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Abstract: In this paper, a sliding mode control law is designed for stabilization
of specific class of linear systems of fractional order despite of multi delays in the
state system. A fractional order sliding surface is proposed, and using the variable
structure control theorem, control law is introduced. A numerical simulation is given
to show the effectiveness of the proposed design approach.
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1 Introduction

Recently, time delays inevitably exist in systems and processes [1, 2] due to poor per-
formance, undesirable system transient responses, and instabilities so that as a result,
most systems may include a delay term. In general, the time-delay is believed to have
a negative impact on the control system performance. To compensate for this impact,
Smith predictor schemes work fine for slow processes [3, 4]. In the last two decades, the
theory of fractional calculus has attracted researchers [5–9], because of its wide use in
different areas of sciences and engineering, such as viscoelastic systems [12,13], sinusoidal
oscillators [14], electromagnetic theory [15,16], and bioengineering [17]. The sliding mode
control (SMC) approach is one of the most important methods and this approach can be
used in many systems [18, 19] because of its robustness to parameter uncertainties and
insensitivity to external disturbances. Sliding mode control (SMC) is based on the theory
of variable structure systems [20]. The main feature of SMC is to cause states from initial
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conditions to a sliding surface and then the states are forced to remain on sliding surface
because the system on the sliding surface has desirable properties such as stability and
disturbance rejection capability [21]. Another approach is the use of fractional order
controllers such as the CRONE controller [22,23], the TID controller [24], the fractional
PID controller [25], and the FO adaptive SMC [26] to improve system control function.

The topic of the present work is the stability of fractional-order linear systems with
disturbances and multi time-delays have been done using the sliding mode control strat-
egy. In this paper, the sliding mode controller for a class of linear fractional order
systems with parameter uncertainties and multi time delay in state and input distur-
bance is proposed. The paper is presented as follows. In Section 2, basic definitions
in fractional calculus are given. In Section 3, problem formulation of fractional-order
systems is presented. Section 4 proposes the sliding mode control method. Numerical
simulation results are shown in Section 5. Finally, conclusion is made in Section 6.

2 Basic Definition and Preliminaries

There exist many definitions of fractional derivative. Two of the most commonly used
definitions are the Riemann-Liouville, and the Grunwald-Letnikov definitions. The
Grunwald-Letnikov fractional derivative of order q of a continuous function f(t) is defined
by [27]

D
q
t f(t) = lim

N→∞

[

t− a

N

]−q N−1
∑

j=0

(−1)j
(

q

j

)

f(t− j

[

t− a

N

]

).

Riemann-Liouville fractional integral and derivative operators of order q are defined as

D
q
t f(t) =

1

Γ(n− q)

dn

dtn

∫ t

0

(t− τ)n−q−1f(τ)dτ.

where n is the first integer which is not less than q, i.e., n − 1 ≤ q < n and Γ is the
Gamma function

Γ(q) =

∫ ∞

0

e−ttq−1dt.

If 0 < q < 1, then the Riemann-Liouville fractional derivative and integral operators of
order q are defined as

D
q
t f(t) =

1

Γ(1− q)

d

dt

∫ t

0

(t− τ)−qf(τ)dτ,

I
q
t f(t) = Iαf(t) =

1

Γ(q)

∫ t

0

(t− τ)q−1f(τ)dτ.

3 Stability

Lemma 3.1 [28] The following autonomous system:

Dqx(t) = Ax(t), x(0) = x0, (1)

where 0 < q < 1, x(t) ∈ R
n and A ∈ R

n×n is asymptotically stable if and only if
|arg(eig(A))| > qπ

2 , in this case, each component of the states decays towards origin
like t−q. Also, this system is stable if and only if |arg(eig(A))| ≥ qπ

2 and those critical
eigenvalues that satisfy |arg(eig(A))| = qπ

2 have geometric multiplicity one.
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The stable and unstable regions for 0 < q < 1 are shown in Figure 1.

Figure 1: Stability region of LTI fractional order system with order 0 < q < 1.

4 Problem Formulation

Now consider the linear uncertain system of fractional order with multi delays in state
as follows:

D
q
tx(t) =

N
∑

i=1

αi(Aix(t) +Aid1x(t− td1) +Aid2x(t− td2) + . . .

+Aidlx(t− tdl) +BiB(u(t) + w(t))). (2)

where and x(t) ∈ R
n, u(t) ∈ R

m, w(t) ∈ R
p are the state vector, the controller, the

exogenous input of the system, Ai ∈ R
n×n, Bi ∈ R

n×m, B ∈ R
m×m, Aid ∈ R

n×n are
constant matrices, and q is the fractional derivative, 0 < q < 1, and αi are indeterminate
parameters which satisfy αi ≥ 0 and

∑N
i=1 αi = 1.

Conditions that are necessary mode switching systems starting from any point and
move on the switching surface and reach it (to switching level) are called reaching condi-
tions. One of these conditions is as follows. This condition reach is global but does not
guarantee limited arrival time:

V̇ (t) = SṠ, (3)

where S is sliding sector. Another requirement in [21] is suggested that including the
shown entity,

1

2

d

dt
S2 ≤ −η|S|,

where η is a positive constant. That fulfilling the above condition causes the switching

time reach less than |S(t=0)|
η

.

5 Design of the Controller

In sliding mode control, the system state movement to a desired place, is comprised of two
parts, the reaching phase and the sliding phase. The control switching level (reachability
phase), should lead the system to the desired level. When all the modes of system were on
the surface, sliding mode occurs (sliding phase). In sliding mode, the dynamic behavior
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of the system is determined by choosing the switching level. Let the sliding surface S be
such that:

S(x, t) = I1−qx(t). (4)

Theorem 5.1 The sliding mode control law:

u(t) =
−B−1

a
k

S(t)

||S(t)||
, (5)

when
a = min{|B1|, |B2|, . . . , |BN |},

b = max{||A1x(t)||, ||A2x(t)||, . . . , ||ANx(t)||},

ddelay1 = max{||A1d1x(t− td1)||, ||A2d1x(t− td1)||, . . . , ||ANd1x(t− td1)||},

ddelay2 = max{||A1d2x(t− td2)||, ||A2d2x(t− td2)||, . . . , ||ANd2x(t− td2)||},

...

ddelayl = max{||A1dlx(t− tdl)||, ||A2dlx(t− tdl)||, . . . , ||ANdlx(t− tdl)||},

k = d+ ddelay1(x) + ddelay2(x) + · · ·+ ddelayN (x) + b||B||γ + ηe−λt||S(t)||1−δ,

and η > 0, λ > 0, 0 < δ ≤ 1.

Proof. The Lyapunov function to be defined in (2) taking the time derivative of S
in (3) and substituting by (4), we obtain:

Ṡ(t) =

N
∑

i=1

αiAix(t) +

N
∑

i=1

αiAid1x(t− td1) + · · ·+

N
∑

i=1

αiAidNx(t− tdN )

+
N
∑

i=1

αiBiBu(t) +
N
∑

i=1

αiBiBw(t).

(6)

Substituting (4) in (2), we have

V̇ (t) = S(t)Ṡ(t) = ST (t)(

N
∑

i=1

αiAix(t) +

N
∑

i=1

αiAid1x(t− td1) + . . .

+

N
∑

i=1

αiAidNx(t − tdN) +

N
∑

i=1

αiBiBu(t) +

N
∑

i=1

αiBiBw(t)).

(7)

On the other hand, we have

V̇ (t) = ST (t)Ṡ(t) = ST (t)(

N
∑

i=1

αiAix(t) +

N
∑

i=1

αiAid1x(t − td1) + . . .

+

N
∑

i=1

αiAidNx(t− tdN)− k
S(t)

||S(t)||

∑N
i=1 αiBi

a
+

N
∑

i=1

αiBiBw(t)),
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hence

V̇ (t) < ηe−λt||S(t)||2−δ.

This indicates that the Lyapunov function is positive definite and its derivative is negative
definite. By Lyapuonv stability theory and Lemma 1, the closed-loop system (1) with
the control law (u) in (4) is asymptotically stable.

We consider, the system states will reach the sliding mode S = 0 for a finite time T .
We have

ST Ṡ =
1

2

d(STS)

dt
=

1

2

dS2

dt
= S

dS

dt
.

It follows that
dt

d||S(T )||
=

1

ηe−λt||S(t)||1−δ
,

so
d||S(T )||

dt
= ηe−λt||S(t)||1−δ, (8)

we can integrate (8) from 0 to T , we have

T = −
1

λ
ln(1−

λ

δη
||S(0)||δ).

Therefore, t ≥ T , the system will converge to switching manifold at any initial state. T
is positive, it is enough that the selected constants

0 ≤
λ

δη
||S(0)||δ < 1.

✷

6 Simulation Results of the Proposed Sliding Mode Controller

The sliding mode controller given by (4) is applied to the fractional order systems given
by (1). Now consider this system, for example

D
q
tx(t) =

3
∑

i=1

αi(Aix(t)+Aid1x(t−td1)+Aid2x(t−td2)+Aid3x(t−td3)+BiB(u(t)+w(t))),

D
q
tx(t)=α1(A1x(t)+A1d1x(t− td1)+A1d2x(t− td2)+A1d3x(t− td3)+B1B(u(t)+w(t)))

=α2(A2x(t)+A2d1x(t− td1)+A2d2x(t− td2)+A2d3x(t− td3)+B2B(u(t)+w(t)))

=α2(A2x(t)+A2d1x(t− td1)+A2d2x(t− td2)+A2d3x(t− td3)+B2B(u(t)+w(t))).

The initial conditions of system (1) are taken to be [x1(0) x2(0)]
T

= [2 − 1]
T
.

Then, we choose A1 =

[

13 −1
1 10

]

, A2 =

[

6 −8
12 9

]

, A3 =

[

5 −6
1 2

]

, A1d1 =
[

1 0
−5 3

]

, A1d2 =

[

0 1
2 14

]

, A1d3 =

[

0 2
7 4

]

, A2d1 =

[

0 8
5 9

]

, A2d2 =

[

0 1
8 2

]

,

A2d3 =

[

11 1
6 −1

]

, A3d1 =

[

0 10
10 10

]

, A3d2 =

[

4 1
1 9

]

, A3d3 =

[

0 5
1 4

]

,
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(a) State X(t).

(b) Control input u1(t). (c) Control input u2(t).

Figure 2: Sliding mode control α1 = 0.1, α2 = 0.5, α3 = 0.4 (sampling interval,
h = 0.005 s).

(a) State X(t).

(b) Control input u1(t). (c) Control input u2(t).

Figure 3: Sliding mode control α1 = 0.5, α2 = 0.5, α3 = 0 (sampling interval, h = 0.005
s).
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B =

[

−1 0
0 1

]

, B1 = 0.4, B2 = 0.6, B3 = 0.2, q = 0.5, h = 0.005, and

td1 = 2, td2 = 4, td3 = 11, and the disturbance is of the form of w(t) = sin(t). The
parameters of the controller are chosen such that η = 3, δ = 0.4, γ = 1, λ = 4. The
performance of the system is simulated. We plot this system for two different categories
of parameters α1, α2, α3. The plots of the states of the system are shown in Figures
2(a) and 3(a) for the different parameters α1, α2, α3. Figures 2(b) and 3(b) give the
control input u1(t), and Figures 2(c) and 3(c) give the control input u2(t). Therefore,
it can be concluded that the simulation results indicate that the proposed sliding mode
controller works well.

7 Conclusions

In this paper, the sliding mode controller for stabilization of fractional order systems
with uncertainties and multiple delay in state and disturbance input is investigated. A
switching surface of integral type is proposed such that stability of the closed-loop system
in the sliding mode can be guaranteed. An illustrative example shows the effectiveness
of the proposed new scheme.
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