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1 Introduction

Differential equations are used for modeling of various physical phenomena. Unfortu-
nately, many problems are dynamical and too complicated and accurate differential equa-
tion model for such problems requires complex and time consuming algorithms hardly
implementable in practice. Thus, a usage of fuzzy mathematics seems to be appropriate.
In recent years, the fuzzy set theory introduced by Zadeh [5] has emerged as an inter-
esting and fascinating branch of pure and applied sciences. The applications of fuzzy
set theory can be found in many branches of science such as physical, mathematical,
differential equations and information science.

The Cauchy problems for fuzzy differential equations have been studied by several
authors [16,21–23,25,26] on the metric space (En, D) of normal fuzzy convex set with the
distance D given by the maximum of the Hausdorff distance between the corresponding
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level sets. In [23], the author has proved the Cauchy problem has a uniqueness result if f
was continuous and bounded. In [16,22], the authors presented a result for uniqueness of
solution when f satisfies a Lipschitz condition. For a general reference to fuzzy differential
equations, see a recent book by Lakshmikantham and Mohapatra [27] and references
therein. In 2002, Xue and Fu [28] established solutions to fuzzy differential equations with
right-hand side functions satisfying Caratheodory conditions on a class of Lipschitz fuzzy
sets. However, there are discontinuous systems in which the right-hand side functions
f : [a, b] × En → En are not integrable in the sense of Kaleva [16] on certain intervals
and their solutions are not absolute continuous functions. So, in this paper, we will use
the strong fuzzy Henstock integral, which is nonabsolute integrable.

It is well known that the Henstock integral is designed to integrate highly oscillatory
functions which the Lebesgue integral fails to do. It is known as nonabsolute integration
and is a powerful tool. It is well-known that the Henstock integral includes the Riemann,
improper Riemann, Lebesgue and Newton integrals [2, 3]. Though such an integral was
defined by Denjoy in 1912 and also by Perron in 1914, it was difficult to handle using their
definitions. But with the Riemann-type definition introduced more recently by Henstock
[2] in 1963 and also independently by Kurzweil [3], the definition is now simple and
furthermore the proof involving the integral also turns out to be easy. For more detailed
results about the Henstock integral, we refer to [4]. Recently, Wu and Gong [14,15] have
combined the fuzzy set theory and nonabsolute integration theory, and discussed the
fuzzy Henstock integrals of fuzzy-number-valued functions which extended Kaleva [16]
integration. In order to complete the theory of fuzzy calculus and to meet the solving
need of transferring a fuzzy differential equation into a fuzzy integral equation, we [17,18]
has defined the strong fuzzy Henstock integrals and discussed some of their properties
and the controlled convergence theorem.

In this paper, according to the idea of [1, 29] and using the concept of generalized
differentiability [19], the operator j which is the isometric embedding from (En, D) onto
its range in the Banach space X and the controlled convergence theorems for the fuzzy
Henstock integrals, we will deal with the Cauchy problem of discontinuous fuzzy integro-
differential equations as following:

{

x′(t) = f̃(t, x(t),
∫ t

0
k̃(t, s, x(s))ds),

x(0) = x0, t ∈ Ia = [0, a], a > 0, x0 ∈ En,
(1)

where the integral is taken in the sense of strong fuzzy Henstock integral.
To make our analysis possible, we will first recall some basic results of fuzzy numbers

and give some definitions of absolutely continuous fuzzy-number-valued function. In ad-
dition, we present the concept of generalized differentiability and we present the concept
of fuzzy Henstock integrals and the controlled convergence theorem for the fuzzy Hen-
stock integrals. In Section 3, we deal with the Cauchy problem of discontinuous fuzzy
integro-differential equations. And in Section 4, we present some concluding remarks.

2 Preliminaries

2.1 Fuzzy number theory

Let Pk(R
n) denote the family of all nonempty compact convex subset of Rn and define the

addition and scalar multiplication in Pk(R
n) as usual. Let A and B be two nonempty

bounded subsets of Rn. The distance between A and B is defined by the Hausdorff
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metric [30]:
dH(A,B) = max{sup

a∈A

inf
b∈B

‖ a− b ‖, sup
b∈B

inf
a∈A

‖ b− a ‖}.

Denote En = {u : Rn → [0, 1]|u satisfies (1)–(4) below} is a fuzzy number space.
where

(1) u is normal, i.e. there exists an x0 ∈ Rn such that u(x0) = 1,
(2) u is fuzzy convex, i.e. u(λx+ (1− λ)y) ≥ min{u(x), u(y)} for any x, y ∈ Rn and

0 ≤ λ ≤ 1,
(3) u is upper semi-continuous,
(4) [u]0 = cl{x ∈ Rn|u(x) > 0} is compact.
For 0 < α ≤ 1, denote [u]α = {x ∈ Rn|u(x) ≥ α}. Then from above (1)-(4), it follows

that the α-level set [u]α ∈ Pk(R
n) for all 0 ≤ α < 1.

According to Zadeh’s extension principle, we have addition and scalar multiplication
in fuzzy number space En as follows [30]:

[u+ v]α = [u]α + [v]α, [ku]α = k[u]α,

where u, v ∈ En and 0 ≤ α ≤ 1.
Define D : En × En → [0,∞)

D(u, v) = sup{dH([u]α, [v]α) : α ∈ [0, 1]},

where d is the Hausdorff metric defined in Pk(R
n). Then it is easy to see that D is a

metric in En. Using the results [31], we know that:
(1) (En, D) is a complete metric space,
(2) D(u + w, v + w) = D(u, v) for all u, v, w ∈ En,
(3) D(λu, λv) = |λ|D(u, v) for all u, v, w ∈ En and λ ∈ R.
The metric space (En, D) has a linear structure, it can be imbedded isomorphically

as a cone in a Banach space of function u∗ : I × Sn−1 −→ R, where Sn−1 is the unit
sphere in Rn, with an imbedding function u∗ = j(u) defined by

u∗(r, x) = sup
α∈[u]α

< α, x >

for all < r, x >∈ I × Sn−1 (see [31]).

Theorem 2.1 [31] There exists a real Banach space X such that En can be imbedding
as a convex cone C with vertex 0 into X. Furthermore the following conclusions hold:

(1) the imbedding j is isometric,
(2) addition in X induces addition in En,
(3) multiplication by nonnegative real number in X induces the corresponding opera-

tion in En,
(4) C − C is dense in X,
(5) C is closed.

It is well-known that the H-derivative for fuzzy-number-functions was initially in-
troduced by Puri and Ralescu [25] and it is based on the condition (H) of sets. We
note that this definition is fairly strong, because the family of fuzzy-number-valued func-
tions H-differentiable is very restrictive. For example, the fuzzy-number-valued function
f̃ : [a, b] → RF defined by f̃(x) = C · g(x), where C is a fuzzy number, · is the scalar
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multiplication (in the fuzzy context) and g : [a, b] → R
+, with g′(t0) < 0, is not H-

differentiable in t0 (see [19, 20]). To avoid the above difficulty, in this paper we consider
a more general definition of a derivative for fuzzy-number-valued functions enlarging the
class of differentiable fuzzy-number-valued functions, which has been introduced in [19].

Definition 2.1 [19] Let f̃ : (a, b) → En and x0 ∈ (a, b). We say that f̃ is differen-
tiable at x0, if there exists an element f̃ ′(t0) ∈ En, such that:

(1) for all h > 0 sufficiently small, there exist f̃(x0 +h)−H f̃(x0), f̃(x0)−H f̃(x0 −h)
and the limits (in the metric D)

lim
h→0

f̃(x0 + h)−H f̃(x0)

h
= lim

h→0

f̃(x0)−H f̃(x0 − h)

h
= f̃ ′(x0)

or
(2) for all h > 0 sufficiently small, there exist f̃(x0)−H f̃(x0 +h), f̃(x0 −h)−H f̃(x0)

and the limits

lim
h→0

f̃(x0)−H f̃(x0 + h)

−h
= lim

h→0

f̃(x0 − h)−H f̃(x0)

−h
= f̃ ′(x0)

or
(3) for all h > 0 sufficiently small, there exist f̃(x0 +h)−H f̃(x0), f̃(x0 −h)−H f̃(x0)

and the limits

lim
h→0

f̃(x0 + h)−H f̃(x0)

h
= lim

h→0

f̃(x0 − h)−H f̃(x0)

−h
= f̃ ′(x0)

or
(4) for all h > 0 sufficiently small, there exist f̃(x0)−H f̃(x0 +h), f̃(x0)−H f̃(x0 −h)

and the limits

lim
h→0

f̃(x0)−H f̃(x0 + h)

−h
= lim

h→0

f̃(x0)−H f̃(x0 − h)

h
= f̃ ′(x0)

(h and −h at denominators mean 1
h
· and − 1

h
·, respectively).

2.2 The strong Henstock integrals of fuzzy-number-valued functions in En

In this section we define the strong Henstock integrals of fuzzy-number-valued functions
in fuzzy number space En and we give some properties of this integral.

Definition 2.2 [18] A fuzzy-number-valued function f̃ will be termed piecewise
additive on [a, b] if there exists a division T : a = a0 < a1 < · · · < an = b, such that f̃(x)
is additive on each [ai, ai+1] (i = 0, 1, · · ·, n− 1).

Definition 2.3 [17,18] A fuzzy-number-valued function f̃ is said to be strong Hen-
stock integrable on [a, b] if there exists a piecewise additive fuzzy-number-valued function
F̃ on [a, b] such that for every ε > 0 there is a function δ(ξ) > 0 and for any δ-fine division
P = {[xi−1, xi], ξi}

n
i=1 of [a, b], we have

∑

i∈Kn

D(f̃(ξi)(xi−xi−1), F̃ ([xi−1, xi]))+
∑

j∈In

D(f̃(ξj)(xj−xj−1), (−1)·F̃ ([xj , xj−1])) < ε,

where Kn = {i ∈ {1, 2, ··, n} such that F̃ ([xi−1, xi]) is a fuzzy number and In = {j ∈
{1, 2, ··, n} such that F̃ ([xj , xj−1]) is a fuzzy number. We write f̃ ∈ SFH [a, b].
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Definition 2.4 [18]A fuzzy-number-valued function F̃ defined on X ⊂ [a, b] is said
to be AC∗(X) if for every ε > 0 there exists η > 0 such that for every finite sequence of
non-overlapping intervals {[ai, bi]}, satisfying Σn

i=1|bi − ai| < η where ai, bi ∈ X for all i
we have

∑

ω(F̃ , [ai, bi]) < ε,

where ω denotes the oscillation of F̃ over [ai, bi], i.e.,

ω(F̃ , [ai, bi]) = sup{D(F̃ (y), F̃ (x));x, y ∈ [ai, bi]}.

Definition 2.5 [18] A fuzzy-number-valued function F̃ is said to be ACG∗ on X if
X is the union of a sequence of closed sets {Xi} such that on each Xi, F̃ is AC∗(Xi).

For the strong fuzzy Henstock integrable we have the following theorems.

Theorem 2.2 Let f̃ : [a, b] → En. If f̃ = 0 a.e. on [a, b], then f̃ is SFH integrable

on [a, b] and
∫ b

a
f̃(t)dt = 0.

Theorem 2.3 Let f̃ : [a, b] → En be SFH integrable on [a, b] and let F̃ (x) =
∫ x

a
f̃(t)dt for each x ∈ [a, b]. Then

(a) the function F̃ is continuous on [a, b];
(b) the function F̃ is differentiable a.e. on [a, b] and F̃ ′ = f ;
(c) f̃ is measurable.

Theorem 2.4 (Controlled Convergence Theorem) [18] Suppose {f̃n} is a sequence of
SFH integrable functions on [a, b] satisfying the following conditions:

(1) f̃n(x) → f̃(x) almost everywhere (a.e.) in [a, b] as n → ∞;
(2) the primitives F̃n of f̃n are ACG∗ uniformly in n;
(3) the primitives F̃n converge uniformly on [a, b];
then f̃ is also SFH integrable on [a, b] and

lim
n→∞

∫ b

a

f̃n(x)dx =

∫ b

a

f̃(x)dx.

3 The Existence of Solutions for Discontinuous Fuzzy Integro-differential

Equations

In this section we prove the existence theorem for the problem (1).
For any bounded subset A of the Banach space X we denote by α(A) the Kuratowski

measure of non-compactness of A, i.e. the infimum of all ε > 0 such that there exists
a finite covering of A by sets of diameter less than ε. For the properties of α we refer
to [24] for example.

Lemma 3.1 [24] Let H ⊂ C(Iγ , X) be a family of strong equicontinuous functions.
Then

α(H) = sup
t∈Iγ

α(H(t)) = α(H(Iγ)),

where α(H) denotes the Kuratowski measure of non-compactness in C(Iγ , X) and the
function t → α(H(t)) is continuous.
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Theorem 3.1 [24] Let D be a closed convex subset of X, and let F be a continuous
function from D into itself. If for x ∈ D the implication

V̄ = ¯con({x} ∪ F (V )) ⇒ V

is relatively compact, then F has a fixed point.

We now give some useful definitions and results, which we will use throughout this
paper.

Definition 3.1 A fuzzy-number-valued function f̃ : Ia × En −→ En is
L1−Carathéodory if the following conditions hold:

(1) the fuzzy mapping (x, y) ∈ En × En is measurable for all t −→ f̃(t, x, y);
(2) the fuzzy mapping t ∈ Ia is continuous for all (x, y) −→ f̃(t, x, y).

Definition 3.2 A fuzzy-number-valued function k̃ : Ia × Ia × En −→ En is
L1−Carathéodory if the following conditions hold:

(1) the fuzzy mapping (t, s) −→ k̃(t, s, y) is measurable for all y ∈ En;
(2) the mapping y −→ k̃(t, s, y) is continuous for all (t, s) ∈ Ia × Ia.

Definition 3.3 A fuzzy-valued function (t, s, z) → h(t, s, z) defined on k̃ : Ia ×
Ia × En is a fuzzy Kamke function if h satisfied Carathéodory conditions, and for each
fixed t, s, the function z → h(t, s, z) is nondecreasing and for each q, 0 < q < a, the
function identically equal to zero is the unique continuous of the integral equation z(t) =
∫ t

0
h(t, s, z(s))ds defined on [0, q).

Theorem 3.2 If the fuzzy-number-valued function f̃ : Ia −→ En is (SFH) inte-
grable, then

∫

I

f̃(t)dt ∈ |I| · convf̃(I),

where convf̃(I) is the closure of the convex of f̃(I), I is an arbitrary subinterval of Ia,
and |I| is the length of I.

Proof. Because j ◦ f̃ is abstract (H) integrable in a Banach space, by using the mean
valued theorem of (H) integrals, we have

(H)

∫

I

j ◦ f̃(t)dt ∈ |I| · convj ◦ f̃(I) = |I| · j ◦ convf̃(t).

In additional, there exists (H)
∫

I
j ◦ f̃(t)dt = j ◦

∫

I
f̃(t)dt.

So, we have j ◦
∫

I
f̃(t)dt ∈ |I| · convj ◦ f̃(I). And the set {|I| · convf̃(I)} is a closed

convex set, we have
∫

I

f̃(t)dt ∈ |I| · convf̃(I).

We shall consider the problem

x(t) = x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz
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or

x(t) = x0 + (−1) ·

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, t ∈ Ia, x0 ∈ En, (2)

where integrals are taken in the sense of (SFH).
To obtain the existence results it is necessary to define a notion of a solution.

Definition 3.4 An ACG∗ fuzzy-valued function x : Ia → En is said to be a solution
of problem (1) if it satisfies the following conditions: (1) x(0) = x0;

(2) x′(t) = f̃(t, x(t),
∫ t

0 k̃(t, s, x(s))ds) for a.e. t ∈ Ia.

Definition 3.5 A continuous fuzzy-valued function x : Ia → En is said to be a
solution of problem (2) if it satisfies

x(t) = x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz

or

x(t) = x0 + (−1) ·

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz

for all t ∈ Ia.

Theorem 3.3 Each solution x(t) of problem (1) is equivalent to the solution of prob-
lem (2).

Proof. Let x(t) be a continuous solution of (1). By the definition, x(t) is ACG∗

function and x(0) = x0. Since, for a.e. t ∈ Ia, we have x
′(t) = f̃((t, x(t),

∫ t

0 k̃(t, s, x(s))ds)
and the last is (SFH) integrable, it is differentiable a.e. Moreover,

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz =

∫ t

0

x′(s)ds = x(t)−H x0.

Thus (2) is satisfied.
In addition, we assume that y(t) is ACG∗ function and it is clear that y(0) = x0.

By the definition of (SFH) integrals there exists an ACG∗ fuzzy-valued function g̃ such

that g̃(0) = x0, and g̃′(t) = f̃((t, y(t),
∫ t

0 k̃(t, s, y(s))ds), a.e.
Hence

y(t) = x0 +

∫ t

0

f̃(z, y(z),

∫ z

0

k̃(z, s, y(s))ds)dz

= x0 +

∫ t

0

g̃′(s)ds = x0 + g̃(t)−H g̃(0) = g̃(t).

We have y = g̃ and then y′(t) = f̃(z, y(z),
∫ z

0
k̃(z, s, y(s)dz).

For x ∈ C(Ia, E
n), we define the metric of x by

H(x, 0̃) = sup
t∈Ia

D(x, 0̃).

Let
B = {x ∈ C(Ia, E

n)|H(x, 0̃) ≤ H(x, 0̃) + p, p > 0}.
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Obviously the set B is closed and convex. We define the operator F : C(Ia, E
n) →

C(Ia, E
n) by:

F (x)(t) = x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, t ∈ Ia, x0 ∈ En.

Let Γ = {F (x) ∈ C(Ia, E
n)|x ∈ B}.

Now we present the existence theorems for the problem (1) in a fuzzy number space
En.

Theorem 3.4 Assume that, for each ACG∗ fuzzy-valued function x : Ia → En,

a fuzzy-number-valed function k̃(·, s, x(s)), f̃(·, x(·),
∫ (·)

0
k̃(·, s, x(s))ds) are (SFH) inte-

grable, f̃ and k̃ is L1−Carathéodory function. Suppose that there exists a constant d
such that

α(j ◦ f̃(t, A, C)) ≤ d ·max{α(j ◦A), α(j ◦ C)} (3)

for each bounded subset A,C ⊂ En and t ∈ Ia. Where α denotes the measure of non-
compactness. Assume that there exists a continuous g : Ia × Ia → R+ such that

α(j ◦ k̃(I, I,X)) ≤ sup
s∈I

g(t, s)α(j ◦X) (4)

for each bounded subset X ⊂ En, and t, s ∈ I, I ⊂ Ia, and the zero function is the unique
continuous solution of the inequality

p(t) ≤ d · c · sup
z∈Ic

∫ c

0

g(z, s)p(s)ds on Ic. (5)

Moreover, let Γ be equicontinuous, equibounded and uniformly ACG∗ on Ia. Then there
exists a solution of problem (1) on Ic for some 0 < c ≤ a, d · c < 1.

Proof. By equicontinuous and equiboundedness of Γ, there exists a number c, 0 <
c ≤ a such that

H(

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

= sup
t∈Ic

D(

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

≤ p

for fixed p > 0, x ∈ B, t ∈ Ic. By the assumption on the operator F , we have

H(F (x)(t), 0̃) = H(x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

= sup
t∈Ic

D(x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

= sup
t∈Ic

D(x0, 0̃) + supD(

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

≤ sup
t∈Ic

D(x0, 0̃) + l.
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Using Theorem 2.3 we have F is continuous.

Suppose that V ⊂ B satisfies the condition V = conv({x} ∪ F (V )) for some x ∈ B.
Next, we will prove that V is relatively compact.

In fact, let V (t) = {v(t) ∈ En|v ∈ V } for t ∈ Ic. Since V is equicontinuous, by Lemma
3.1, t → v(t) = α(j ◦ V (t)) is continuous on Ic. For fixed t ∈ Ic we divide the interval
[0, t] into m parts: 0 = t0 < t1 < · · · < tm = t, where ti = it/m, i = 0, 1, 2 · · · ,m. And
for fixed z ∈ [0, t], we divide the interval [0, z] into m parts: 0 = z0 < z1 < · · · < zm = z,
where zj = jz/m, j = 0, 1, 2, · · · ,m.

Let V ([zj , zj+1]) = {u(s)|u ∈ V, zj ≤ s ≤ zj+1}, j = 0, 1, 2, · · · ,m− 1. By Lemma 3.1
and the continuity of v, there exists sj ∈ Ij = [zj , zj+1] such that

α(j ◦ V ([zj, zj+1])) = sup
t∈Ic

{α(j ◦ V (s))|zj ≤ s ≤ zj+1} := v(sj).

By Theorem 3.2 and the properties of the (SFH) integral we have

F (u)(t) = x0 +

m−1
∑

i=0

∫ ti+1

ti

f̃(z, u(z),

m−1
∑

j=0

∫ zj+1

zj

k̃(z, s, u(s))ds)dz

≤ x0 +
m−1
∑

i=0

(ti+1 − ti)convf̃(z, V (Ii),
m−1
∑

j=0

(zj+1 − zj)convk̃(z, Ij , V ([zj , zj+1]))).

Using (4), (5) and the properties of measure of noncompactness α, we have

α(j ◦ F (V (t)))

≤

m−1
∑

i=0

(ti+1 − ti)α(j ◦ f̃(z, V (Ii),

m−1
∑

j=0

(zj+1 − zj)convk̃(z, Ij , V ([zj , zj+1]))))

≤
m−1
∑

i=0

(ti+1 − ti) · d ·max{α(j ◦ V (Ii)),

α(j ◦
m−1
∑

j=0

(zj+1 − zj)convk̃(z, Ij , V ([zj , zj+1])))}.

We observe that

(1) if α(j ◦ V (Ii)) > α(j ◦
∑m−1

j=0 (zj+1 − zj)convk̃(z, Ij , V ([zj , zj+1]))), then

α(j ◦ V ) = α(j ◦ conv({x} ∪ g(V ))) ≤ α(j ◦ F (V )) < d · c · α(j ◦ V ),

Because d · c < 1, so α(j ◦ V ) < α(j ◦ V ) is a contradiction;
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(2) if α(j ◦ V (Ii)) < α(j ◦
∑m−1

j=0 (zj+1 − zj)convk̃(z, Ij , V ([zj , zj+1]))), then

α(j ◦ V ) <
m−1
∑

i=0

(ti+1 − ti) · d · α(j ◦
m−1
∑

j=0

(zj+1 − zj)convk̃(z, Ij , V ([zj, zj+1])))

≤

m−1
∑

i=0

(ti+1 − ti) · d ·

m−1
∑

j=0

(zj+1 − zj)α(j ◦ k̃(z, Ij , V ([zj , zj+1])))

≤

m−1
∑

i=0

(ti+1 − ti) · d ·

m−1
∑

j=0

(zj+1 − zj) sup
s∈Ij

g(z, s)α(j ◦ V ([zj , zj+1]))

= d · c ·

m−1
∑

j=0

(zj+1 − zj) · g(z, pj)j ◦ (v(sj))

= d · c · [

m−1
∑

j=0

(zj+1 − zj) · g(z, pj)j ◦ (v(pj))

+

m−1
∑

j=0

(zj+1 − zj)(g(z, pj)(j ◦ v(sj)− j ◦ v(pj)))].

By continuity of v we have j ◦ v(sj)− j ◦ v(pj) < ε and ε → 0 if m → ∞, so

j ◦ v(t) = α(j ◦ V (t)) ≤ d · c · sup
z∈Ic

∫ c

0

g(z, s)j ◦ v(s)ds.

By (6) we have j ◦ v(t) = α(j ◦ V (t)) = 0 for t ∈ Ic.

Using Arzelá-Ascoli theorem, we have V is relatively compact. By Theorem 3.1 the
operator F has a fixed point. This means that there exists a solution of the problem (1).

Theorem 3.5 Assume that, for each ACG∗ fuzzy-valued function x : Ia → En,

a fuzzy-number-valed function k̃(·, s, x(s)), f̃(·, x(·),
∫ (·)

0
k̃(·, s, x(s))ds) are (SFH) inte-

grable, f̃ and k̃ is L1−Carathéodory function. Suppose that there exists a constant d
such that

α(j ◦ f̃(t, A, C)) ≤ d ·max{α(j ◦A), α(j ◦ C)} (6)

for each bounded subset A,C ⊂ En and t ∈ Ia. Where α denotes the measure of non-
compactness. Assume that

α(j ◦ k̃(t, s, j ◦X)) ≤ h(t, s, α(j ◦X)) (7)

for each bounded subset X ⊂ En, and 0 ≤ s ≤ t ≤ a, where h is a Kamke function.

Moreover, Let Γ be equicontinuous, equibounded and uniformly ACG∗ on Ia. Then
there exists at least one solution of problem (1) on Ic for some 0 < c ≤ a, d · c < 1.

Proof. By equicontinuous and equiboundedness of Γ, there exists a number c, 0 <
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c ≤ a such that

H(

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

= sup
t∈Ic

D(

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

≤ p

for fixed p > 0, x ∈ B, t ∈ Ic. By the assumption on the operator F , we have

H(F (x)(t), 0̃) = H(x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

= sup
t∈Ic

D(x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

= sup
t∈Ic

D(x0, 0̃) + supD(

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz, 0̃)

≤ sup
t∈Ic

D(x0, 0̃) + p.

Using Theorem 2.3 we have F is continuous.

Suppose that V ⊂ B satisfies the condition V = conv({x} ∪ F (V )) for some x ∈ B.
Next, we will prove that V is relatively compact.

In fact, let V (t) = {v(t) ∈ En|v ∈ V } for t ∈ Ic. Since V is equicontinuous, by
Lemma 3.1, t → v(t) = α(j ◦ V (t)) is continuous on Ic. For fixed t ∈ Ic we divide the
interval [0, t] into m parts: 0 = t0 < t1 < · · · < tm = t, where ti = it/m, i = 0, 1, 2 · · · ,m.
We denote Ti = [ti, ti+1] and fix z ∈ Ic. Let

∫ z

0 K̃(s)ds = {
∫ z

0 x(s) : x ∈ K̃} for any

K̃ ⊂ C(Ic, E
n) and let k̃z denote the mapping defined by k̃z(x(s)) = k̃(z, s, x(s)) for each

x ∈ B and s ∈ Ic. Obviously, k̃z(j ◦ V (s)) = k̃(z, s, j ◦ V (s)).

Let

F̃ (j ◦ V (t)) = {F̃ (x)(t) ∈ C(Ic, E
n) : x ∈ V, t ∈ Ic}

= {x0 +

∫ t

0

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz : x ∈ V, t ∈ Ic}.

By Theorem 3.2 and the properties of the (SFH) integral we have

F (x)(t) = x0 +

m−1
∑

i=0

∫ ti+1

ti

f̃(z, x(z),

∫ z

0

k̃(z, s, x(s))ds)dz

∈ x0 +

m−1
∑

i=0

(ti+1 − ti)convf̃(z, V (Ti),

∫ z

0

k̃z(j ◦ V (s))ds).

Therefore, F̃ (j ◦ V (t)) ⊂ x0 +
∑m−1

i=0 (ti+1 − ti)convf̃(z, V (Ti),
∫ z

0 k̃z(j ◦ V (s))ds).
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Using (6), (7) and the properties of measure of noncompactness α, we have

α(j ◦ F (V (t)))

≤

m−1
∑

i=0

(ti+1 − ti)αj ◦ (f̃(z, V (Ti),

∫ z

0

k̃z(j ◦ V (s))ds))

≤

m−1
∑

i=0

(ti+1 − ti) · d ·max{α(j ◦ V (Ti)), α(

∫ z

0

k̃z(j ◦ V (s))ds)}.

We observe that
(1) if α(j ◦ V (Ti)) > α(j ◦

∫ z

0 k̃z(V (s))ds), then

α(j ◦ V ) = α(j ◦ conv({x} ∪ F (V ))) ≤ α(j ◦ F (V )) < d · c · α(j ◦ V ),

Because d · c < 1, so α(j ◦ V ) < α(j ◦ V ) is a contradiction;
(2)if α(j ◦ V (Ti)) < α(j ◦

∫ z

0
k̃z(V (s))ds), then

α(j ◦ V ) <

m−1
∑

i=0

(ti+1 − ti) · d · α(j ◦

∫ z

0

k̃z(V (s))ds) ≤ 2dcα(j ◦

∫ z

0

k̃z(V (s))ds)

≤ 2dc

∫ Z

0

α(j ◦ k̃(z, s, V (s))ds) ≤ 2dc

∫ z

0

h(z, s, V (s))ds,

since V = conv({x} ∪ j ◦ F (V )), we have

v(t) = 2dc

∫ z

0

h(z, s, v(s))ds.

Now, we apply a theorem of differential inequalities. We have v(t) = α(j ◦V (t)) = 0. By
Arzelá-Ascoli theorem, we have V is relatively compact. By Theorem 3.1 the operator
F has a fixed point. This means that there exists a solution of the problem (1).

4 Conclusion

In this paper, we deal with the Cauchy problem of discontinuous fuzzy integro-differential
equations involving the strong fuzzy Henstock integral in fuzzy number space. The
function governing the equations is supposed to be discontinuous with respect to some
variables and satisfy nonabsolute fuzzy integrability. Our result improves the result given
in [16, 23, 26] and [28] (where uniform continuity was required), as well as those referred
therein.
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