x), involved in the dynamic model (6), are badly known, the implementation of
the control law (7) is inoperative since it requires a precise model. To solve this problem
an approach by a fuzzy logic system (FLS) is proposed. Our objective is to develop a
model of identification and an adaptation law where the functions fi (x) and gi (x) are
replaced by FLS. For this purpose, the dynamic of the system is rewritten, first of all, in
the following form:

ẋi = f̂i (x; θfi) + ĝi (x; θgi) ui + εi. (11)

Let f̂i

(

x; θ̂fi

)

and ĝi

(

x; θ̂gi

)

be the estimated of the functions fi (x) and gi (x), where

θ̂fi and θ̂gi are a parameter vectors, whereas εi is a reconstruction error, it is given by:

εi =
[

fi (x)− f̂i (x; θfi)
]

+ [gi (x)− ĝi (x; θgi)] ui (12)
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such as:

‖εi‖ ≤ ε̄i.

Therefore, one can construct the following control input u(t) :

u(t) =
vi − f̂i

(

x; θ̂fi

)

ĝi

(

x; θ̂gi

) . (13)

The control law (13) requires a FLS for reconstructing the functions f̂i

(

x; θ̂fi

)

and

ĝi

(

x; θ̂gi

)

and an adaptation mechanism for the parameters θ̂fi and θ̂gi in order that this

control ensures the convergence of the tracking error e(t) to zero and the boundedness
of all signals of the plant.

4 Control Synthesis

The FLS is principally used to estimate on line the nonlinear function given in (11). To
this end, the functions fi(x) and gi(x) are ideally approximated by FLS such that:

fi (x) = Wfi (x) θfii + εfi,

gi (x) = Wgi (x) θgii + εgi,
(14)

where Wfi (x) and Wgi (x) are basis functions [20], θfi and θgi are vectors of optimal
parameters, while εfi and εgi are the unavoidable reconstruction errors satisfying the
condition [27, 28]:

‖εfi‖ ≤ ε̄fi, ε̄fi > 0,

‖εgi‖ ≤ ε̄gi, ε̄gi > 0,
1 ≤ i ≤ m. (15)

Consequently, the functions f̂i

(

x; θ̂fi

)

and ĝi

(

x; θ̂gi

)

which are the approximation of

fi(x) and gi(x) can be defined under the form:

f̂i

(

x; θ̂fi

)

= Wfi (x) θ̂fi ,

ĝi

(

x; θ̂gi

)

= Wgi (x) θ̂gi .
(16)

Proposition 4.1 We use the following serial-parallel identification model:

˙̂xi = −αi x̂i + αi x+ f̂i (x; θfi) + ĝi (x; θgi) ui (17)

where αi is given positive scalar. The whole identification scheme is shown in Figure 1.

The goals of identification are the following: Specify the fuzzy systems f̂i

(

x; θ̂fi

)

and

ĝi

(

x; θ̂gi

)

, and develop an adaptive law for the parameters θ̂fi and θ̂gi such that: a) all

signals involved in the identification model must be uniformly bounded, i.e., it must be

guaranteed that x̂ ∈ L∞ ,
(

θ̂fθ
T
f

)

≤ Mf , and
(

θ̂gθ
T
g

)

≤ Mg (the input u and the system

state x are uniformly bounded by assumption), and b) the error ei = xi − x̂i should be as
small as possible.
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Figure 1: Identification model using fuzzy systems.

While having the fuzzy model (11), under the assumptions (A-3.1), and if the system (6)
is conducted by the control law:

u(t) =
vi − f̂i

(

x; θ̂fi

)

ĝi

(

x; θ̂gi

) (18)

and the parameters θ̂fi and θ̂gi are updated under the law:

˙̂
θfi = ηfiW

T
fi
(x) ei − ki ‖ei‖ θ̂fi

˙̂
θgi = ηgiW

T
gi
(x) eiui − ki ‖ei‖ θ̂gi

(19)

where ηfi , ηgi and ki are positive constants. Therefore, the tracking error converges

asymptotically to zero and the state vector x̂ and the parameters θ̂fi and θ̂gi are bounded.

Remark 4.1 The adaptation law (19) updates only the conclusion parameters. In-
deed in our case, the designer specifies, in advance, the structure of FLS, the input
variables, the fuzzy sets (or membership functions) and the number of rules. In practice,
to make the ”good choice” for all these FLS parameters, in advance, is a difficult task,
apart for a skilled operator in the area of the controlled system. A common practice is
an arbitrary defining the membership functions to cover the interest subset of the input
space [12,30–32]. One can think that this adaptation law also compensates, in a certain
manner, for the inadequacy of the fuzzy sets and the insufficiency of the rules number.

5 Application to Permanent Magnet Synchronous Motor

5.1 Mathematical model of PMSM

The model of the permanent magnet synchronous motors (PMSM) is considered in the
case of the usually allowed simplifying assumptions i.e.:

– The spatial distribution of stator winding is sinusoidal.
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– The saturation is neglected.
– The damping effect is neglected.
Thus, in the synchronous d− q reference form, the dynamic of PMSM is represented

as follows:
vd = Rsid + Ld

did
dt

− pLqΩiq,

vq = Rsiq + Lq
diq
dt

+ pLdΩid + pΩΦf ,

J dΩ
dt

= Tem − Tr − FcΩ,

Tem = 3

2
p (Φf iq + (Ld − Lq) idiq) ,

(20)

where:
vd, vq Stator voltage in d− q-axis;
id, iq Stator current in d− q-axis;
Ld, Lq Stator inductance in d− q-axis;
Rs Stator resistance;
p Number of pole pairs;
Ω Mechanical speed of motor
Φf Flux created by the rotor magnets;
Fc Viscous friction coefficient;
J Total moment of inertia of the motor and load;
Tem, Tr Electromagnetic torque and load torque;

5.2 Speed Control

In the case of surface-mounted PMSM (Ld = Lq), the electromagnetic torque depends
solely on current in the q axis. For a given torque, the transferred power is optimized if
the current in the direct axis is null (id = 0) [29]. Hence, the control objective is to force
the current id to zero and to impose the demanded torque by controlling the current iq.
Physically by this strategy, the linked stator flux is maintained in quadrature with flux
produced by the rotor magnets. The proposed schema of indirect adaptive fuzzy control,
about the speed tracking of the PMSM, appears in Fig. 2.

From the reference speed Ωref and measured speed Ω, the fuzzy adaptive controller
provides the desired current. The three-phase reference current is obtained from the (d−
q) stator reference current (idref , iqref = 0) by using the inverter Park transformation.
The actual stator current (ia, ib, ic) is restricted in hysteresis bandwidth ∆i around the
three-phase reference currents by using an appropriate switching of the inverter legs. By
using the equilibrium equation between the motor torque and the torque opposed by the
mechanical part of the system, we can write:

dΩ

dt
= f (Ω) + g (Ω) · iq. (21)

Using equation (30), the fuzzy identifier becomes:

˙̂
Ω = −α · Ω̂ + α · Ω + f̂(Ω; θ̂f ) + ĝ(Ω; θ̂g) · iq. (22)

However, the estimated f̂(.)and ĝ(.) of the function f(.) and g(.) can be generated in
the form:

f̂(Ω; θ̂f ) = Wf (Ω)θ̂f ,

ĝ(Ω; θ̂g) = Wg(Ω)θ̂g.
(23)
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Figure 2: Indirect adaptive fuzzy control scheme of permanent magnet synchronous motor.

For this application, the fuzzy system has one variable at input and this variable is
described by 3 membership functions.

The identification error is given as follows:

e(t) = Ω− Ω̂. (24)

The parameter adaptive law is given by:

˙̂
θf = ηfΩWf (Ω) e− kΩ ‖e‖ θ̂f ,

˙̂
θg = ηgΩWg(Ω) eiqref − kΩ ‖e‖ θ̂g,

(25)

where ηfΩ,ηfΩ and kΩ are positive constants.
Consequently, the control law iqref is given by:

iqref =
v − f̂(Ω; θ̂f )

ĝ(Ω; θ̂g)
(26)

with
v = Ω̇ref + λ(Ωref − Ω), λ > 0.

5.3 Position control

The procedure used previously is renewed in the case of the tracking of trajectory position.
Thus, we again consider the equation (21) where Ω̇ is replaced by position β, which leads
to:

β̈ = f(β̇) + g(β̇) · iq (27)

with

β =
dΩ

dt
.
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Figure 3: Speed tracking, with the nominal load torque is applied at t = 2s, of PMSM.

Using the equation (27), the identification model is:

¨̂
β = −α ·

˙̂
β + α · β̇ + f̂(β̇; θ̂f ) + ĝ(β̇; θ̂g) · iq. (28)

In our application we allot three membership functions to the input β̇ for the two fuzzy
systems. The estimated functions are given by:

f̂(β̇; θ̂f ) = Wf (β̇) · θ̂f ,

ĝ(β̇; θ̂g) = Wg(β̇) · θ̂g,
(29)

where the vector parameters θ̂f and θ̂g are updated by:

˙̂
θf = ηfβ ·Wf (θ̇) · e − kβ · ‖e‖ · θ̂f ,

˙̂
θg = ηgβ ·Wf (θ̇) · e · iqref − kβ · ‖e‖ · θ̂g,

(30)

with e being the identification error, it is given by:

e = β̇ −
˙̂
β, (31)

ηfβ ,ηgβ and kβ are positive constants.

By using the functions (f̂ and ĝ) from the fuzzy system model (29) and in accordance
with the control law, the control law iqref is involved by:

v = β̈ref + k1θ(β̇ref − β̇) + k2θ(βref − β).
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Figure 4: Position tracking, with the nominal load torque applied at t = 5s, of PMSM.

Figure 5: Speed tracking, with parameter variations at t = 1.5s, of PMSM.

5.3.1 Simulation results

The motor under tests is characterized by: Ld = Lq = 0.0121 H , Φf = 0.013 Wb,
J = 0.0001 kg ·m2, F = 0.00005 km2/s, Rs = 3.4 Ω and Ωn = 300 rd/s. The current-
controlled inverter is fed by 70V continue voltage assumed constant. The proposed
schema of the adaptive fuzzy controller is tested by simulation to perform the position
and speed tracking of PMSM. The values of the control coefficients, which enabled us to
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Figure 6: Position tracking, with parameter variations at t = 1s, of PMSM.

obtain satisfactory results, are collected in Table 1 and Table 2.

ηfΩ ηgΩ kΩ α λ
50 50 0.5 5 10.85

Table 1: Speed control coefficients.

ηfβ ηgβ kβ α k1β k2β
50 50 0.5 5 121 3694

Table 2: Position control coefficients.

The desired trajectories are imposed as:

Ωref = 300 sin
(π

2
t
)

; βref =
π

2

(

1− e−0.1·t3
)

sin
(π

5
t
)

.

Figure 3 and Figure 4 give respectively the responses of the speed and position control
in the case where the nominal load torque is applied. It appears that, the speed and
position follow respectively their reference, the disturbance rejection is fast and the stator
current is aligned on the q axis (i.e. id = 0). The robustness of the trajectories tracking
of speed and position is carried out in the presence of the electric parameters variations.
Indeed, these variations impose an increase of 100% of the stator resistances, a reduction
of 50% of stator inductances and a reduction of 10% of the inductor flux. The obtained
responses are represented in Figure 5 and Figure 6.
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In spite of the application of these strong parameters variations the tracking speed
and position are maintained with a weak tracking error. This shows clearly that this fuzzy
adaptive control has the capacity to respond quickly to the evolution of the parameters
and to their variations.

6 Conclusion

In this paper, we proposed an indirect fuzzy adaptive control scheme for a class of un-
known nonlinear systems. In this controller, the adaptive fuzzy control law ensures the
convergence of tracking errors and boundedness of the fuzzy logic system parameters.
The application of the developed method is carried out for a permanent magnet syn-
chronous motor. The obtained simulation results show that this adaptive control fuzzy
law maintains the tracking errors in an acceptable interval with feasible control inputs
in the presence of hard parameters variations or external disturbances.
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