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Abstract: In this paper, we study the stability problem of a stochastic interval
system with distributed delays. Firstly, we prove that the solution of such system
exists and is unique, and then a sufficient criterion of exponential stability is obtained
and such result can be generalized to the systems with multiple time delays. Finally,
an example is given to illustrate the result.
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1 Introduction

Stochastic modelling has come to play an important role in many branches of science
and industry, such as neural network and automatic control of stochastic system and so
on, see [IH9]. One of the most useful stochastic models which are often used in practice
is stochastic differential delay equation [T0HI5]. However, in many practical models, it
is difficult to determine the parameters with a fixed value and instead of obtaining some
estimation — the parameters are changed in an interval. Such a system can be described
by stochastic interval system.

In the past decades, a lot of work on stochastic differential interval systems could
be found in [T6HIR] and the results are generalized to Markov switched system by [19,
20]. Motivated by these works, in this paper, we study stochastic interval system with
distributed delays. Consider the following stochastic system

dr(t) = [Aox(t) + Ava(t —7) + Ao [°_a(t + 0)dp(9)]dt

1
+[Box(t) + Byz(t — 1) + Ba fET x(t + 0)dv(9)|d By, o
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where Ay, Ay, As, By, B1, B are constant matrices and u, v denote probability measures,
T is a positive constant. This system is incorporated with time delays, which would be
appropriate in circumstances where a process is dependent not only upon the present
state but also upon the state at all the times of some interval in the past. In practice,
the matrix coefficients must be estimated from empirical data, and chosen as confidence
intervals under a statistical method, so we use interval matrices instead of the coefficients
of system (I, and this results in an interval system of the form

dw(t) = [(Ao + AAo)m(t) + (Al + AAl).T(t — T)
+ (As + AAy) fET x(t + 0)du(9)]dt + [(Bo + ABy)z(t) (2)
+ (Bi+AB)x(t —7) + (Bs + ABy) [°_x(t + 0)dv(0)|dB,

where AA; AB;, A;, B; are constant matrices and AA; € [—Ain,Aim], AB; €

[=Bim, Bim], i = 0,1,2, where Ay, Bim, im = 0,1,2 are constant matrices and u, v

denote probability measures, T is a positive constant.

The study of stochastic interval system (2)) becomes more difficult than that of
stochastic system (), since the parameters of (2)) belong to intervals. Since the coef-
ficients of such system have the property of uncertainty, we always treat interval systems
as uncertain systems. Because the coefficients as interval matrices are not well-performing
to preserve the stability properties, so it is useful and helpful to study the stability be-
haviour of such systems. There are many stability properties to be studied, but this
paper will focus on the study of exponential stability of stochastic interval systems (2))
with distributed time delay.

In the next section, we will give some notations used throughout this paper. In
Section 3, we discuss a particular type of stochastic interval system with distributed
delays, a stability criterion is given which will be applied to examine the stability of
stochastic interval system with distributed delays, and then we generalize these results
to a stochastic interval system with multiple distributed delays. An example is given to
illustrate our result.

2 Preliminaries

Let R™ be Euclidean space and | e | be the Euclidean norm in R". If A is a matrix,
its transpose is denoted by AT and define a norm of A as | A ||= sup{|Az| : |z| =
1} = V/Amax (AAT). If A is a symmetric matrix, let A\jq0(A) and Apin (A) represent its
largest and smallest eigenvalue respectively. Obviously, if A is a symmetric matrix, then
Amas (4) < [|A].

If A™ = [af}]an and AM = [a%]nx” are matrices and aj} < ai\f, V1l < 4,5 < n, the

interval matrix [A™, AM] is defined by

[A™ AM]) = {A = [@ijlnxn * ajf < aij < af‘;f, V1 <i,j <n}.
For A, A,, € R"*", where A,, is a nonnegative matrix, we note that any interval matrix
[A™, AM] has a unique representation of the form [A— A,,, A+ A,,], where A = 1(A™ +
AM) and A, = $(AM — A™).

In this paper, let (Q, F,{F}+>0, P) be a complete probability space with a filtration
{F}i>0 satisfying the usual conditions. Let B; denote a Brownian motion defined on
the probability space. Let 7 be a positive number and C([—7,0]; R") be the family of
all continuous R"™-valued functions on [—7,0] with the values in R™. We define a norm
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as |lyll- = sup_, < <o ly(t)] for any y € C([-7,0[; R"). Let L*(, Fy, C([-7,0]; R"))
represent all F; -measurable C([—7,0]; R")-valued random variables ¢ with E||£||2 < oo
and we write L? for short unless otherwise specified. If z(t),t > to— 7 is an n-dimensional
continuous stochastic process, we denote x; = z(t +s) : —7 < s <0 as a C([—7,0]; R")-
valued process on ¢ > 0. For any initial data #(tg) = £ € L?(Q, Fi,, C([—T,0]; R™)), there
exists a unique global solution of (Il) which is denoted by (¢, to, £).

Definition 2.1 The system () is said to be

(a) exponentially stable in L2?(Q2, C([—7,0]; R")), if there exist positive constants M
and v such that for all o > 0 and & € L?(Q, F,, C([—T,0]; R™)),

E||i(t, to, |7 < MeT " E|g|2.
(b) almost surely exponentially stable if

. 1
tlggo sup;log|z(t,to,§)| < 0. a.s.

3 Main Results

In this section, we will study the stability properties of system (2)). For system (), we
can’t make sure that the solution of such system exists and is unique under the condition
of linear growth and Lipschitz condition. In this paper, we affirm that the solution of
system (2)) exists and is unique; here we only need to prove the results for system (),
because the norm of the matrix coefficient of system(2)) is bounded as in system (II),
which is an essential step in the proof of the following theorems.

Let

S = {8|é(0) : —7 < 0 < 0is random variable; ¢ € F, N C([—7,0]; R"), E||¢||*> < oo}.

Lemma 3.1 If 2(t) is a solution of equation (), then for any T > to, 3C > 0, such
that
E( sup |z(t)*) <C.
to—T<t<T

In particular, x(t) belongs to L?([to — 7,T]; R™)).

Theorem 3.1 For any § € S, there exists a unique solution x(t) of system (), ()
and xy, = E.

Proof. This can be easily proved by using the method of [21].
In order to study the stability of system (2)), firstly, we consider system ().

Theorem 3.2 Assume that there exists a symmetric positive-definite matriz Q) such
that

2\/Amax (Qié A’{QAlQi%) + 2\/wA(A)Amax (QiéAgQAQQié )

+(\/)\mam(Q7%BgQBOQ7%) + \/)\maz(QiéB?QBlQié) (3)

/@5 (M)A (@73 BIQBIQ )2 < ~Anae(@Q3(QA0 + ATQ)QH) £
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where wa(\) = fET e Mdud), wp(\) = fET e Mdv(0).

Then system () is exponentially stable in L?(Q2, C([—,0]; R™)) and moreover, it is
almost surely exponentially stable.

Proof. Firstly, we note that Q_% (QAy + AOTQ)Q_% must be negative definite.
Set

A= —Amaz(Q72 (QAg + ATQ)Q™2) > 0. (4)

By the condition of Theorem [B.2] we can find a constant v € (0, \) such that

(14 )y Amar(Q2ATQAIQ )

4 ) A (@73 BIQBOQ ™) A (@ F BT QB1QH)

124/ () Anar (@ AT QA2Q )

+2\/)\mam (QiéBgQBOQié )wB ()\))\mam (Q*%B%QB2Q*% )

+(1 + evT)\/wB()\))\mam (QiéBgQBQQié))\mam (QiéB?QBlQié)
+)\maz(Q_%BgQBOQ_%) + wB()\))\maz (Q_%BEQBQQ_%)

+€ " Amaz(Q ZBTQB1Q™2) < A — 7.
We claim that there exists a constant C > 0 such that

/ BT Qu(t))dt < CeBIETQE], (6)
to
for all to > 0 and & € L3(Q, F,, C([—T,0]; R™).

In addition, we also affirm that there exists another constant C’ > 0 such that
Ellaf Qui|| < C'e 7T E|ET Q¢ (7)

which is held in L?(Q, F,, C([-7,0]; R")). It follows from (@) that (@) is almost surely
exponentially stable.

Next, we will give proofs of (@) and (7).
Fix tg > 0 and & , write z(t) = x(¢t, to, &) , then Ito’s formula yields that
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ME(x(t)TQx(t)) = eMNoE(x(to)T Qx(to)) + )\tft M E(x(s)T Qu(s))ds
+2j e/\sE(x(s)TQon(s))ds + Qtf e’\sE(x(s)TQAlx(s —7))ds

+2 tfte/\sE(x(s)TQAg f z(s + 0)dp(9))ds

—T

+ ft e/\sE(x(s)TBgQBO:E(S))ds + fte)‘SE(:E(S)TBgQBlz(S —7))ds
t() t()
0

+ j M E(a(s) BIQBy [ x(s+9)dv(0))ds

-7

+ ft M E(x(s — 1) BTQBox(s))ds + ft ME(x(s — 1)  BTQBa(s — 7))ds
to

—l—fe/\sE (z(s — )" BTQB, Jq z(s + 9)dv(9))ds

to —-T

+feA5E fo 2(s + 9) dv(9)BY QByx(s))ds

to —T
+fe/\sE JQ 2(s +9) dv(9)BYQByx(s — 7))ds
to —T
+fteA5E fo 2(s + 9) dv(9)BY QB fo x(s + 9)dv(9))ds.

to —T

We note that by (@)
20() T QApx(t) < —Ax(t)T x(t).

For any €1,¢€2,€3,€4,65 > 0,

2 [eME(x(s)T QAvx(s — 7))ds

to

IN

€1 ft e)‘SE(x(s)TQx(s))ds + ft %E(x(s — T)TA?QAlsc(s —7))ds,
to to

¢ 0
2feksE 2(s)TQAy [ x(s +9)du(9))ds

—r

= 2]6/\5 f E(x(s)" QAsx(s + 9)du(9))ds

< [ [ (esB(a(s) Qu(s)) + DA AL QA4 4y ) g

€3

= sgfeASE(x(s)TQ:c(s))dswat fO %E(z(s+9)TA2TQA2z(s+9))du(9)ds

t() to —T

t As 0
< e [ B(a(s)" Qu(s Nds+ | SBla(s)T 45 QAza(s))ds [ e~ du(9)
= &3 [eME(x(s) Qu(s))ds + wa(X f < B(ET AT QALE)ds

As

+ @a(\) [ 5 E((s)" AT QAza(s))ds,
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0
where wa(A) = [ e du(0).

We can proceed in a similar fashion for other forms in (&l).
t
ME(2(t)T Qu(t)) < MOE €T Q¢E| + &1 [ ¥ E(a(s)” Qa(s))ds
to

4 [ 22 B(a(s — 1T ATQAva(s — 7))ds + 25 [ € E(a(s) Qu(s))ds
to to
to

twaW)] [ BT ATQAE)ds + [ £ E(x(s)T ATQAs(s))ds]

to—T

+(1+22) j X E(x(s)” BTQBox(s))ds

t s
—l—tf %E(m(s — )T BIQB1x(s — 7))ds
0

+54jeASE(x(S)TBoTQBOQU(S))dS
+tft %E(_fo z(s + )" dv(9) By QBa f (s +J)dv(9))ds

tes [N E(x(s — 1) BTQBx(s — 7))ds

+/f %E(fo (s +9)"dv(9) B3 QB> f x(s + 9)dv(¥9))ds

to — —T
0 0
+ [eME([ x(s+0) dv(¥)BTQBy [ (s + 9)dv(9))ds.
to —T —T
Here we mention that

fte’\SE(fO a(s + ) dv(9) BT QBs fo (s + 9)dv(9))ds

-7

= [e JQ fO E(x(s + ¢)" BTQByx(s 4 9))dv(¢)dv(9)ds

<fe |
to —T
<@ | MEETBIQB.)ds + [ N E(a(s)” B QBya(s))ds),
to

t()—T

0
where wp(A) = [ e *dy(6). Hence,

M B(2(t)T Q1))

to
<OWE|TQE| + [ sty (N BET BT QD) ds )
to—T
to

T AL AT ATQAL)ds + (61 + 23) | X E(a(s) Q(s))ds

to— to
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Jrft 6;5 E(x(s — T)TAlTQAlsc(s —7))ds

to
+ [ =20 B(a(s) AT QAsa(s))ds

to
+(1+e2+ 64)j e» E(z(s)" BT QByx(s))ds

0
thfj 71+€2;2r€255 M E(x(s — T)TBfQBlz(s —7))ds
+wp() f 7‘5”2;‘3“85 e)‘sE(:C(s)TBQTQng(s))ds
to

< CLMB||ETQe| + Co [ Ea(s)T Qu(s))ds
to

+C3 ft e E(x(s — T)TQ:c(s —7))ds,

to
where

G = 1+ (5 + 2 + Do) Q72 BIQBQH)
+éwA()‘>T/\maX(Q7§AgQA2Q7%)7

Co = ertest waMN)Anax(Q 2 ATQAQ2)
(1 + 22+ 20)Amax(Q 2 BIQBoQ ™ ?)
HE + L + Dos(MN)Anax(Q 2 BT QBQ %),

Cs = (@ 7ATQAIQ™%) + (1+ L +£5)Amax (Q 2 BT QB1Q2).

Then

E@®)TQr(t) < Cre ) E||erQe]| + Gy f M=) B(a() T Qa(s))ds
+ Cgtfte/\(ts)E(x(s - T)TQ;(S —7))ds.
For any T > to, 0
f ' B (x(t)T Qu(t))dt
<G f e N B €T Qg dt + Co f f e NI E(a(s)" Qu(s))dsdt

+C3 fe'yt f e M=) B(x(s — 1) Qu(s — 7))dsdt

to to
T
< Gularel vt |67 Qg|| + St t{ e E(x(t)T Qx(t))dt.
If we let 1
—(CQ + 03677) <1, (13)

A—v
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which implies that there exists a constant C' > 0 such that (@) holds.
Next, we will give a proof of (7).

Using Ito’s formula, we have

eYt=1) g

207 Qa()| < B( sup_ ea(r)TQa(r))
t—r<r<t
¢
< CieE||ETQ¢|| + Cs [ e E(x(s)T Qu(s))ds
' 0
JrC’gtf eV E(x(s — T)TQ:c(s —7))ds

+2FE( sup f e’ 2T (s)QBoz(s)dBs)

t—7<r<ttg
+2E( sup [e"*zT(s)QBiz(s — 7)dB;)
t—17<r<ttq
T 0
+2E( sup [ [zT(s)QBs [ z(s+ 9)du(9)]dBs).
t—1<r<ttq —r

Here we used B-D-G inequality [2I]. For any eg, 7,658 > 0,

2E( sup freVSzT(s)QBosc(s)st)

t—7<r<ttg

< 2\/3_2E(t:f e |27 (s)Qx(s)| |27 (s) BY QBox(s)| ds)'/?

t

< 2V/B2E (el Qullr [ Amax(Q72 BfQBoQ™2)e?* el Qu,|-ds)
t—r
< oI B T Qu |,

t
Jr%e*'y(tfr))\max(Q—1/2BOTQBOQ71/2) f ez»ys”zSTQ:CSHTdS7
t

—T

2E( sup fTeVS:cT(s)Qle(s — 7)dBs)

t—7<r<tty

< 2\/3_2E(t_ft e?*|2" (5)Qu(s)||2" (s — 7)Bf QBura(s — 7)|ds) =

t
§2V32E(||1"ZQ$S||T f AmaX(QiéB%ﬂQBlQié)6275||z21@$5”'rd5)%
t—T
< ere? T E||2T Qx|

t
B2 (QEBIQBIQY) [ e[0T Qu| ds,
t—r1

r 0
26 sup_ [ elaT (5)QB [ x(s+0)du(b)]dB,)

0

< 2\/3_2E(t_ft 1% |27 (5)Qu(s)| f 2T (s +0)du(0)BYQBs [ x(s+ 0)du(0) ds)?

—T —r

t

< 2V32E(||J2," Qx| [ Amax(Q72BIQB2Q72)e®* |27, Qu| ds)>
t—r1
< e TTE||2" Q]

t
+B2eEDN 0 (QEBIQBQ ) [ €272 Qus| ds.
t—1

141
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Ift >tg+ T,
(1—¢e6—e7— Eg)GV(t’T)E||x?ta||T
t
< Ci1e"E|ETQ¢E| - + (Co + C3) [ € Ellay Qus||+ds
to
t
+Cye ) [ 23 B|l 2T Quyl| - ds,
to
where

Cs =322 Amax(Q7V2BIQBoQ %) + 2 Anax(Q 2 B QB1Q77)
+é)\max(Q7%BgQB2Q7%))'
Iftg <t <ty+r.

D E|2T Qu||, < e E(||€T Q] + sup |27 (r)Qu(r)])

< E||ETQE|, + B sup (7 [o7 (r)Qa(r)])
to<r<t
t
< (L+ G BT Q€] + (Ca + Cs) [ €7 Bl|a] Qus | -ds

to

t to
+Cye™ ) [ 2B 2T Q|- ds + Cae™ 0= [ 25 B2l Quyl| - ds
to

to—T

+(e6 + €7 + €8)e? T E|| 2T Q|

Set 6 = €7 = eg = 1/6, we obtain
t
e'V(t’T)EH:EtTQ:ctHT < M + M, fe'YSEH:EsTQ:ESHdS <M,
to

where
2(14 C)eElE7 Q¢ to<t<to+T,
My =14 2(1+C)e™E|eTQel|,
to
+2C1e =) [ 2| sl Qg ds, t>to+T,
to—T

My =2(C + C5 + Cye?7),
M = My + MyCe E|7Q¢| .

And right now we complete the proof of this theorem.

Apply Theorem Now we are capable to cope with such system with interval
matrix coefficient, just for all matrices belong to the interval the sufficient condition of
Theorem (B2 must be satisfied and here we prove the following result.
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Theorem 3.3 If there exists a symmetric positive-definite matriz Q such that

2Amax (Q 2 ATQAIQ ™) + L8 (2] Ax [[[| Avm|| + [| Avi )]
+2((Amas (@2 ATQA2Q73)) + 5y (212 | Azin | + [ Az 24 (V)]

+{Mmaz (QF BIQBoQ %) + 1% (2] Bolll| Boml| + | Bom||*)]*

+HAmaa(Q BT QBIQ™F) + L (21| B[ Bum | + | Bim 1)) %

H(Amar (Q% BT QB2Q %) + 512 (211 Bel| Bam | + | B |2)) (V)] 7}

1

< Anar(Q7H(QA + ATQ)Q ) — Aoyl

min

Then equation (@) is exponentially stable in L?(Q, C([—7,0]; R™)) and moreover, it is
almost surely exponentially stable.

Before proving the theorem, we first give some lemmas [I§].

Lemma 3.2 Let QQ be a positive-definite symmetric matriz. Then

_lel

o8 IlQ < -~y

Lemma 3.3 Let QQ be a positive-definitive matrix and A be an n X n matriz. Then

1 —1y < 2lAlliel
)\maz(Q (QA + ATQ)Q ) S )\mzn(Q) :

Lemma 3.4 If AA € [— A, A, then ||AA] < || A

Lemma 3.5 Let Q be a positive-definitive matriz, B be an n X n matriz and AB €
[—Bm, Bm]. Then

Amae(Q™V2(BTQAB + (AB)TQB + (AB)TQ(AB))Q™/?)

< 2BlRIIB~] IQIIBm|I*

= Amin (Q Amin

Proof of Theorem [B.3l In order to guarantee the exponential stability of the
interval system (2), we should show that the condition [B]) of Theorem holds for all
the matrix coefficients AAy € [—A1m, A1m], AAs € [—Aam, Aam], ABy € [—Bom, Bom),
AB; € [_BlmaBlm]; ABy € [_BQW,BQW], ie
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2/ A (@ (A1 + AANTQA + AA)QH)

120/ @a (M)A (QF (Az + AA)TQ(As + AA,Q—H)

(4 Anar (@3 (Bo + AB)TQ(By + AB)Q )

1 Anas Q7 (By + AB)TQ(B, + AB)Q )

+\/wB maz BQ + AB2)TQ(BQ + AB2)Q ))2

< _)‘maz(Q_%(Q(Ao +AAy)+ (A+ AAO)TQ)Q_%),

where w4 ()\) = fET e Mdu(d), wp()\) = fST e Mdv(0).
According to Lemma [3.3] and Lemma [3.4] we note that

1

*)\maz(Q_% (Q(AO + AAO) + (A + AAO)TQ)Q_a)

1

> ~Amar (Q72 (QA0 + AFQ)Q?) — ARl £ 1y,

min

Using Lemma [3.4] and Lemma [B5] we have

Amaz(Q72 (A1 + AANTQ(A; + AA)Q2)

< Amaz(Q TATQAIQ72) + Maw (Q7 2 (ATQAA; + (AA)TQA,
+(AA)TQAA)Q3)

< A (QFATQA1QH) + LA (2| Av || Avm | + | Avin |-

Then
24 Auax (Q 4 (A, +AA1) QA1 + A4,)Q})
+2\/w,4 Amax Q7% (A2 + A45)TQ(As + A4)Q™F)
\/)\max 5(Bo + ABy) Q(By + ABy)Q™ %)
+\/AW 5(B, +ABl) QB+ AB)Q)
+\/WB Amax( B2+ABQ) TQ(By + ABy)Q™7))>

< 2Dmax(QFATQA1Q ) + L (2 [ Av [ | Avnl| + [[ A *)]
+2[(Anax(Q73 AT QAQ75) + %(2 14|l [| Az | + [[ A2 1)) a (V)] 2

+H{Amax(Q™F BT QBoQ %) + x1%5 (21| Bo| [ Bom| + || Bom||)]

+Pnax (Q 2 BT QBIQ™%) + 1 (2| Bi || |1 Bum | + || Bum )] 2

HAmax(Q™3 BIQB2Q %) + 515 (2| Bal| | Bam| + || Bawn |*) (V)] 3 }
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If I; > I5, we can conclude that the matrix coeflicients of interval type satisfy the con-
dition of Theorem 3.2 which leads to the exponential stability of the stochastic interval
system.

It is not hard to generalize the result of the theorems to the multiple time delays case.
Without any details of proof, we directly present the conclusion as follows.

Theorem 3.4 Consider the following system

—l—(AQz + AAQZ Jq 9)]dt + [(BO + ABo)m(t) (15)

If there exists a symmetric positive-definite matriz QQ such that

N 1 1 1
2 3" {Panax(QF AT,QALQ™H) + LU (2 | Avill | Avirm || + | Arim )]

=1
Hmar(QFALQALQ™) + U (2| Aoy [ Azim | + [ Az |2) 4 (N1}

+H{Amax(Q™2 BfQBoQ %) + 51255 (2| Bo | | Bom|| + | Bom|I)]

1
2

=

Il
-

+ 2 Pnax(Q 72 BLQBLQ ™) + 51 21| Bus | [|Buim | + [ Brim %))

(2

HAmax(Q™3 BEQB:Q ™) + 5455 (2| Baill | Baim| + || Baim ) m(V)] 2}

1

< Amax (@73 (QA¢ + ATQ)Q3) — HgenlIQl

Amin (

Then the system (I3) is exponentially stable in L*(Q, C([—7,0], R"™)) and moreover,
it is almost surely exponentially stable.

4 Example

In this section, we’ll give a simple example to illustrate our result of Theorem 3.3.
Consider the following system

d:z:(t) [(Ao + AAo)m(t) + (Al + AAl).T(t — T)
(Ag + AAg) [0 a(t + 6)du(0))dt + [(BO + ABg)x(t) (16)

+
+

where AAg € [_AOm;AOm]a AA; € [_Alm;Alm]; AA; € [—Agm,Agm], ABy, €
[—Bom, Bom], AB1 € [—Bim, Bim], AB2 € [—Bam, Bam]. In order to simplify the com-
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putation, we set @ = I, in consequence, condition (I4)) can be simplify as

2Amaz (AT A1) + 2/ Av]l[| Asm | + | Arm )]
+2[(Amaz (A A2) + (2] A2l Azm| + [[ Az [*) w2 (V]2

+H{[Amaz (B§ Bo) + (2[| Bolll| Bowm|| + | BomlI*)]'/?

(17)
+Amaa (BT B1) + (2] B1 [l Bum | + | Bum |*)]*/2
H(Amaa (BF B2) + 2| Ba|ll| Baml| + [ B2m ) w5 (N)]/2}2
S _)\mam(AO + Ag;) - QHAOmHa
where
—-50 -3 1 05 1 05
AO_( 3 22)’A0m_(0 1 )’Al_(o.% 0.75)’
0 0 0.75 0.5 025 0.5
Aim = ( 05 05 )’A2 ( 0.25 0.25 ) » Aom = ( 0.25 0.25 )
0.75 0.5 0.25 0.5 0.25 0.75
Bo= < 0.25 0.25 ) Bom =025 025 ) P17 ( 0.25 0.25 )’
0.25 0.25 0.75 0.5 0.25 0.5
Bim = ( 05 0.25 )’32 =\ 025 025 ) P = ( 0.25 0.25 )
It can easily be computed that Amax(Ao + AL) = —44,|Aow| = 1.281, 41| =
1.279, |[Aim|| = 0.354,]|As]| = 0.966, [[Asm| = 0.655,]Bol| = 0.966, |Bom| =
0.655, ||B1|| = 1.189,|Bim| = 0.655,|Bz|| = 0.966,[Bay| = 0.655, and we set

A

0
u(0) = v(@) = £, then wa(\) = wp(\) = [ e Md(¢) = <=L, here we note that

A = —Amax(4o + Ag) = 44, so we can choose a sufficient small delay 7 such that
wa(A) = wp(A\) = 1.1. Hence condition (4] is satisfied. Therefore we can conclude
that (I6) is exponentially sable in L?(2, C([—7,0]; R™)) and moreover, it is almost surely
exponentially stable.

5 Conclusion

In this paper, exponential stability of stochastic interval systems with time delays is
studied. Using It6 formula and inequality techniques, some sufficient conditions are
derived and at last, a simple example is given to illustrate our result.

Acknowledgment

The research is partly supported by the national science funds of grant (11071257) of
China and innovation fund of China National Petroleum Corporation (2011D-5006-0307).

References

[1] Arnold, L. Stochastic Differential Equations: Theory and Applications. Wiley, New York,
1972.



2]
8]
[4]
[5]

[6]

(7]
8]
[9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
18]
[19]
[20]

[21]

NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (2) (2014) [34HI47] 147

Has’'minskii, R.Z. Stochastic Stability of Differential Equations. Sijthoff & Noordhoff,
Alphen a/d Rijn, 1981.

Mao, X. Stability of Stochastic Differential Equations with Respect to Semimartingales.
Longman Scientific and Technical, New York, 1991.

Khasminskii, R. Stochastic Stability of Differential Equations. Springer Science+Business
Media, 2012.

Holden, H., @sendal, B., Ubce, J. and Zhang, T. Stochastic Partial Differential Equations.
Springer, 2010.

Yang, R., Zhang, Z. and Shi, P. Exponential stability on stochastic neural networks with
discrete interval and distributed delays. IEEE Transactions on Neural Networks 21 (1)
(2010) 169-175.

Guo, L. and Wang, H. Stochastic Distribution Control System Design. Springer-Verlag
London Limited, 2010.

Li, Q. L. Constructive Computation in Stochastic Models with Applications : The RG-
Factorization. Springer, Berlin, Heidelberg, 2010.

Boustani, S. E., Yger, P., Frégnac, Y. and Destexhe, A. Stable Learning in Stochastic
Network States. The Journal of Neuroscience 32 (1) (2012) 194-214.

Kolmanovskii, V.B. and Myshkis, A. Applied Theory of Functional Differential Equations.
Kluwer, Dordrecht, 1992.

Mao, X. Ruzumikhin-type theorems on exponential stability of stochastic functional differ-
ential equations. Stochastic Process. Appl. 65 (1996) 233-250.

Kotelenez, P. Stochastic Ordinary and Stochastic Partial Differential Equations. Springer
Science+Business Media, 2008.

Shaikhet, L. Lyapunov Functionals and Stability of Stochastic Functional Differential Equa-
tions. Springer International Publishing Switzerland, 2013.

Nilsson, J., Bernhardsson, B. and Wittenmark, B. Stochastic analysis and control of real-
time systems with random time delays. Automatica 34 (1) (1998) 57-64.

Rakkiyappan, R., Balasubramaniam, P. and Lakshmanan, S. Robust stability results for
uncertain stochastic neural networks with discrete interval and distributed time-varying
delays. Physics Letters A 372 (2008) 5290-5298.

Joseph, H. Stochastic stability theory for systems containing interval matrices. IEEE Trans-
actions on Aerospace and Electronic Systems 32 (4) (1996) 1385-1391.

Liao, X.X. and Mao, X. Exponential stability of stochastic delay interval systems. Systems
& Control Letters 40 (2000) 171-181.

Mao, X. and Selfridge, C. Stability of stochastic interval systems with time delays. Systems
& Control Letters 42 (2001) 279-290.

Mao, X. Exponential stability of stochastic delay interval systems with Markovian switch-
ing. IEEE Trans. Automat. Control 47 (2002) 1604-1612.

Mao, X. and Lam, J. et al. Razumikhin method and exponential stability of hybrid stochas-
tic delay interval systems J. Mah. Anal. Appl 314 (2006) 45-66.

Mao, X. Stochastic Differential Equations and Their Applications. Horwood Publication,
Chichester, 1997.



	Introduction
	Preliminaries
	Main Results
	Example
	Conclusion

