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Abstract: We give a construction of a cubic stochastic operator (CSO) on a finite
dimensional simplex. This construction depends on a probability measure µ which
is given on a fixed finite graph G. Using the construction of CSO for µ defined as
product of measures given on components of G a wide class of non-Volterra CSOs is
described. It is shown that the non-Volterra operators can be reduced to N number
(where N is the number of components) of Volterra CSOs defined on the components.
By such a reduction we describe behavior of trajectories of a non-Volterra CSO defined
on the three dimensional simplex.
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1 Introduction

There are many systems which are described by nonlinear operators. One of the simplest
nonlinear case is quadratic operator (for a recent review on the theory of quadratic
stochastic operators see [5]). Quadratic dynamical systems have been proved to be a rich
source of analysis for the investigation of dynamical properties and modeling in different
domains, such as population dynamics [1, 6], physics [11], economy [2], mathematics
[10]. In modern scientific investigations non-linear operators of higher order arise. In
particular, a cubic stochastic operator (CSO) can be obtained in gene engineering and
free population with a ternary production. To study non-linear dynamical systems a
method of Lyapunov functions is used (see [5, 9]).
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In [7], [8] and [12] the behavior of trajectories of some CSOs were studied. A CSO
arises as follows: consider a population consisting of m species. Let x0 = (x01, . . . , x

0
m) be

the probability distribution (where x0i = P (i) is the probability of i, i = 1, 2, . . . ,m) of
species in the initial generation, and Pijk,l be the probability with which individuals in
the ith, jth and kth species interbreed to produce an individual l, more precisely Pijk,l
is the conditional probability P (l|i, j, k) with which ith, jth and kth species interbred
successfully, when they produce an individual l. In this paper we consider models of free
population i.e., there is no difference of ”sex” and in any generation the ”parents” ijk
are independent i.e., P (i, j, k) = P (i)P (j)P (k) = xixjxk.

Each CSO W can be uniquely defined by a matrix P ≡ P(W ) = {Pijk,l}mi,j,k,l=1.
Usually the matrix P is known. In this paper we give a constructive description of
P. This construction depends on a probability measure µ which is given on a fixed
finite graph G and finite set of cells (configurations). Such constructions for quadratic
stochastic operators are given in [3] and in the general form in [4].

The main aim of the paper is to show that if µ is the product of the probability
measures being defined on the maximal connected subgraphs (components) then corre-
sponding non-Volterra CSO can be reduced to N number (where N is the number of
components) of Volterra operators defined on the components.

By such a reduction we describe behavior of trajectories of a non-Volterra CSO defined
on the three dimensional simplex. These results are a natural generalization of the
paper [13] which was devoted to quadratic stochastic operators.

2 Construction of Cubic Stochastic Operators

Recall that a CSO is a mapping of the simplex

Sm−1 = {x = (x1, ..., xm) ∈ Rm : xi ≥ 0,

m
∑

i=1

xi = 1}

into itself, of the form

W : x′l =
m
∑

i,j,k=1

Pijk,lxixjxk, (l = 1, ...,m), (1)

where Pijk,l are coefficients of ’heredity’ and

Pijk,l ≥ 0,

m
∑

l=1

Pijk,l = 1, (i, j, k, l = 1, ...,m). (2)

Let G = (Λ, L) be a finite graph without loops and multiple edges, where Λ is the set
of vertexes and L is the set of edges of the graph.

Furthermore, let Φ be a finite set, called the set of alleles (in problems of statistical
mechanics, Φ is called the range of spin). The function σ : Λ → Φ is called a cell (in
mechanics it is called configuration). Denote by Ω the set of all cells. Let S(Λ,Φ) be the
set of all probability measures defined on the finite set Ω.

Let {Λi, i = 1, ..., N} be the set of maximal connected subgraphs (components) of
the graph G. For σ ∈ Ω denote by σ(M) its ”projection” (or ”restriction”) to M ⊂ Λ :
σ(M) = {σ(x)}x∈M . Then any σ ∈ Ω has the form σ = (σ1, . . . , σN ), where σi = σ(Λi).
We say σ(M) is a subcell iff M is a maximal connected subgraph of G.
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Fix three cells σ, ϕ, ψ ∈ Ω, and put

Ω(σ, ϕ, ψ) = {τ = (τ1, . . . , τN ) ∈ Ω : τi ∈ {σi, ϕi, ψi}, ∀i = 1, . . . , N}.

Remark 2.1 The set Ω(σ, ϕ, ψ) can be interpreted as the set of all possible ’children’
of the ’parents’ θ = (σ, ϕ, ψ). A child τ can be born from θ if it only consists the subcells
of its parents θ. For quadratic stochastic operators such a set was first considered in [3]
and in the general form in [4].

Now let µ ∈ S(Λ,Φ) be a probability measure defined on Ω such that µ(σ) > 0 for
any cell σ ∈ Ω. The heredity coefficients Pσϕψ,τ are defined as

Pσϕψ,τ =







µ(τ)
µ(Ω(σ,ϕ,ψ)) , if τ ∈ Ω(σ, ϕ, ψ),

0, otherwise.
(3)

Obviously, Pσϕψ,τ ≥ 0, and
∑

τ∈Ω Pσϕψ,τ = 1 for all σ, ϕ, ψ ∈ Ω.
The CSO W ≡Wµ acting on the simplex S(Λ,Φ) and determined by coefficients (3)

is defined as follows: for an arbitrary measure λ ∈ S(Λ,Φ), the measure W (λ) = λ′ ∈
S(Λ,Φ) is defined by the equality

λ′(τ) =
∑

σ,ϕ,ψ∈Ω

Pσϕψ,τλ(σ)λ(ϕ)λ(ψ) (4)

for any cell τ ∈ Ω.
The CSO construction is also closely related to the graph structure on the set Λ.
A CSO is called Volterra if the coefficients Pijk,l may be nonzero only when l ∈ {i, j, k}

and vanish in all the remaining cases (see [7, 8]).
It is easy to see that any Volterra CSO has the following form

W : x′l = xl






x2l + xl

m
∑

i=1

i6=l

ai,lxi +

m
∑

i,j=1

i6=l, j 6=l

bij,lxixj






, (l = 1, ...,m), (5)

where ai,l and bij,l are some coefficients depending on Pijk,l .

Theorem 2.1 The CSO (4) is Volterra if and only if the graph G is connected.

Proof. Let G be connected then Ω(σ, ϕ, ψ) = {σ, ϕ, ψ}. Consequently, by (3) it
follows that the corresponding operator is Volterra. Conversely, if (3) satisfies Pσϕψ,τ = 0,
for τ /∈ {σ, ϕ, ψ} then by condition µ(σ) > 0 it follows that G is connected.

3 A Class of Non-Volterra CSOs

In this section we describe a condition on measure µ under which the CSOWµ generated
by µ (using the construction described in the previous section) can be studied using the
theory of Volterra CSO.

Denote by Ωi = ΦΛi the set of all cells defined on component Λi, i = 1, ..., N. Let µi
be a probability measure defined on Ωi, such that µi(σ) > 0 for any σ ∈ Ωi, i = 1, ..., N.
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Consider probability measure µ on Ω = Ω1 × · · · × ΩN defined as

µ(σ) =

N
∏

i=1

µi(σi), (6)

where σ = (σ1, ..., σN ), with σi ∈ Ωi, i = 1, ..., N.
By Theorem 2.1, if N = 1 then QSO constructed on G is Volterra QSO.

Theorem 3.1 The CSO constructed by (3) with measure (6) is reducible to N sep-

arate Volterra CSOs.

Proof. For any σ = (σ1, ..., σN ), ϕ = (ϕ1, ..., ϕN ), ψ = (ψ1, ..., ψN ) ∈ Ω we have

µ(Ω(σ, ϕ, ψ)) =
∑

τ1,...,τN :

τi∈{σi,ϕi,ψi},i=1,...,N

N
∏

i=1

µi(τi) =

N
∏

i=1

(

µi(σi) + µi(ϕi) + µi(ψi)
)

.

Using this equality by (3) we get

Pσϕψ,τ =







∏N
i=1

µi(τi)
µi(σi)+µi(ϕi)+µi(ψi)

, if τ ∈ Ω(σ, ϕ, ψ),

0 otherwise.
(7)

Thus CSO generated by measure (6) can be written as

λ′(τ) = λ′(τ1, ..., τN ) =

∑

σ = (σ1, ..., σN) : σi ∈ Ωi

ϕ = (ϕ1, ..., ϕN ) : ϕi ∈ Ωi

ψ = (ψ1, ..., ψN ) : ψi ∈ Ωi

N
∏

i=1

µi(τi)1(τi∈{σi,ϕi,ψi})

µi(σi) + µi(ϕi) + µi(ψi)
λ(σ)λ(ϕ)λ(ψ). (8)

Denote

Xi,w =
∑

τ∈Ω:

τi=w

λ(τ) =
∑

τ1,...,τi−1,τi+1,...,τN
τk∈Ωk,k 6=i

λ(τ1, ..., τi−1, w, τi+1, ..., τN ). (9)

From (8) we have

X ′
i,w =

∑

τ∈Ω:

τi=w

λ′(τ) =
∑

τ∈Ω:

τi=w







∑

σ1,...,σi−1,σi+1,...,σN
ϕ,ψ∈Ω

µi(w)

µi(w) + µi(ϕi) + µi(ψi)
×

N
∏

j=1

j 6=i

µj(τj)1(τj∈{σi,ϕj ,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ)λ(ψ)+

∑

ϕ1,...,ϕi−1,ϕi+1,...,ϕN
σ,ψ∈Ω

µi(w)

µi(σi) + µi(w) + µi(ψi)
×
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N
∏

j=1

j 6=i

µj(τj)1(τj∈{σi,ϕj ,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
λ(σ)λ(ϕ1 , ..., ϕi−1, w, ϕi+1, ..., ϕN )λ(ψ)+

∑

ψ1,...,ψi−1,ψi+1,...,ψN
σ,ϕ∈Ω

µi(w)

µi(σi) + µi(ϕi) + µi(w)
×

N
∏

j=1

j 6=i

µj(τj)1(τj∈{σi,ϕj,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
λ(σ)λ(ϕ)λ(ψ1 , ..., ψi−1, w, ψi+1, ..., ψN )






=

3
∑

σ1,...,σi−1,σi+1,...,σN
ϕ,ψ∈Ω

µi(w)

µi(w) + µi(ϕi) + µi(ψi)
×

∑

τ∈Ω:

τi=w

N
∏

j=1

j 6=i

µj(τj)1(τj∈{σj ,ϕj,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ)λ(ψ). (10)

It is easy to see that

∑

τ1,...,τi−1,τi+1,...,τN

N
∏

j=1

j 6=i

µj(τj)1(τj∈{σj ,ϕj ,ψj})

µj(σj) + µj(ϕj) + µj(ψj)
= 1.

Thus from (10) we have

RHS of (10) =

3
∑

σ1,...,σi−1,σi+1,...,σN
ϕ,ψ∈Ω

µi(w)

µi(w) + µi(ϕi) + µi(ψi)
λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ)λ(ψ) =

∑

σ,ϕ,ψ
σi=ϕi=ψi=w

λ(σ)λ(ϕ)λ(ψ) + 6
∑

ψi∈Ωi\w

µi(w)

2µi(w) + µi(ψi)
×

∑

σ1, ..., σi−1, σi+1, ..., σN

ϕ1, ..., ϕi−1, ϕi+1, ..., ϕN

ψ1, ..., ψi−1, ψi+1, ..., ψN

λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ1, ..., ϕi−1, w, ϕi+1, ..., ϕN )λ(ψ)+

3
∑

ϕi,ψi∈Ωi\w

µi(w)

µi(w) + µi(ϕi) + µi(ψi)
×

∑

σ1, ..., σi−1, σi+1, ..., σN

ϕ1, ..., ϕi−1, ϕi+1, ..., ϕN

ψ1, ..., ψi−1, ψi+1, ..., ψN

λ(σ1, ..., σi−1, w, σi+1, ..., σN )λ(ϕ)λ(ψ) =

X3
i,w +

∑

ψ∈Ωi\w

6µi(w)

2µi(w) + µi(ψ)
X2
i,wXi,ψ +

∑

ϕ,ψ∈Ωi\w

3µi(w)

µi(w) + µi(ϕ) + µi(ψ)
Xi,wXi,ϕXi,ψ.
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Thus operator (8) can be rewritten as

X ′
i,w = Xi,w



X2
i,w +

∑

ψ∈Ωi\w

6µi(w)

2µi(w) + µi(ψ)
Xi,wXi,ψ+

∑

ϕ,ψ∈Ωi\w

3µi(w)

µi(w) + µi(ϕ) + µi(ψ)
Xi,ϕXi,ψ



 , (11)

where Xi,w is defined by (9), w ∈ Ωi, i = 1, ..., N.

Note that
∑

w∈Ωi
Xi,w = 1 for any i = 1, ..., N. One can see that for each fixed i

(i = 1, ..., N) the operator (11) is similar to (5), i.e. is a Volterra CSO W (i) : S|Ωi|−1 →
S|Ωi|−1. The theorem is proved.

This theorem allows us to use the theory of Volterra CSO to describe the behavior of
trajectories of non-Volterra CSO (8).

If for each i ∈ {1, ..., N} the asymptotical behavior of trajectories of CSO W (i) is

known, say X
(n)
i,w → X∗

i,w, n → ∞, then asymptotical behavior of W (i.e. (8)), say

λ(n)(τ) → λ∗(τ), n→ ∞, can be found from the following system of linear equations

∑

τ∈Ω:τi=w

λ∗(τ) = X∗
i,w, w ∈ Ωi, i = 1, ..., N. (12)

In the following section we shall illustrate the restriction of a non-Volterra cubic
stochastic operator to two Volterra operators and study the trajectory of the non-Volterra
operator by these two Volterra operators.

4 An Example

Consider graph G = (Λ, L) with Λ = {1, 2} and L = ∅. Take Φ = {1, 2}. Then non-
Volterra CSO (8) has the form

x′1 = x31 + 3β1(x
2
1x2 + x1x

2
2) + 3α1(x

2
1x3 + x1x

2
3)+

3α1β1[x
2
1x4 + x1x

2
4 + x22x3 + x2x

2
3 + 2(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)],

x′2 = x32 + 3β2(x
2
1x2 + x1x

2
2) + 3α1(x

2
2x4 + x2x

2
4)+

3α1β2[x
2
1x4 + x1x

2
4 + x22x3 + x2x

2
3 + 2(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)],

x′3 = x33 + 3α2(x1x
2
3 + x21x3) + 3β1(x

2
3x4 + x3x

2
4)+

3α2β1[x
2
1x4 + x1x

2
4 + x22x3 + x2x

2
3 + 2(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)],

x′4 = x34 + 3α2(x2x
2
4 + x22x4) + 3β2(x

2
3x4 + x3x

2
4)+

3α2β2[x
2
1x4 + x1x

2
4 + x22x3 + x2x

2
3 + 2(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)],

(13)
where µ1 = (α1, α2), αj > 0, α1 + α2 = 1; µ2 = (β1, β2), βj ≥ 0, β1 + β2 = 1.
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Putting x1 + x2 = X1,1, x3 + x4 = X1,2 and x1 + x3 = X2,1, x2 + x4 = X2,2 we get
the Volterra cubic operators:

X ′
1,1 = X1,1

(

X2
1,1 + 3α1X1,2(X1,1 +X1,2)

)

,

X ′
1,2 = X1,2

(

X2
1,2 + 3α2X1,1(X1,1 +X1,2)

)

,
(14)

and

X ′
2,1 = X2,1

(

X2
2,1 + 3β1X2,2(X2,1 +X2,2)

)

,

X ′
2,2 = X2,2

(

X2
2,2 + 3β2X2,1(X2,1 +X2,2)

)

.
(15)

Since Xi,1 + Xi,2 = 1, i = 1, 2, the study of both operators (14) and (15) can be
reduced to the study of a dynamical system given by the function fα(x) = x(x2 +3α(1−
x)), x ∈ [0, 1]. This is an increasing function of x ∈ [0, 1] for each parameter α ∈ [0, 1].

We have

Fix(fα) = {x ∈ [0, 1] : fα(x) = x} =

{

{0, 1}, if α ∈ [0, 1/3]∪ [2/3, 1],

{0, 3α− 1, 1}, if α ∈ (1/3, 2/3).

Using the above-mentioned properties of the function fα(x) and checking |f ′
α(a)| at

a ∈ Fix(fα) one can see that the sequence x(n) = fα(x
(n−1)), n ≥ 1 for x(0) ∈ [0, 1] has

the following limits

lim
n→∞

x(n) =















0, for any x(0) ∈ [0, 1), α ∈ [0, 1/3],

3α− 1, for any x(0) ∈ (0, 1), α ∈ (1/3, 2/3),

1, for any x(0) ∈ (0, 1], α ∈ [2/3, 1].

(16)

By equalities (16) for operators (14) we get the following

lim
n→∞

(X
(n)
1,1 , X

(n)
1,2 ) =



















(0, 1), for any X
(0)
1,1 ∈ [0, 1), α1 ∈ [0, 1/3],

(3α1 − 1, 2− 3α1), for any X
(0)
1,1 ∈ (0, 1), α1 ∈ (1/3, 2/3),

(1, 0), for any X
(0)
1,1 ∈ (0, 1], α1 ∈ [2/3, 1].

(17)
A similar formula is true for the operator (15), where α1 is replaced by β1. Combining
these formulas and using formula (12) one proves the following.
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Proposition 4.1 The trajectory of the non-Volterra CSO (13) has the following limit

lim
n→∞

x(n) =



































































































(1, 0, 0, 0), if α1, β1 ∈ [2/3, 1],

(0, 1, 0, 0), if α1 ∈ [2/3, 1], β1 ∈ [0, 1/3],

(0, 0, 1, 0), if α1 ∈ [0, 1/3], β1 ∈ [2/3, 1],

(0, 0, 0, 1), if α1, β1 ∈ [0, 1/3],

(0, 0, 3β1 − 1, 2− 3β1), if α1 ∈ [0, 1/3], β1 ∈ (1/3, 2/3),

(3β1 − 1, 2− 3β1, 0, 0), if α1 ∈ [2/3, 1], β1 ∈ (1/3, 2/3),

(0, 3α1 − 1, 0, 2− 3α1), if α1 ∈ (1/3, 2/3), β1 ∈ [0, 1/3],

(3α1 − 1, 0, 2− 3α1, 0), if α1 ∈ (1/3, 2/3), β1 ∈ [2/3, 1],

∈ U, if α1 ∈ (1/3, 2/3), β1 ∈ (1/3, 2/3),

where

U = {x ∈ S3 : x1+x2 = 3α1−1, x3+x4 = 2−3α1, x1+x3 = 3β1−1, x2+x4 = 2−3β1}.

5 Concluding Remarks

In mathematical biology, the nonlinear operator W is called an evolution operator. The
fixed points of W are interpreted as equilibrium states of the population, λ ∈ Sm−1 is
called a state of the population, andW (λ),W 2(λ), . . . are called states of the population
in subsequent generations (offsprings). SinceW is a non-linear operator, the investigation
of the sequenceWn(λ) is a difficult problem in general. So one has to consider a particular
case of W , for which the problem is respectively simple. In this paper to define such an
operator, a construction of CSO on a finite dimensional simplex is given. Using the
construction of CSO a wide class of non-Volterra CSOs is described. Then we have
showed that the non-Volterra operators can be reduced to a finitely many of Volterra
CSOs. By such a reduction we described behavior of trajectories of a non-Volterra CSO
defined on the three dimensional simplex.

Here we shall give a biological interpretation of Proposition 4.1. Assume that the
evolution of a certain biological system consisting of 4 types of individuals is described
by operator (13). Using Proposition 4.1, we can conclude the following:

1. The biological system has up to 5 equilibrium states.
2. After a certain period of time, some types will be at the vanishing point.
3. If a system is in an equilibrium state, then, depending on the state, it can have

only one of 1, 2, 3, 4 types.
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